首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All clinical isolates of enterobacteria received at the laboratory were monitored for trimethoprim resistance over six months in 1978. The survey was repeated in 1979 and the incidence of trimethoprim resistance showed a slight decrease, but the proportion of resistant strains owing their trimethoprim resistance to transferable R plasmids had almost trebled. There was also a large increase in the proportion of resistant strains exhibiting high-level non-transferable trimethoprim resistance. These findings suggest transposition of genes conferring trimethoprim resistance from plasmids to the bacterial chromosome.  相似文献   

2.
In a survey of 21 marine Vibrio spp., all responded to nutrient deprivation by undergoing a reduction in size (dwarfing). However, only 43% of these strains possessed one or more plasmids, suggesting that the genes responsible for dwarfing were located on the chromosome rather than on the plasmids. This conclusion was confirmed by the observation that fragmentation and subsequent size reduction occurred in three strains from which the plasmids had been removed by curing. The cured strains lost certain characteristics, such as resistance to some heavy metals and antibiotics, that were restored when the plasmids were reintroduced by either transformation or electroporation.  相似文献   

3.
Plasmids from E. coli strains of 38 donors were transconjugated to common recipient SY663 Escherichia coli K12. The restriction patterns of the isolated plasmids were highly heterogenous. However, the streptomycin (Sm) resistance genes of the plasmids were identical or closely homologous in 29 of the 33 plasmids conferring Sm resistance. These data were based on Southern blot analysis, using the Sm resistance gene (encoding aminoglycoside phosphoryl transferase) as probe cut out from pBP1 plasmid. Our data suggest an extensive spreading of streptomycin resistance gene of this type.  相似文献   

4.
Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment''s total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the “Rapid Annotation using the Subsystems Technology” server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population.  相似文献   

5.
Four hundred and thirteen oxytetracycline-resistant bacteria were recovered from six freshwater giant prawn farms with a history of oxytetracycline use. Most oxytetracyclineresistant isolates were Gram-negative bacteria. Six groups of oxytetracycline-resistant bacteria were classified using cluster analysis based on a comparison of levels of oxytetracycline resistance. Complex fingerprint patterns were obtained for 71 isolates studied. In general, the band patterns of isolates from different ponds were very similar, and the data indicated that the isolates were closely related. The exploration for crossresistance found that most of the 71 oxytetracycline-resistant isolates were also resistant to tetracycline and chlortetracycline, but had a relatively low resistance to doxycycline. Many isolates showed higher chlortetracycline resistance than oxytetracycline resistance. Additionally, the oxytetracyclineresistant isolates were examined for the presence of tetracycline resistance (tet) genes. Fifty percent of the isolates carried one of the 14 known tet genes examined. The most common determinants were TetA and TetD. However, TetB, TetC, TetE, TetK, TetL, and TetM were also found with various frequencies.  相似文献   

6.
The nucleotide sequences of the genes encoding the class 1 outer membrane protein of Neisseria meningitidis (PorA) from 15 meningococcal isolates have been examined. These strains, isolated over a number of years, represented a variety of serological types, clonal groups, and geographical locations. Analysis of the aligned nucleotide sequences showed that the known serological relationships between these proteins were not necessarily reflected throughout the nucleotide sequences of their genes. The uneven distribution of base substitutions, revealed by a comparison of the informative bases, suggested that these genes possessed a mosaic structure. This structure probably resulted from the horizontal transfer of DNA between strains and would have contributed to both the generation and the spread of novel antigenic variants of the protein. In addition, the nucleotide differences between porA genes from different strains were not consistent with the nucleotide sequence divergence of the whole chromosome, as indicated by pulsed-field gel electrophoresis (PFGE) fingerprinting techniques: some strains with divergent PFGE fingerprints shared porA genes with extensive regions of nucleotide sequence identity and, conversely, some strains with similar chromosome structures possessed porA genes with different nucleotide sequences and serological properties. This suggested that entire genes had been exchanged between strains. Given that the meningococcal class 1 OMP is a major component in novel vaccines, some of which are currently undergoing field trials, the potential of horizontal genetic exchange to generate antigenic diversity has implications for the design of such vaccines.  相似文献   

