首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
1.?Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2.?We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height?≥?5?cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3.?In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4.?Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5.?Our study shows that reduction in plant taxonomic diversity in secondary forests is not the main driver of the reduction in canopy ant species richness. We suggest that the majority of arboreal species losses in secondary tropical forests are attributable to simpler vegetation structure, combined with lower turnover of nesting microhabitats between trees.  相似文献   

2.
It has been argued that canopy trees in tropical rainforests harbor species-rich ant assemblages; however, how ants partition the space on trees has not been adequately elucidated. Therefore, we investigated within-tree distributions of nest sites and foraging areas of individual ant colonies on canopy trees in a tropical lowland rainforest in Southeast Asia. The species diversity and colony abundance of ants were both significantly greater in crowns than on trunks. The concentration of ant species and colonies in the tree crown seemed to be associated with greater variation in nest cavity type in the crown, compared to the trunk. For ants nesting on canopy trees, the numbers of colonies and species were both higher for ants foraging only during the daytime than for those foraging at night. Similarly, for ants foraging on canopy trees, both values were higher for ants foraging only during the daytime than for those foraging at night. For most ant colonies nesting on canopy trees, foraging areas were limited to nearby nests and within the same type of microhabitat (within-tree position). All ants foraging on canopy trees in the daytime nested on canopy trees, whereas some ants foraging on the canopy trees at night nested on the ground. These results suggest that spatial partitioning by ant assemblages on canopy trees in tropical rainforests is affected by microenvironmental heterogeneity generated by three-dimensional structures (e.g., trees, epiphytes, lianas, and aerial soils) in the crowns of canopy trees. Furthermore, ant diversity appears to be enriched by both temporal (diel) and fine-scale spatial partitioning of foraging activity.  相似文献   

3.
Almost half of lowland tropical forests are at various stages of regeneration following deforestation or fragmentation. Changes in tree communities along successional gradients have predictable bottom‐up effects on consumers. Liana (woody vine) assemblages also change with succession, but their effects on animal succession remain unexplored. Here we used a large‐scale liana removal experiment across a forest successional chronosequence (7–31 years) to determine the importance of lianas to ant community structure. We conducted 1,088 surveys of ants foraging on and living in trees using tree trunk baiting and hand‐collecting techniques at 34 paired forest plots, half of which had all lianas removed. Ant species composition, β‐diversity, and species richness were not affected by liana removal; however, ant species co‐occurrence (the coexistence of two or more species in a single tree) was more frequent in control plots, where lianas were present, versus removal plots. Forest stand age had a larger effect on ant community structure than the presence of lianas. Mean ant species richness in a forest plot increased by ca. 10% with increasing forest age across the 31‐year chronosequence. Ant surveys from forest >20 years old included more canopy specialists and fewer ground‐nesting ant species versus those from forests <20 years old. Consequently, lianas had a minimal effect on arboreal ant communities in this early successional forest, where rapidly changing tree community structure was more important to ant species richness and composition.  相似文献   

4.
The arboreal ant communities of a primary lowland rain forest and three differently disturbed forests that lie close together forming an anthropogenic disturbance gradient were collected with insecticide fogging. Combined samples from all trees (87 foggings) comprised 153,504 ants sorted to 331 morphospecies. The primary forest ant fauna was characterized by high species richness and 53 foggings were necessary to collect communities representatively. Another 63 species of ants were found in the disturbed forests indicating a large regional species pool that might exceed 420 species of arboreal ants. Anthropogenic disturbance caused a change in the taxonomic composition, diversity and structure of ant communities. Community size was a predictor of species richness in the severely disturbed forest types but not in the old secondary or primary forest. Ant abundance had declined significantly in the disturbed forests and only 10% of the primary forest’s species were collected in the most disturbed forest type. In each of the secondary forests a change in the frequency distribution of species was observed and a small number of species had gained numerical dominance. Analysis of species associations indicates that the strength of species interactions changed with the degree of forest disturbance. These changes were still clearly recognizable after 40 years of forest regeneration despite optimal conditions for colonization from the adjacent primary forest, demonstrating that the time scale needed for forest recovery after anthropogenic disturbance is very long.  相似文献   

