首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
The ability of brain cells to regulate intracellular pH (pHi) and several phosphate metabolites was evaluated during 1 h of hypercapnia (inspiratory CO2 fraction of 0.10 and 0.05) in anesthetized rats by 31P high-field (145.6 MHz) nuclear magnetic resonance spectroscopy. Body temperature was maintained at 37 +/- 0.5 degrees C. Fully relaxed spectra were obtained for controls and 30-50 min after CO2 loading and CO2 withdrawal. Spectra were taken serially every 2.5 min after gas mixtures were changed. Brain pHi decreased 0.10 +/- 0.02 units [7.06 +/- 0.01 (SE)] to 6.96 +/- 0.01 (P less than 0.001) after 30-50 min of 10% CO2 breathing, and arterial pH decreased 0.24 +/- 0.01 units. Brain pHi decreased by 0.045 +/- 0.01 units (7.05 +/- 0.01 to 7.01 +/- 0.01, P less than 0.05) during 5% CO2 breathing. Brain pHi returned to control values after 30-50 min of CO2 washout in both groups. In three of six animals breathing 10% CO2, there was an undershoot in brain pHi by 0.07-0.09 units between 2.5 and 20 min of hypercapnia. Three animals exhibited an overshoot in pHi by 0.06-0.11 units between 7.5 and 17.5 min during CO2 washout. Phosphocreatine-to-Pi and Pi-to-beta-ATP ratios changed during hypercapnia and returned to base line after withdrawal of CO2. The findings of a smaller brain pHi change than arterial pH change and undershoots and overshoots in pHi support the view that pHi regulation involves active processes such as transmembrane ion transport.  相似文献   

2.
Cerebral acidosis occurring during ischemia has been proposed as one determinant of tissue damage. Newborn animals appear to be less susceptible to ischemic tissue damage than adults. One possible component of ischemic tolerance could derive from maturational differences in the extent of acid production and buffering in newborns compared to adults. The purpose of this study was to measure the dependency of acid production on the blood plasma glucose concentrations and acid buffering capacity of piglets at different stages of development. Complete ischemia was induced in 29 piglets ranging in postconceptual age from 111 to 156 days (normal term conception, 115 days). Brain buffering capacity during the first 30 min of ischemia was quantified in vivo, via 31P and 1H nuclear magnetic resonance (NMR) spectroscopy, by measuring the change in intracellular brain pH for a given change in the concentration of compounds that contribute to the production of hydrogen ions. Animals from all four age groups showed a similar linear correlation between preischemia blood glucose concentration and intracellular pH after 30 min of ischemia. For each animal the slope of the plot of intracellular pH versus cerebral buffer base deficit was used to calculate the buffer capacity. Using data obtained over the entire 30 min of ischemia, there was no difference in the mean buffer capacity of the different age groups, nor was there a significant correlation between buffer capacity and age. However, there was a significant increase in buffer capacity for the intracellular pH range 6.6-6.0, compared to 7.0-6.6, for all age groups. No significant differences in buffer capacity for these two pH ranges were observed between any of the age groups. Acid buffering capacity was also measured by performing pH titrations on brain tissue homogenized in the presence of inhibitors of glycolysis and creatine kinase. Plots of homogenate pH versus buffer base deficit showed a nonlinear trend similar to that seen in vivo, indicating an increase in buffer capacity as intracellular pH decreases. A comparison of newborn and 1-month-old brain tissue frozen under control conditions or after 45 min of ischemia revealed no differences that could be attributed to age and a slight decrease in buffer capacity of ischemic brain compared to control brain tissue homogenates. There was no difference between the brain buffering capacity measured in vivo using 31P and 1H NMR and that measured in vitro using brain homogenates.  相似文献   

