首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 700 毫秒
1.
Agricultural lands occupy about 40–50% of the Earth's land surface. Agricultural practices can make a significant contribution at low cost to increasing soil carbon sinks, reducing greenhouse gas (GHG) emissions and contributing biomass feedstocks for energy use. Considering all gases, the global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030 is estimated to be ca. 5500–6000 Mt CO2‐eq. yr?1. Economic potentials are estimated to be 1500–1600, 2500–2700 and 4000–4300 Mt CO2‐eq. yr?1 at carbon prices of up to $US20, 50 and 100 t CO2‐eq.?1, respectively. The value of the global agricultural GHG mitigation at the same three carbon prices is $US32 000, 130 000 and 420 000 million yr?1, respectively. At the European level, early estimates of soil carbon sequestration potential in croplands were ca. 200 Mt CO2 yr?1, but this is a technical potential and is for geographical Europe as far east as the Urals. The economic potential is much smaller, with more recent estimates for the EU27 suggesting a maximum potential of ca. 20 Mt CO2‐eq. yr?1. The UK is small in global terms, but a large part of its land area (11 Mha) is used for agriculture. Agriculture accounts for about 7% of total UK GHG emissions. The mitigation potential of UK agriculture is estimated to be ca. 1–2 Mt CO2‐eq. yr?1, accounting for less than 1% of UK total GHG emissions.  相似文献   

2.
The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost‐competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case‐by‐case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land‐use decisions are made and how new social, political and economic forces in the future will influence this process.  相似文献   

3.
Under the Kyoto Protocol, the European Union is committed to a reduction in CO2 emissions to 92% of baseline (1990) levels during the first commitment period (2008–2012). The Kyoto Protocol allows carbon emissions to be offset by demonstrable removal of carbon from the atmosphere. Thus, land‐use/land‐management change and forestry activities that are shown to reduce atmospheric CO2 levels can be included in the Kyoto targets. These activities include afforestation, reforestation and deforestation (article 3.3 of the Kyoto Protocol) and the improved management of agricultural soils (article 3.4). In this paper, we estimate the carbon mitigation potential of various agricultural land‐management strategies and examine the consequences of European policy options on carbon mitigation potential, by examining combinations of changes in agricultural land‐use/land‐management. We show that no single land‐management change in isolation can mitigate all of the carbon needed to meet Europe's climate change commitments, but integrated combinations of land‐management strategies show considerable potential for carbon mitigation. Three of the combined scenarios, one of which is an optimal realistic scenario, are by themselves able to meet Europe's emission limitation or reduction commitments. Through combined land‐management scenarios, we show that the most important resource for carbon mitigation in agriculture is the surplus arable land. We conclude that in order to fully exploit the potential of arable land for carbon mitigation, policies will need to be implemented to allow surplus arable land to be put into alternative long‐term land‐use. Of all options examined, bioenergy crops show the greatest potential for carbon mitigation. Bioenergy crop production also shows an indefinite mitigation potential compared to other options where the mitigation potential is finite. We suggest that in order to exploit fully the bioenergy option, the infrastructure for bioenergy production needs to be significantly enhanced before the beginning of the first Kyoto commitment period in 2008. It is not expected that Europe will attempt to meet its climate change commitments solely through changes in agricultural land‐use. A reduction in CO2‐carbon emissions will be key to meeting Europe's Kyoto targets, and forestry activities (Kyoto Article 3.3) will play a major role. In this study, however, we demonstrate the considerable potential of changes in agricultural land‐use and ‐management (Kyoto Article 3.4) for carbon mitigation and highlight the policies needed to promote these agricultural activities. As all sources of carbon mitigation will be important in meeting Europe's climate change commitments, agricultural carbon mitigation options should be taken very seriously.  相似文献   