5.
Summary. Many species of ground nesting ants regularly visit extrafloral nectaries (EFNs) of the savannah tree Pseudocedrela kotschyi. The distribution of ants on the plants is mosaic-like, i.e. stable and predictable with different ant species dominating neighbouring trees. In order to examine whether foraging behaviour may influence the structure of these ant communities, we investigated individual foraging behaviour of Camponotus sericeus, the ant species with highest incidence on P. kotschyi trees in the study area. Foragers of C. sericeus continuously visited EFNs on the leafs of P. kotschyi during their diurnal activity period. Individually marked foragers showed a pronounced fidelity for individual plants and particular leaves. Ant individuals returned to the same plants over a three week period at least. They persistently focused foraging on the same leaves (about three per ant). Null model analysis of ant distribution revealed that ants partitioned their host plant. Co-occurrence on the same leaves was significantly lower than could be expected by chance for most trees studied. Foraging was not oriented towards the plants growing closest to the nest but more distantly growing plants were considerably used. Choice of plants could therefore be influenced by plant quality or by presence of other, competing ant species. The study is the first to show leaf fidelity caused by EFNs and micro-site fidelity within the context of species rich ant communities. It considers the resulting systematic, partitioned use of individual plants as important factor supporting the formation of a mosaic-like ant distribution on plants.  相似文献   

6.
Shaded coffee agroecosystems traditionally have few pest problems potentially due to higher abundance and diversity of predators of herbivores. However, with coffee intensification (e.g., shade tree removal or pruning), some pest problems increase. For example, coffee leaf miner outbreaks have been linked to more intensive management and increased use of agrochemicals. Parasitic wasps control the coffee leaf miner, but few studies have examined the role of predators, such as ants, that are abundant and diverse in coffee plantations. Here, we examine linkages between arboreal ant communities and coffee leaf miner incidence in a coffee plantation in Mexico. We examined relationships between incidence and severity of leaf miner attack and: (1) variation in canopy cover, tree density, tree diversity, and relative abundance of Inga spp. shade trees; (2) presence of Azteca instabilis, an arboreal canopy dominant ant; and (3) the number of arboreal twig‐nesting ant species and nests in coffee plants. Differences in vegetation characteristics in study plots did not correlate with leaf miner damage perhaps because environmental factors act on pest populations at a larger spatial scale. Further, presence of A. instabilis did not influence presence or severity of leaf miner damage. The proportion of leaves with leaf miner damage was significantly lower where abundance of twig‐nesting ants was higher but not where twig‐nesting ant richness was higher. These results indicate that abundance of twig‐nesting ants in shaded coffee plantations may contribute to maintenance of low leaf miner populations and that ants provide important ecosystem services in coffee agroecosystems.  相似文献   

7.
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.  相似文献   

8.
The physical characteristics of habitats shape local community structure; a classic example is the positive relationship between the size of insular habitats and species richness. Despite the high density and proximity of tree crowns in forests, trees are insular habitats for some taxa. Specifically, crown isolation (i.e. crown shyness) prevents the movement of small cursorial animals among trees. Here, we tested the hypothesis that the species richness of ants (Sa) in individual, isolated trees embedded within tropical forest canopies increases with tree size. We predicted that this pattern disappears when trees are connected by lianas (woody vines) or when strong interactions among ant species determine tree occupancy. We surveyed the resident ants of 213 tree crowns in lowland tropical forest of Panama. On average, 9.2 (range = 2–20) ant species occupied a single tree crown. Average (± SE) Sa was ca 25% higher in trees with lianas (10.2 ± 0.26) than trees lacking lianas (8.0 ± 0.51). Sa increased with tree size in liana‐free trees (Sa = 10.99A0.256), but not in trees with lianas. Ant species composition also differed between trees with and without lianas. Specifically, ant species with solitary foragers occurred more frequently in trees with lianas. The mosaic‐like pattern of species co‐occurrence observed in other arboreal ant communities was not found in this forest. Collectively, the results of this study indicate that lianas play an important role in shaping the local community structure of arboreal ants by overcoming the insular nature of tree crowns.  相似文献   