7.
Roberts MC 《Anaerobe》2003,9(2):63-69
In general bacterial antibiotic resistance is acquired on mobile elements such as plasmids, transposons and/or conjugative transposons. This is also true for many antibiotic resistant anaerobic species described in the literature. Of the 23 different tetracycline resistant efflux genes identified, tet(B), tet(K), tet(L), and tetA(P) have been found in anaerobic species and six of the ten tetracycline resistant genes coding for ribosomal protection proteins, tet(M), tet(O), tetB(P), tet(Q), tet(W), and tet(32), have been identified in anaerobes. There are now three enzymes which inactivate tetracycline, of which the tet(X) has been identified in Bacteroides though is not functional under anaerobic growth conditions. A similar situation exists with the genes conferring macrolide-lincosamide-streptogramin (MLS) resistance. Of the 26 rRNA methylase MLS resistant genes characterized, five genes; erm(B), erm(C), erm(F), erm(G), and erm(Q), have been identified in anaerobes. In contrast, no genes coding for MLS resistant efflux proteins or inactivating enzymes have been described in anaerobic species. This mini-review will summarize what is known about tetracycline and MLS resistance in genera with anaerobic species and the mobile elements associated with acquired tetracycline and/or MLS resistance genes.  相似文献   

8.
Powdery mildew (PM) is a common disease caused by Blumeria graminis, which affects cereals and has recently adapted to triticale. Adult-plant resistance (APR) genes provide durable protection of crops from the disease. Quantitative trait loci corresponding to the APR effects were mapped in an F2 population of “Lamberto” (susceptible) × “Moderto” (resistant). A genetic map of winter triticale was constructed based on the segregation of 863 DArT, 38 microsatellite and 10 resistance gene analogue markers. Composite interval mapping (CIM) was applied to identify three QTLs for maximum disease severity (MDS) and two for the area under disease progress curve (AUDPC) conferring resistance to the powdery mildew on chromosomes: 6A, 7A, 1B and 4R. The 39% variation in AUDPC was explained by the main QTL localised on chromosome 4R. Genes coding TRIUR3 proteins, serine/threonine protein kinase and cell wall associated kinases were localised in silico within the QTL and alternative DNA markers were proposed for flexible use in laboratories of diversified throughput.  相似文献   

9.
Penicillinase plasmids are present in most MRSA strains. They are very varying in their genotype and phenotype they confer. Penicillinase plasmids were transduced from 80 hospital MRSA strains to NCTC 8325 and the phenotype as well as the incompatibility group of plasmid were determined. Resistance to cadmium (high and low level), resistance to organic and nonorganic mercury compounds, arsenate/arsenite/antimonium resistance, resistance to bismuth and hypersensitivity to bismuth, resistance to macrolides as well as beta-lactamase production and its inductibility were checked. Among the examined strains 20 different phenotypes of penicillinase plasmids were found. Patterns of penicillinase plasmids were compared to DNA patterns of the investigated strains after digestion with SmaI and separation in pulsed field electrophoresis (PFGE). It was shown that strains with the same PFGE pattern often differ in the type of their penicillinase plasmid. Determining of penicillinase plasmid phenotype could be useful in differentiating S. aureus strains sharing the same pattern of PFGE.  相似文献   