4.
We refine the information available through the IPCC AR5 with regard to recent trends in global GHG emissions from agriculture, forestry and other land uses (AFOLU), including global emission updates to 2012. Using all three available AFOLU datasets employed for analysis in the IPCC AR5, rather than just one as done in the IPCC AR5 WGIII Summary for Policy Makers, our analyses point to a down‐revision of global AFOLU shares of total anthropogenic emissions, while providing important additional information on subsectoral trends. Our findings confirm that the share of AFOLU emissions to the anthropogenic total declined over time. They indicate a decadal average of 28.7 ± 1.5% in the 1990s and 23.6 ± 2.1% in the 2000s and an annual value of 21.2 ± 1.5% in 2010. The IPCC AR5 had indicated a 24% share in 2010. In contrast to previous decades, when emissions from land use (land use, land use change and forestry, including deforestation) were significantly larger than those from agriculture (crop and livestock production), in 2010 agriculture was the larger component, contributing 11.2 ± 0.4% of total GHG emissions, compared to 10.0 ± 1.2% of the land use sector. Deforestation was responsible for only 8% of total anthropogenic emissions in 2010, compared to 12% in the 1990s. Since 2010, the last year assessed by the IPCC AR5, new FAO estimates indicate that land use emissions have remained stable, at about 4.8 Gt CO2 eq yr?1 in 2012. Emissions minus removals have also remained stable, at 3.2 Gt CO2 eq yr?1 in 2012. By contrast, agriculture emissions have continued to grow, at roughly 1% annually, and remained larger than the land use sector, reaching 5.4 Gt CO2 eq yr?1 in 2012. These results are useful to further inform the current climate policy debate on land use, suggesting that more efforts and resources should be directed to further explore options for mitigation in agriculture, much in line with the large efforts devoted to REDD+ in the past decade.  相似文献   

5.
Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land‐use change and project potential future emissions. The novel Kaya–Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2‐eq. yr?1 and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop‐ and livestock‐production, respectively. Except for the energy‐use component of farming, emissions from all sources have increased less than agricultural production. Our projected business‐as‐usual range suggests that emissions may be further decoupled by 20–55% giving absolute agricultural emissions of 8.2–14.5 Pg CO2‐eq. yr?1 by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food‐system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis.  相似文献   

6.
Bioenergy and climate change mitigation: an assessment   总被引:1,自引:0,他引:1  
Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation: Land‐use and energy experts, land‐use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life‐cycle assessment experts. We summarize technological options, outline the state‐of‐the‐art knowledge on various climate effects, provide an update on estimates of technical resource potential and comprehensively identify sustainability effects. Cellulosic feedstocks, increased end‐use efficiency, improved land carbon‐stock management and residue use, and, when fully developed, BECCS appear as the most promising options, depending on development costs, implementation, learning, and risk management. Combined heat and power, efficient biomass cookstoves and small‐scale power generation for rural areas can help to promote energy access and sustainable development, along with reduced emissions. We estimate the sustainable technical potential as up to 100 EJ: high agreement; 100–300 EJ: medium agreement; above 300 EJ: low agreement. Stabilization scenarios indicate that bioenergy may supply from 10 to 245 EJ yr?1 to global primary energy supply by 2050. Models indicate that, if technological and governance preconditions are met, large‐scale deployment (>200 EJ), together with BECCS, could help to keep global warming below 2° degrees of preindustrial levels; but such high deployment of land‐intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration of bioenergy systems into agriculture and forest landscapes can improve land and water use efficiency and help address concerns about environmental impacts. We conclude that the high variability in pathways, uncertainties in technological development and ambiguity in political decision render forecasts on deployment levels and climate effects very difficult. However, uncertainty about projections should not preclude pursuing beneficial bioenergy options.  相似文献   

7.
Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small‐scale laboratory experiments that have not been compared to field‐scale measurements. We compiled published data on field‐scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd?1 yr?1), more than three times that from enteric fermentation (~120 kg CH4 hd?1 yr?1). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd?1 yr?1, respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd?1 yr?1) and barns (10 ± 6 kg N2O hd?1 yr?1) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation.  相似文献   