3.
Regulation of intracellular pH in human neutrophils   总被引:16,自引:4,他引:12       下载免费PDF全文
The intracellular pH (pHi) of isolated human peripheral blood neutrophils was measured from the fluorescence of 6-carboxyfluorescein (6-CF) and from the equilibrium distribution of [14C]5,5-dimethyloxazolidine -2,4-dione (DMO). At an extracellular pH (pHo) of 7.40 in nominally CO2-free medium, the steady state pHi using either indicator was approximately 7.25. When pHo was suddenly raised from 7.40 to 8.40 in the nominal absence of CO2, pHi slowly rose by approximately 0.35 during the subsequent hour. A change of similar magnitude in the opposite direction occurred when pHo was reduced to 6.40. Both changes were reversible. Intrinsic intracellular buffering power, determined by using graded pulses of CO2 or NH4Cl, was approximately 50 mM/pH over the pHi range of 6.8-7.9. The course of pHi obtained from the distribution of DMO was followed during and after imposition of intracellular acid and alkaline loads. Intracellular acidification was brought about either by exposing cells to 18% CO2 or by prepulsing with 30 mM NH4Cl, while pHo was maintained at 7.40. In both instances, pHi (6.80 and 6.45, respectively) recovered toward the control value at rates of 0.029 and 0.134 pH/min. These rates were reduced by approximately 90% either by 1 mM amiloride or by replacement of extracellular Na with N-methyl-D-glucamine. Recovery was not affected by 1 mM SITS or by 40 mM alpha-cyano-4-hydroxycinnamate (CHC), which inhibits anion exchange in neutrophils. Therefore, recovery from acid loading is probably due to an exchange of internal H for external Na. Intracellular alkalinization was achieved by exposing the cells to 30 mM NH4Cl or by prepulsing with 18% CO2, both at a constant pHo 7.40. In both instances, pHi, which was 7.65 and 7.76, respectively, recovered to the control value. The recovery rates (0.033 and 0.077 pH/min, respectively) were reduced by 80-90% either by 40 mM CHC or by replacement of extracellular Cl with p-aminohippurate (PAH). SITS, amiloride, and ouabain (0.1 mM) were ineffective.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The factors regulating the amplitude and the pH gradient between cytosol and mitochondria (DeltapHmito-cyt) were investigated in the isolated rat liver perfused at 4 degrees C. Liver ATP content, pH, and buffering power of cytosolic and mitochondrial compartments were evaluated in situ using phosphorus-31 nuclear magnetic resonance spectroscopy. No DeltapHmito-cyt was detected in the liver perfused without bicarbonate. Permeant weak acid in the perfusate (H2CO3, 25 mM, or isobutyric acid, 25, 50, or 100 mM) acidified both cytosol and mitochondria and revealed a DeltapHmito-cyt from 0.06 to 0.31 pH unit. Nevertheless, the manipulations of the DeltapHmito-cyt were more effective under bicarbonate-free conditions, due to the absence of buffering by H2CO3/HCO-3. In the absence of bicarbonate, the intracellular buffering power was threefold higher in the mitochondria (110 mmol/pH unit at pHmito 7.16) than in the cytosol (44 mmol/pH unit at pHcyt 7.30) and dependent on the matrix and cytosol pH, respectively. These buffering powers were almost double in the presence of bicarbonate. In the bicarbonate-free perfused liver, the respiratory activity was 0.08 +/- 0.02 micromol O2/min. g liver wet weight and the ATP turnover was only 40 +/- 7 nmol/min. g liver wet weight, indicating the weak activity of liver mitochondria when DeltapHmito-cyt was <0.05 pH unit. The ATP turnover during a 50 mM isobutyric acid load was 35 +/- 4 nmol/min. g liver wet weight whereas DeltapHmito-cyt rose to 0.26 +/- 0.02 pH unit and pHmito remained alkaline. Hence, although DeltapHmito-cyt was increased the ATP turnover remained unchanged. This work is the first evaluation of the mitochondrial buffering power in the isolated liver. The DeltapHmito-cyt observed within various acid loads reflected the differential titration of cytosol and mitochondria containing proteins and H2CO3/HCO-3 buffering systems. Moreover, no direct relationship between DeltapHmito-cyt and ATP turnover could be shown.  相似文献   