9.
The arboreal ant fauna was investigated in Budongo Forest, a seasonal rain forest in Uganda, using the insecticidal fogging technique. Ants were collected from 61 trees, between 7 and 33 m in height, belonging to four tree species. Trees were growing in adjacent plots of forests characterized by different use and structure: an old primary forest, a primary swamp forest along a small river, and a secondary forest where selective logging was carried out for 30 years. A total number of 37,065 ants, belonging to 161 species in 30 genera were collected. Considering the high number of species found only once, the completeness of the canopy ant fauna was relatively high and of relatively similar magnitude as samples from the Neotropics or the Oriental region. Up to 37 ant species on a single tree, with an average of 18.2 species per tree, were found. Forty-four ant species (28.1%) were found only once, less than ten individuals were found for each of 88 species (54.7%), but 64.0% of all individuals belonged to one of five species. Considering the high numerical dominance of a few ant species like a Pheidole sp., Tetramorium aculeatum (Mayr) and a Crematogaster sp., there is some evidence for an ant mosaic in the lower canopy of the Budongo Forest. Individual numbers of ants were strongly correlated with nests in the fogged tree, though the ants were not homogeneously distributed in the tree crowns. Diversity measures that strongly depend on individual numbers such as the Morisita-Horn index or rarefaction methods were calculated, but results were not concordant with those of incidence-based estimates such as jack-knife calculations. Differences in ant species richness and faunal composition between tree species were low, but more significant between forest types. The ant fauna in the secondary forest was less diverse with 12.6% fewer species compared to the primary forest sites. The average number of ant species per tree was significantly lower in the secondary forest (<20% of the species; F=8.03, df=59, P<0.01) than in the undisturbed forest types. Cataulacus, Leptothorax, Tetraponera, and Polyrhachis, which are typical canopy-dwelling ant genera, had a significantly higher diversity and frequency in the two primary forest types (F=4.17, df=53, P<0.05). Secondary forest trees are often younger, lacking dead branches and epiphytes which are important requisites for ant colonization on trees.  相似文献   

10.
The ant mosaic is a concept of the non-random spatial distribution of individual ant species in trees built upon the assumption of interspecific behavioural associations. However, colony identity and environmental variance may also play a role in species distribution. Here we assess the presence of ant mosaics in a primary forest ecosystem and whether they are structured by species' aggressive behaviours or by habitat filtering. We sampled arboreal ants from vertically stratified baits exposed in 225 canopy trees in a 9-ha plot of primary lowland forest in Papua New Guinea, the largest forest area surveyed to detect ant mosaics. We performed behavioural tests on conspecific ants from adjacent trees to determine the territories of individual colonies. We explored the environmental effects on the ant communities using information on the plot vegetation structure and topography. Furthermore, we created a novel statistical method to test for the community non-random spatial structure across the plot via spatial randomisation of individual colony territories. Finally, we linked spatial segregation among the four most common species to experimentally assessed rates of interspecies aggression. The ant communities comprised 57 species of highly variable abundance and vertical stratification. Ant community composition was spatially dependent, but it was not affected by tree species composition or canopy connectivity. Only local elevation had a significant but rather small effect. Individual colony territories ranged from one tree to 0.7 ha. Species were significantly over-dispersed, with their territory overlap significantly reduced. The level of aggression between pairs of the four most common species was positively correlated with their spatial segregation. Our study demonstrates the presence of ant mosaics in tropical pristine forest, which are maintained by interspecific aggression rather than habitat filtering, with vegetation structure having a rather small and indirect effect, probably linked to microclimate variability.  相似文献   