8.
Across energy, agricultural and forestry landscapes, the production of biomass for energy has emerged as a controversial driver of land‐use change. We present a novel, simple methodology, to probe the potential global sustainability limits of bioenergy over time for energy provision and climate change mitigation using a complex‐systems approach for assessing land‐use dynamics. Primary biomass that could provide between 70 EJ year?1 and 360 EJ year?1, globally, by 2050 was simulated in the context of different land‐use futures, food diet patterns and climate change mitigation efforts. Our simulations also show ranges of potential greenhouse gas emissions for agriculture, forestry and other land uses by 2050, including not only above‐ground biomass‐related emissions, but also from changes in soil carbon, from as high as 24 GtCO2eq year?1 to as low as minus 21 GtCO2eq year?1, which would represent a significant source of negative emissions. Based on the modelling simulations, the discussions offer novel insights about bioenergy as part of a broader integrated system. Whilst there are sustainability limits to the scale of bioenergy provision, they are dynamic over time, being responsive to land management options deployed worldwide.  相似文献   

9.
Bioenergy is expected to play an important role in the future energy mix as it can substitute fossil fuels and contribute to climate change mitigation. However, large‐scale bioenergy cultivation may put substantial pressure on land and water resources. While irrigated bioenergy production can reduce the pressure on land due to higher yields, associated irrigation water requirements may lead to degradation of freshwater ecosystems and to conflicts with other potential users. In this article, we investigate the trade‐offs between land and water requirements of large‐scale bioenergy production. To this end, we adopt an exogenous demand trajectory for bioenergy from dedicated energy crops, targeted at limiting greenhouse gas emissions in the energy sector to 1100 Gt carbon dioxide equivalent until 2095. We then use the spatially explicit global land‐ and water‐use allocation model MAgPIE to project the implications of this bioenergy target for global land and water resources. We find that producing 300 EJ yr?1 of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented. Since current human water withdrawals are dominated by agriculture and already lead to ecosystem degradation and biodiversity loss, such a doubling will pose a severe threat to freshwater ecosystems. If irrigated bioenergy production is prohibited to prevent negative impacts of bioenergy cultivation on water resources, bioenergy land requirements for meeting a 300 EJ yr?1 bioenergy target increase substantially (+ 41%) – mainly at the expense of pasture areas and tropical forests. Thus, avoiding negative environmental impacts of large‐scale bioenergy production will require policies that balance associated water and land requirements.  相似文献   

10.
The implementation of measures to increase productivity and resource efficiency in food and bioenergy chains as well as to more sustainably manage land use can significantly increase the biofuel production potential while limiting the risk of causing indirect land use change (ILUC). However, the application of these measures may influence the greenhouse gas (GHG) balance and other environmental impacts of agricultural and biofuel production. This study applies a novel, integrated approach to assess the environmental impacts of agricultural and biofuel production for three ILUC mitigation scenarios, representing a low, medium and high miscanthus‐based ethanol production potential, and for three agricultural intensification pathways in terms of sustainability in Lublin province in 2020. Generally, the ILUC mitigation scenarios attain lower net annual emissions compared to a baseline scenario that excludes ILUC mitigation and bioethanol production. However, the reduction potential significantly depends on the intensification pathway considered. For example, in the moderate ILUC mitigation scenario, the net annual GHG emissions in the case study are 2.3 MtCO2‐eq yr?1 (1.8 tCO2‐eq ha?1 yr?1) for conventional intensification and ?0.8 MtCO2‐eq yr?1 (?0.6 tCO2‐eq ha?1 yr?1) for sustainable intensification, compared to 3.0 MtCO2‐eq yr?1 (2.3 tCO2‐eq ha?1 yr?1) in the baseline scenario. In addition, the intensification pathway is found to be more influential for the GHG balance than the ILUC mitigation scenario, indicating the importance of how agricultural intensification is implemented in practice. Furthermore, when the net emissions are included in the assessment of GHG emissions from bioenergy, the ILUC mitigation scenarios often abate GHG emissions compared to gasoline. But sustainable intensification is required to attain GHG abatement potentials of 90% or higher. A qualitative assessment of the impacts on biodiversity, water quantity and quality, soil quality and air quality also emphasizes the importance of sustainable intensification.  相似文献   