10.
Thirty methicillin-resistant Staphylococcus epidermidis strains isolated from catheters and blood cultures from neutropenic patients were studied. They were classified into 17 multidrug-resistance patterns. Polymerase cahin reaction analysis revealed that methicillin resistance was encoded by the mecA gene in all strains, and aminoglycosides resistance was due to aac(6')-Ie-aph(2')-Ia (23 strains), ant(4')-Ia (13), and aph(3')-IIIa (1) genes. The aac(6')-Ie-aph(2')-Ia gene was detected concomitantly with aph(3')-IIIa, and ant(4')-Ia genes in one and nine strains, respectively. Erythromycin resistance was encoded by the ermC (11 strains), ermA (6), and msrA (2) genes. The ermC gene was inducibly expressed in five strains, whereas the ermA was exclusively constitutively expressed. The icaA and icaC genes were detected in 19 strains; however, biofilm production was observed in only 16 strains. Most strains harbored multiple plasmids of variable sizes ranging from 2.2 to 70 kb, and two strains were plasmid-free. PFGE identified 15 distinct PFGE types, and five predominant genotypes were found. Our study showed the occurrence of complex genetic phenomenons. In unrelated strains, evidence of horizontal transfer of antibiotic-encoding genes and/or ica operon, and in indistinguishable strains, there is a quite good likelihood of independent steps of loss and/or gain of these genes. This genome dynamicity might have enhanced the invasiveness power of these methicillin-resistant S epidermidis strains.  相似文献   

11.
《Genomics》2022,114(3):110368
Plasmid-encoded antibiotic resistance encompasses many classes of currently used antibiotics. In globally distributed Escherichia coli lineages plasmids, which spread via horizontal gene transfer, are responsible for the dissemination of genes encoding extended-spectrum β-lactamases (ESBL). In this study, we combined 2nd and 3rd generation sequencing techniques to reconstruct the plasmidome of overall 97 clinical ESBL-E. coli isolates. Our results highlight the enormous plasmid diversity in respect to size, replicon-type and genetic content. Furthermore, we emphasize the diverse plasmid distribution patterns among the clinical isolates and the high intra- and extracellular mobility potential of resistance conferring genes. While the majority of resistance conferring genes were located on large plasmids of known replicon type, small cryptic plasmids seem to be underestimated resistance gene vectors. Our results contribute to a better understanding of the dissemination of resistance-conferring genes through horizontal gene transfer as well as clonal spread.  相似文献   

12.
Three cryptic plasmids, designated pBT1 (5.6 kb), pBT2 (9.7 kb), and pBT3 (16.6 kb), were isolated from Streptomyces griseobrunneus ISP5066 and physically characterized. pBT1 and pBT2, which differ by a 4.1-kb segment, are high copy-number plasmids (40-100 copies per chromosome) that coexist with each other. pBT3 is a low copy-number plasmid. Vectors containing amikacin (or kanamycin) and sulfomycin (or thiostrepton) resistance genes from Streptomyces litmocidini ISP5164 and Streptomyces viridochromogenes subsp. sulfomycini ATCC 29776, respectively, were constructed from pBT1. One such vector, pBT37, has unique restriction sites for cloning, including BglII, XhoI, PvuII, ClaI, and SacI, with the PvuII and ClaI sites allowing clone recognition by insertional inactivation of sulfomycin resistance. Since many Streptomyces species were very sensitive to amikacin and sulfomycin, these resistance genes serve as useful selective markers. pBT37 could transform several Streptomyces strains that produce antibiotics such as tetracyclines, macrolides, beta-lactams, and aminoglycosides. This plasmid is a potentially useful vector for cloning antibiotic biosynthetic genes.  相似文献   

13.
The coagulase-negative staphylococci are known for their ability to acquire resistance genes, which limits the choice of therapeutic options for the treatment of infections caused by these microorganisms. In this study, the diversity of high-level mupirocin resistance plasmids (Mup(R) ) was investigated in four strains of Staphylococcus haemolyticus belonging to different pulsed-field gel electrophoresis (PFGE) types or subtypes, isolated in a Brazilian hospital. These strains harbor the mupA gene in large plasmids. In addition, the presence of IS257 sequences flanking the mupA gene was also shown. Two isolates belonging to two different PFGE types exhibited a similar polymorphism for a fragment of the mupA gene and the closest proximal flanking copies of the IS257, suggesting horizontal transmission of S. haemolyticus mupirocin resistance plasmids in the environment and a role of this species as a reservoir of the mupA gene.  相似文献   