5.
In 16 experiments male subjects, age 22.4 +/- 0.5 (SE) yr, inspired CO2 for 15 min (8% end-tidal CO2) or hyperventilated for 30 min (2.5% end-tidal CO2). Osmolality (Osm) and acid-base status of arterialized venous blood were determined at short intervals until 30 min after hypo- and hypercapnia, respectively. During hypocapnia [CO2 partial pressure (PCO2) -2.31 +/- 0.32 kPa (-17.4 Torr), pH + 0.19 units], Osm decreased by 3.9 +/- 0.3 mosmol/kg H2O; during hypercapnia [PCO2 + 2.10 +/- 0.28 kPa (+15.8 Torr), pH -0.12 units], Osm increased by 5.8 +/- 0.7 mosmol/kg H2O. Presentation of the data in Osm-PCO2 or Osm-pH diagrams yields hysteresis loops probably caused by exchange between blood and tissues. The dependence of Osm on PCO2 must result mainly from CO2 buffering and therefore from the formation of bicarbonate. In spite of the different buffer capacities in various body compartments, water exchange allows rapid restoration of osmotic equilibrium throughout the organism. Thus delta Osm/delta pH during a PCO2 jump largely depends on the mean buffer capacity of the whole body. The high estimated buffer value during hypercapnia (38 mmol/kg H2O) compared with hypocapnia (19 mmol/kg H2O) seems to result from very strong muscle buffering during moderate acidosis.  相似文献   

6.
Motility of salmonid sperm is inhibited by the presence of carbon dioxide (CO2) in vitro; however, whether this occurs in response to challenges to the adult in vivo is not known. To determine whether CO2 negatively impacts sperm function in vivo, mature males were exposed to exhaustive exercise as well as to acute stress, chronic stress, tricaine anesthesia and environmental hypercapnia and sperm motility and semen CO2 tensions and pH values assessed. Semen CO2 rose and pH decreased significantly only in response to exhaustive exercise and environmental hypercapnia (13 kPa CO2). These changes in semen CO2 and pH were associated with reductions in numbers of sperm becoming motile upon water activation. Chronic and acute stress and tricaine anesthesia were without effect on sperm motility or on semen CO2 or pH. The time course of CO2 inhibition and recovery was evaluated in vitro. At least 50 min was required to note 50% of the inhibitory effect of low CO2 tensions on motility when sperm were exposed to 1.6-3.1 kPa CO2. At higher CO2 levels sperm motility displayed 50% of the inhibitory effect of these tensions within about 30 min. Sperm recovered maximal motility within 1 h of being placed in a nominally CO2-free environment. This study demonstrates sperm vulnerability to not only in vitro CO2 exposure but also in vivo exposure during exhaustive exercise and as result of environmental hypercapnia.  相似文献   

7.
Fermented dry sausages, inoculated with Escherichia coli O157:H7 during batter preparation, were submitted to an in vitro digestion challenge to evaluate the extent to which passage through the human gastrointestinal tract could inactivate the pathogenic cells, previously stressed by the manufacturing process. The numbers of surviving E. coli O157:H7 cells remained constant after a 1-min exposure of the finely chopped sausage to synthetic saliva or during the following 120-min exposure to synthetic gastric juice at an initial pH of 2.0. However, significant (P ≤ 0.05) growth of the pathogen (1.03 to 2.16 log10 CFU/g) was observed in a subsequent 250-min exposure to a synthetic pancreatic juice at pH 8.0. In a different set of experiments, fractions from the gastric suspension were transferred into the synthetic pancreatic juice at 30-min intervals to mimic the dynamics of gastric emptying. Concurrently, the pH of the remaining gastric fluid was reduced to 3.0, 2.5, and 2.0 to simulate the gradual reacidification of the stomach contents after the initial buffering effect resulting from meal ingestion. Under these new conditions, pathogen growth during pancreatic challenge was observed for the first few fractions released from the stomach (90 min of exposure [pH 2.5]), but growth was no longer possible in the fractions submitted to the most severe gastric challenge (120 min of exposure [pH < 2.2]).  相似文献   