11.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

12.
In this paper we estimate the European potential for carbon mitigation of no-till farming using results from European tillage experiments. Our calculations suggest some potential in terms of (a) reduced agricultural fossil fuel emissions, and (b) increased soil carbon sequestration. We estimate that 100% conversion to no-till farming would be likely to sequester about 23 Tg C y–1 in the European Union or about 43 Tg C y–1 in the wider Europe (excluding the former Soviet Union). In addition, up to 3.2 Tg C y–1 could be saved in agricultural fossil fuel emissions. Compared to estimates of the potential for carbon sequestration of other carbon mitigation options, no-till agriculture shows nearly twice the potential of scenarios whereby soils are amended with organic materials. Our calculations suggest that 100% conversion to no-till agriculture in Europe could mitigate all fossil fuel-carbon emissions from agriculture in Europe. However, this is equivalent to only about 4.1% of total anthropogenic CO2-carbon produced annually in Europe (excluding the former Soviet Union) which in turn is equivalent to about 0.8% of global annual anthropogenic CO2-carbon emissions.  相似文献   

13.
Afforestation is considered a cost‐effective and readily available climate change mitigation option. In recent studies afforestation is presented as a major solution to limit climate change. However, estimates of afforestation potential vary widely. Moreover, the risks in global mitigation policy and the negative trade‐offs with food security are often not considered. Here we present a new approach to assess the economic potential of afforestation with the IMAGE 3.0 integrated assessment model framework. In addition, we discuss the role of afforestation in mitigation pathways and the effects of afforestation on the food system under increasingly ambitious climate targets. We show that afforestation has a mitigation potential of 4.9 GtCO2/year at 200 US$/tCO2 in 2050 leading to large‐scale application in an SSP2 scenario aiming for 2°C (410 GtCO2 cumulative up to 2100). Afforestation reduces the overall costs of mitigation policy. However, it may lead to lower mitigation ambition and lock‐in situations in other sectors. Moreover, it bears risks to implementation and permanence as the negative emissions are increasingly located in regions with high investment risks and weak governance, for example in Sub‐Saharan Africa. Afforestation also requires large amounts of land (up to 1,100 Mha) leading to large reductions in agricultural land. The increased competition for land could lead to higher food prices and an increased population at risk of hunger. Our results confirm that afforestation has substantial potential for mitigation. At the same time, we highlight that major risks and trade‐offs are involved. Pathways aiming to limit climate change to 2°C or even 1.5°C need to minimize these risks and trade‐offs in order to achieve mitigation sustainably.  相似文献   

14.
Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land‐based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land‐based mitigation scenarios from two land‐use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ‐GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land‐use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land‐use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land‐use change. Differences between land‐use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land‐based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy.  相似文献   

15.
Controls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2) and methane (CH4) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at ?5, ?0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at ?0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 μg CH4‐C gC?1 at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R2 = 0.81) in SOC. Carbon emissions (CO2‐C + CH4‐C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.  相似文献   

16.
Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long‐term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long‐term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high‐temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (Rs), and metabolic quotient (qCO2) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N2O emissions, possibly due to accelerated N‐cycling at elevated soil temperature and to biochar‐induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar‐C into soil was estimated to offset warming‐induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N2O emissions under warming limit the GHG mitigation potential of biochar.  相似文献   