11.
1.?Arboreal ants are both diverse and ecologically dominant in the tropics. Such ecologically important groups are likely to be particularly useful in ongoing empirical efforts to understand the processes that regulate species diversity and coexistence. 2.?Our study addresses how access to tree-based resources and the diversity of pre-existing nesting cavities affect species diversity and coexistence in tropical arboreal ant assemblages. We focus on assemblage-level responses to these variables at local scales. We first surveyed arboreal ant diversity across three naturally occurring levels of canopy connectivity and a gradient of tree size. We then conducted whole-tree experimental manipulations of canopy connectivity and the diversity of cavity entrance sizes. All work was conducted in the Brazilian savanna or 'cerrado'. 3.?Our survey suggested that species richness was equivalent among levels of connectivity. However, there was a consistent trend of lower species density with low canopy connectivity. This was confirmed at the scale of individual trees, with low-connectivity trees having significantly fewer species across all tree sizes. Our experiment demonstrated directly that low canopy connectivity results in significantly fewer species coexisting per tree. 4.?A diverse array of cavity entrance sizes did not significantly increase overall species per tree. Nevertheless, cavity diversity did significantly increase the species using new cavities on each tree, the species per tree unique to new cavities, total species using new cavities, and total cavity use. The populations of occupied cavities were consistent with newly founded colonies and new nests of established colonies from other trees. Cavity diversity thus appears to greatly affect new colony founding and colony growth. 5.?These results contribute strong evidence that greater resource access and greater cavity diversity have positive effects on species coexistence in local arboreal ant assemblages. More generally, these positive effects are broadly consistent with niche differentiation promoting local species coexistence in diverse arboreal ant assemblages. The contributions of this study to the understanding of the processes of species coexistence are discussed, along with the potential of the focal system for future work on this issue.  相似文献   

12.
The small formicoxenine ant Temnothorax saxonicus was known from about 40 localities in Central Europe nesting in anorganic substrates on floor of xerothermous forests whereas investigations of 198 tree canopies in 19 forest sites of the same region provided no indication for arboreal nesting or foraging. We present the first evidence for canopy‐nesting populations of T. saxonicus on old Quercus trees in 3 sites having maximum calibrated topsoil temperatures of 17.9 ± 0.3 °C which were significantly (P < 0.007) lower than 22.8 ± 2.0 °C measured in 5 sites with ground‐nesting populations. The thermal deficit on forest floor inhibits brood development in ground nests and caused a moving to canopy were maximum calibrated temperatures of the, now wooden, substrates are at least 26.1 °C for the whole canopy and 30.8 °C in more sun‐exposed spots. T. saxonicus competed here successfully with the obligatory canopy ants T. affinis and T. corticalis. The distributional data of this rope‐climbing study support former results that highest nest densities of small arboreal ants occur in temperate climate over the entire canopy mantle of single trees situated in open land or in park‐like environments but occur in the top of the canopy in tree stands with high degree of canopy closure.  相似文献   

13.
Spatiotemporal characteristics of terrestrial foraging were studied in two ant species, Manica yessensis and Formica lemani, in a volcanic desert on the southeast slope of Mount Fuji, Gotenba, Japan. Both ants are common in this habitat, and they construct underground nests in this dry area with sparse vegetation. Nests of M. yessensis have multiple nest-openings on the surface, whereas nests of F. lemani have very few openings, but their nesting and foraging areas overlap completely. A “mark-and-observe” method applied to M. yessensis demonstrated that worker ants of this species move between openings more than 3 m away. A study plot (6 m × 12 m quadrat) was set up, in which all nest-openings of both species were mapped. Day-long observations on numbers of foragers in this plot revealed that foraging M. yessensis are active in morning and evening, while F. lemani continues foraging all day, but both species cease activity at night. Associations between locations of foragers and nest-openings differed significantly between the two species, that is, surface foraging of M. yessensis workers was largely confined to the vicinity of their nest-openings, whereas foragers of F. lemani travelled far from their nest-openings. The function of multiple nest-openings in M. yessensis is discussed.  相似文献   