14.
AIMS: To develop a DNA microarray for analysis of genes encoding resistance determinants to erythromycin and the related macrolide, lincosamide and streptogramin B (MLS) compounds. METHODS AND RESULTS: We developed an oligonucleotide microarray containing seven oligonucleotide probes (oligoprobes) for each of the six genes (ermA, ermB, ermC, ereA, ereB and msrA/B) that account for more than 98% of MLS resistance in Staphylococcus aureus clinical isolates. The microarray was used to test reference and clinical S. aureus and Streptococcus pyrogenes strains. Target genes from clinical strains were amplified and fluorescently labelled using multiplex PCR target amplification. The microarray assay correctly identified the MLS resistance genes in the reference strains and clinical isolates of S. aureus, and the results were confirmed by direct DNA sequence analysis. Of 18 S. aureus clinical strains tested, 11 isolates carry MLS determinants. One gene (ermC) was found in all 11 clinical isolates tested, and two others, ermA and msrA/B, were found in five or more isolates. Indeed, eight (72%) of 11 clinical isolate strains contained two or three MLS resistance genes, in one of the three combinations (ermA with ermC, ermC with msrA/B, ermA with ermC and msrA/B). CONCLUSIONS: Oligonucleotide microarray can detect and identify the six MLS resistance determinants analysed in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggest that microarray-based detection of microbial antibiotic resistance genes might be a useful tool for identifying antibiotic resistance determinants in a wide range of bacterial strains, given the high homology among microbial MLS resistance genes.  相似文献   

15.
We constructed a series of plasmids that allow the insertion of cloned DNA in the Escherichia coli chromosome by site-specific integration into the bacteriophage HK022 bacterial attachment site. These plasmids make use of a ColE1 origin of replication, the phage HK022 attachment site attP, antibiotic resistance genes for selection and unique restriction sites. Circularisation of non-replicative fragments containing the HK022 attachment site attP is performed in vitro and site-specific integration of attP containing molecules is ensured by transfer into cells transiently expressing the HK022 integrase gene carried by a thermosensitive replicon. Insertion is very efficient and the inserted fragments are stably maintained without selection pressure. Since integrative fragments carry rarely used antibiotic markers conferring resistance to antibiotics hygromycin or apramycin, they can be used in most E. coli strains in conjunction with many replicative or integrative vectors.  相似文献   

16.
Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria   总被引:12,自引:0,他引:12  
Allelic exchange experiments allow investigation of the functions of many unknown genes identified during the sequencing of entire genomes. Isogenic strains differing by only specific mutations can be constructed. Among other tools, suicide plasmids are widely used for this task. They present many advantages because they leave no scars on the chromosome, and therefore allow combining several mutations in the same genetic background. While using the previously described pCVD442 suicide plasmid [Infect. Immun. 59 (1991) 4310], we found untargeted recombination events due to the presence of an IS1 element on this plasmid. The plasmid was therefore improved by removal of the IS1 element. We also replaced the bla gene of pCVD442, conferring ampicillin resistance, by the cat gene conferring chloramphenicol resistance, leading to the new suicide plasmid pDS132. The plasmid was entirely sequenced. We demonstrate that this new vector can be easily used to introduce various types of mutations into different genetics backgrounds: removal of IS elements, introduction of point mutations or deletions. It can be introduced into bacterial strains by either transformation or conjugation.  相似文献   