17.
Afforestation with short‐rotation coppice (SRC) willow plantations for the purpose of producing bioenergy feedstock was contemplated as one potential climate change mitigation option. The objectives of this study were to assess the magnitude of this mitigation potential by addressing: (i) the land area potentially available for SRC systems in the province of Saskatchewan, Canada; (ii) the potential biomass yields of SRC plantations; and (iii) the carbon implications from such a large‐scale afforestation program. Digital soils and land‐use data were used to identify, map, and group into clusters of similar polygons 2.12 million hectares (Mha) of agriculturally marginal land that was potentially suitable for willow in the Boreal Plains and Prairies ecozones in Saskatchewan. The Physiological Principles in Predicting Growth (3PG) model was calibrated with data from SRC experiments in Saskatchewan, to quantify potential willow biomass yields, and the Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3), was used to simulate stand and landscape‐level C fluxes and stocks. Short‐rotation willow plantations managed in 3 year rotations for seven consecutive harvests (21 years) after coppicing at Year 1 produced about 12 Mg ha?1 yr?1 biomass. The more significant contribution to the C cycle was the cumulative harvest. After 44 years, the potential average cumulative harvested biomass C in the Prairies was 244 Mg C ha?1 (5.5 Mg C ha?1 yr?1) about 20% higher than the average for the Boreal Plains, 203 Mg C ha?1 (4.6 Mg C ha?1 yr?1). This analysis did not consider afforestation costs, rate of establishment of willow plantations, and other constraints, such as drought and disease effects on biomass yield. The results must therefore be interpreted as a biophysical mitigation potential with the technical and economic potential being both lower than our estimates. Nevertheless, short‐rotation bioenergy plantations offer one potential mitigation option to reduce the rate of CO2 accumulation in the earth's atmosphere and further research is needed to operationalise such a mitigation effort.  相似文献   

18.
Agriculture directly contributes about 10%–12% of current global anthropogenic greenhouse gas emissions, mostly from livestock. However, such percentage estimates are based on global warming potentials (GWPs), which do not measure the actual warming caused by emissions and ignore the fact that methane does not accumulate in the atmosphere in the same way as CO2. Here, we employ a simple carbon cycle‐climate model, historical estimates and future projections of livestock emissions to infer the fraction of actual warming that is attributable to direct livestock non‐CO2 emissions now and in future, and to CO2 from pasture conversions, without relying on GWPs. We find that direct livestock non‐CO2 emissions caused about 19% of the total modelled warming of 0.81°C from all anthropogenic sources in 2010. CO2 from pasture conversions contributed at least another 0.03°C, bringing the warming directly attributable to livestock to 23% of the total warming in 2010. The significance of direct livestock emissions to future warming depends strongly on global actions to reduce emissions from other sectors. Direct non‐CO2 livestock emissions would contribute only about 5% of the warming in 2100 if emissions from other sectors increase unabated, but could constitute as much as 18% (0.27°C) of the warming in 2100 if global CO2 emissions from other sectors are reduced to near or below zero by 2100, consistent with the goal of limiting warming to well below 2°C. These estimates constitute a lower bound since indirect emissions linked to livestock feed production and supply chains were not included. Our estimates demonstrate that expanding the mitigation potential and realizing substantial reductions of direct livestock non‐CO2 emissions through demand and supply side measures can make an important contribution to achieve the stringent mitigation goals set out in the Paris Agreement, including by increasing the carbon budget consistent with the 1.5°C goal.  相似文献   

19.
Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate‐change refuges, shading corals from the harmful interaction between high sea‐surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m?2) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20–30°N and 15–25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) – habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate‐change‐associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to <250 μmol m?2 s?1, and predict that 16% of reef‐coral habitat ≤30 m will preclude coral growth and reef development. Thus, protecting the turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef‐coral persistence under climate change.  相似文献   

20.
Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertilizer application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertilizer‐induced soil N2O emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model to determine optimal mitigation options as a function of soil type, climate, and fertilization rates. After Monte Carlo sampling of input variables, we aggregated the outputs according to climate, soil and fertilizer factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per‐hectare basis. The optimal mitigation for each soil‐climate‐region was then mapped to propose geographically specific optimal GHG mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (as they are calibrated on globally or continentally observed phenomena). However, as they are relatively simple in structure, they may not be applicable for accurate site‐specific prediction of GHG emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural GHG abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterization of the yield effect on a given crop before recommending any mitigation practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号