14.
1. Physically complex substrates impart significant costs on cursorial central‐place foragers in terms of time spent outside the nest and total distance travelled. Ants foraging in trees navigate varied surfaces to access patchy resources, thus providing an appropriate model system for examining interactions between foraging efficiency and substrates. 2. We expected that the speed of recruitment, body size distribution and species richness of foraging arboreal ants would differ predictably among common substrate types occurring on tropical tree trunks. We measured changes in ant abundance and species composition over time at baits placed on bare tree bark, moss‐covered bark, and vine‐like vegetation appressed to bark. We also measured average body size and body size frequency on the three substrate types. Ants discovered baits sooner and accumulated at baits relatively faster when using vine substrates as the primary foraging trail. Average body size was smaller on vine substrates than on bark. Experimental removal of vine and moss substrates nullified these differences. Contrary to our predictions, species richness and body size distributions did not differ among the three substrate types, due in part to the frequent presence of a few common ground‐nesting species at baits on bare bark. 3. Our results collectively indicate that linear substrates facilitate access of foraging ants to patchy resources. Ant use of vine‐like substrates appears to be opportunistic; vine use is not confined to certain species nor constrained by body size.  相似文献   

15.
16.
The ongoing destruction of tropical rainforests has increased the interest in the potential value of tropical agroforests for the conservation of biodiversity. Traditional, shaded agroforests may support high levels of biodiversity, for some groups even approaching that of undisturbed tropical forests. However, it is unclear to what extent forest fauna is represented in this diversity and how management affects forest fauna in agroforests. We studied lower canopy ant and beetle fauna in cacao agroforests and forests in Central Sulawesi, Indonesia, a region dominated by cacao agroforestry. We compared ant and beetle species richness and composition in forests and cacao agroforests and studied the impact of two aspects of management intensification (the decrease in shade tree diversity and in shade canopy cover) on ant and beetle diversity. The agroforests had three types of shade that represented a decrease in tree diversity (high, intermediate and low diversity). Species richness of ants and beetles in the canopies of the cacao trees was similar to that found in lower canopy forest trees. However, the composition of ant and beetle communities differed greatly between the agroforest and forest sites. Forest beetles suffered profoundly from the conversion to agroforests: only 12.5% of the beetle species recorded in the forest sites were also found in the agroforests and those species made up only 5% of all beetles collected from cacao. In contrast, forest ants were well represented in agroforests, with 75% of all species encountered in the forest sites also occurring on cacao. The reduction of shade tree diversity had no negative effect on ants and beetles on cacao trees. Beetle abundances and non-forest ant species richness even increased with decreasing shade tree diversity. Thinning of the shade canopy was related to a decrease in richness of forest ant species on cacao trees but not of beetles. The contrasting responses of ants and beetles to shade tree management emphasize that conservation plans that focus on one taxonomic group may not work for others. Overall ant and beetle diversity can remain high in shaded agroforests but the conservation of forest ants and beetles in particular depends primarily on the protection of natural forests, which for forest ants can be complemented by the conservation of adjacent shaded cacao agroforests.  相似文献   

17.
Haemig 《Ecology letters》1999,2(3):178-184
Although interactions between species are often assumed to be fixed, theory and empirical evidence suggest that they may be quite variable, changing in the presence of other species or environmental conditions. The interaction between ants and nesting birds exhibits such variability, ants sometimes being predators of bird nests and other times protectors of them. Hypothesizing that predation risk might be a critical factor in altering the interaction of ants with birds, I investigated the interaction of wood ants Formica aquilonia with nesting birds under different levels of predation risk. In a controlled field experiment, I allowed tits ( Parus major, P. caeruleus, P. ater ) and pied flycatchers ( Ficedula hypoleuca ) to select nest boxes in trees with ants (ant trees) or trees without ants. I found that birds usually nested in trees without ants, apparently to avoid the danger of injury from encounters with ants. Nesting in ant trees occurred mainly in the habitat where risk of predation was highest (along the forest edge), and with the bird taxa that lost nests most frequently in trees without ants (tits). Tits nesting on the forest edge achieved significantly greater nesting success, and fledged significantly more young, in ant trees compared with trees without ants. As the season progressed, ant traffic increased in trees without nesting birds, but decreased in trees with nesting birds, indicating that the outcome of interference competition between ants and nesting birds was reversed under increased predation risk. These results support the idea that predation risk can shift species interactions from predominately competitive processes to predominately facilitative processes.  相似文献   