17.
pTV1Ts, a temperature-sensitive plasmid coding for chloramphenicol (Cm) resistance and carrying the macrolide-lincosamide-steptogramin B (MLS) resistance transposon Tn917, was introduced into strains of Lactobacillus plantarum by electroporation. After two passages in broth medium selecting for MLS resistance at 40 degrees C and subsequent plating on solid medium, two strains, L. plantarum NC4Ts1 and L. plantarum NC7Ts5, lost chloramphenicol resistance but retained MLS resistance, indicative of Tn917 transposition into host DNA. Analysis of DNA from MLSrCms isolates from both strains revealed Tn917 insertions into resident plasmids. Restriction analysis of plasmid DNA from four MLSrCms isolates from NC7Ts5 indicated four different insertion sites.  相似文献   

18.
Plasmid transfer in Haemophilus influenzae.   总被引:13,自引:8,他引:5       下载免费PDF全文
Twenty-nine strains of Haemophilus influenzae highly resistant to ampicillin, chloramphenicol, or tetracycline were examined for the presence of plasmids. Agarose gel electrophoresis of ethanol-precipitated cell extracts revealed large plasmids in 11 strains, of which 7 were conjugative. Plasmid transfer by conjugation between isogenic strains was quite efficient, but transfer between different serotypes was nearly always much more inefficient. Type I or II restriction enzymes do not appear to be barriers to this transfer. Encapsulated cells can be both efficient donors and recipients. Small plasmids were seen in three strains, but only two of the three are resistance factors (RSF0885, pUB703). Thus, in 17 isolates antibiotic resistance genes are believed to be located in the bacterial chromosome. Most of these resistances could be transferred by genetic transformation into the widely used Rd strain. In some cases transfer of chromosomal resistance into conjugative plasmids was observed in both rec+ and rec host cells. Since transfer by conjugation seems to be the more efficient process, it is puzzling that in the majority of the 29 isolates studied resistance genes appeared to be in the chromosome.  相似文献   

19.
Despite the prevalence of Arthrobacter in the environment little is known about their plasmids, or the capacity of Arthrobacter plasmids to mediate horizontal gene transfer. In this study, we compared eight plasmids from five Arthrobacter strains in order to identify putative core maintenance genes for replication, segregation, and conjugation. Iteron like sequences were identified on some of the plasmids; however, no genes with obvious similarity to known replication sequences such as an origin of replication, or rep genes were identified. All eight plasmids contained a putative conjugation system. Genes with similarity to a relaxase, coupling protein, and various components of a type IV secretion system were identified on each plasmid; it appears that three different systems may be present. Putative parA partitioning genes were found in all of the plasmids. Each of the Arthrobacter strains examined contained a putative parB gene; however, of the three plasmids in Arthrobacter strain FB24 only one plasmid had a putative parB gene. Cluster analysis of many of the Arthrobacter genes suggested that they often formed branches within existing families of plasmid maintenance genes. Comparison of a concatenation of all the maintenance genes from each plasmid suggests that the eight Arthrobacter plasmids represent multiple evolutionary pathways.  相似文献   

20.
The aim of this study was to examine tetracycline-resistant gonococci and to set up a real-time PCR method to identify, in the same assay, both the chromosomally and the plasmid-mediated tetracycline-resistant genotypes. A retrospective analysis for tetracycline susceptibility was performed by the E -test and agar dilution methods on 289 gonococci isolated in Italy from 2003 to 2005. Molecular mechanisms of resistance were investigated by both sequence analyses of the three main genes associated with chromosomally mediated resistance ( mtrR , penB and rpsJ genes) and by the identification of plasmids carrying the tet M determinant associated with plasmid-mediated resistance, by PCR (American- or Dutch-type plasmids). The genetic relatedness of nonsusceptible strains was evaluated by pulsed field gel electrophoresis (PFGE). The results showed the presence of 22.5% tetracycline-resistant and 49.5% tetracycline-intermediate gonococci. Coexistence of chromosomally and plasmid-mediated resistance to tetracycline was observed in the majority of resistant isolates. No clonal structure was highlighted by analysis of PFGE pattern profiles. Real-time PCR assay was able to identify all the tetracycline nonsusceptible gonococci correctly for the presence of both chromosomally and/or plasmid-mediated genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号