18.
Invasive ants are notorious for directly displacing native ant species. Although such impacts are associated with Argentine ant invasions (Linepithema humile) worldwide, impacts within natural habitat are less widely reported, particularly those affecting arboreal ant communities. Argentine ants were detected in North Carolina mixed pine-hardwood forest for the first time but were localized on and around loblolly pines (Pinus taeda), probably because of association with honeydew-producing Hemiptera. We explored the potential impacts of L. humile on arboreal and ground-foraging native ant species by comparing interspersed loblolly pines invaded and uninvaded by Argentine ants. Impacts on native ants were assessed monthly over 1 yr by counting ants in foraging trails on pine trunks and in surrounding plots using a concentric arrangement of pitfall traps at 1, 2, and 3 m from the base of each tree. Of floristics and habitat variables, higher soil moisture in invaded plots was the only difference between plot types, increasing confidence that any ant community differences were caused by Argentine ants. Overall patterns of impact were weak. Composition differed significantly between Argentine ant invaded and uninvaded trunks and pitfalls but was driven only by the presence of Argentine ants rather than any resulting compositional change in native ant species. Native ant abundance and richness were similarly unaffected by L. humile. However, the abundance of individual ant species was more variable. Although numbers of the arboreal Crematogaster ashmeadi (Myrmicinae) declined on and around invaded pines, epigeic Aphaenogaster rudis (Myrmicinae) remained the most abundant species in all plots. Argentine ant densities peaked in late summer and fall, therefore overlapping with most native ants. Unexpected was their continued presence during even the coldest months. We provide evidence that Argentine ants can invade and persist in native North Carolina forests, probably mediated by pine-associated resources. However, their localized distribution and minimal impact on the native ant fauna relative to previously described invasions requires further resolution.  相似文献   

19.
Many factors drive the organization of communities including environmental factors, dispersal abilities, and competition. In particular, ant communities have high levels of interspecific competition and dominance that may affect community assembly processes. We used a combination of surveys and nest supplementation experiments to examine effects of a dominant ground‐nesting ant (Pheidole synanthropica) on (1) arboreal twig‐nesting, (2) ground‐foraging, and (3) coffee‐foraging ant communities in coffee agroecosystems. We surveyed these communities in high‐ and low‐density areas of P. synanthropica over 2 years. To test for effects on twig ant recruitment, we placed artificial nesting resources on coffee plants in areas with and without P. synanthropica. The first sampling period revealed differences in ant species composition on the ground, in coffee plants, and artificial nests between high‐ and low‐density sites of P. synanthropica. High‐density sites also had significantly lower recruitment of twig ants and had species‐specific effects on twig ant species. Prior to the second survey period, abundance of P. synanthropica declined in the high‐density sites, such that P. synanthropica densities no longer differed. Subsequent sampling revealed no difference in total recruitment of twig ants to artificial nests between treatments. Likewise, surveys of ground and coffee ants no longer showed significant differences in community composition. The results from the first experimental period, followed by survey results after the decline in P. synanthropica densities suggest that dominant ants can drive community assembly via both recruitment and establishment of colonies within the community.  相似文献   

20.
Canopy connectivity influences foraging, movement, and competition in arboreal ant communities. Understanding how canopy connectivity affects arboreal ant communities could inform the development of management practices that maximize services from known biocontrol agents. We experimentally manipulated connectivity between the crowns of large shade trees to investigate the effects of canopy connectivity on arboreal ant species richness and composition in a coffee agroecosystem. A linear mixed-effects analysis showed that the number of species observed at baits set in tree crowns increased significantly after the crowns had been connected with nylon ropes. Crowns that were connected increased in similarity of ant species composition, particularly between adjacent connected crowns. Connectivity may increase the number of species present in tree crowns by allowing ants to move and forage in the canopy while bypassing trunks with more aggressive, territorial species such as Azteca sericeasur. Because twig-nesting species in the upper canopy have been shown to act as biocontrol agents of herbivores, an increase in species richness in tree crowns could have positive implications for agricultural pest-control services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号