8.
Adult male rats were anesthetized and catheters were implanted in the caudal artery. Soon after recovery from short-lasting anesthesia, a total of 20 groups of six each were individually exposed to five different oxygen levels varying from 21.0 to 9.0% combined with four CO2 levels ranging from 0 to 12.9% at a mean barometric pressure of 744 Torr. Arterial blood samples were collected and analyzed for pH, Po2, and Pco2 before and near the end of 20-min exposures. During an air-breathing control period, pH averaged 7.466 plus or minus 0.020 SD, Paco2 41.2 plus or minus 1.9 Torr and Pao2 91.8 plus or minus 3.5 Torr. During hypoxia, Pao2 levels were similar to that of acutely hypoxic humans. Rats apparently differ from man in that blood buffering is greater, resulting in a higher pH during air breathing and a smaller [H-+] increase with increasing Paco2. Differences between arterial and inspired CO2 were about 10 Torr at 60 and 90 Torr Plco2 and were not influenced by Plo2.  相似文献   

9.
Studies of intracellular pH (pHi) in nervous tissue are summarized and recent investigation of intracellular and extracellular pH (pHo) in the isolated brain stem of the lamprey is reviewed. In the lamprey, pHi regulation was studied in single reticulospinal neurons using double-barrel ion-selective microelectrodes (ISMs). In nominally HCO3(-)-free HEPES-buffered media, acute acid loading was followed by a spontaneous recovery of pHi requiring 10-20 min and was associated with a prolonged rise in intracellular Na+. The recovery of pHi was blocked by 1-2 mM amiloride. Amiloride also caused a small rise in pHo. Substitution of external Na+ caused a slow intracellular acidification and extracellular alkalinization. Return of external Na+ reversed these effects. Transition from HEPES to HCO3(-)-buffered media increased the rate of acid extrusion during recovery of pHi. Recovery in HCO3(-)-buffered media was inhibited by 4,4'-diisothio-cyanostilbene-2,2'-disulfonic acid and was slowed after exposure to Cl(-)-free media. Following inhibition of acid extrusion by amiloride, transition to HCO3- media restored pHi recovery. These data indicate that lamprey neurons recover from acute acid loads by both Na+-H+ exchange and an independent HCO3(-)-dependent mechanism. Evidence for HCO3(-)-dependent acid extrusion in other vertebrate cells and the protocols of pHi studies using ISMs are discussed.  相似文献   

10.
We hypothesized that part of the newborn tolerance of asphyxia involves strong ion changes that minimize the cerebral acidosis and hasten its correction in recovery. After exposure of newborn puppies to 15 or 30 min experimental asphyxia (inhalation of gas with fractional concentration of CO2 and of O2 in inspired gas = 0.07-0.08 and 0.02-0.03, respectively), blood lactate increased to 13.2 and 23.4 mmol/l, respectively, brain tissue lactate increased to 14.4 and 19.7 mmol/kg, and cerebrospinal fluid (CSF) lactate increased to 7.6 and 14.4 mmol/l. We presume that the tissue lactate increase reflects increases in brain cell and extracellular fluid lactate concentration. The lactate increase, a change that will decrease the strong ion difference (SID), [HCO3-], and pH, was accompanied by increases in Na+ (plasma, CSF, brain), K+ (plasma, CSF), and osmolality without change in Cl-. After 60-min recovery, plasma and brain lactate decreased significantly, but CSF lactate remained unchanged. [H+] recovery was more complete than that of the strong ions due to hyperventilation-induced hypocapnia. We conclude that during asphyxia-induced lactic acidosis, changes in strong ions occur that lessen the decrease in SID and minimize the acidosis in plasma and CSF. To the extent that the increase in brain tissue sodium reflects increases in intra-and extracellular fluid sodium concentration, the decrease in SID will be less in these compartments as well. In recovery, CSF ionic values change little; plasma and brain tissue lactate decrease with a similar time course, and the [H+] is rapidly returned toward normal by hypocapnia even while the SID is below normal.  相似文献   

11.
To clarify the ventilatory kinetics during recovery after impulse-like exercise, subjects performed one impulse-like exercise test (one-impulse) and a five-times repeated impulse-like exercises test (five-impulse). Duration and intensity of the impulse-like exercise were 20 sec and 400 watts (80 rpm), respectively. Although blood pH during recovery (until 10 min) was significantly lower in the five-impulse test than in the one-impulse test, ventilation (.VE) in the two tests was similar except during the first 30 sec of recovery, in which it was higher in the five-impulse test. In one-impulse, blood CO2 pressure (PCO2) was significantly increased at 1 min during recovery and then returned to the pre-exercise level at 5 min during recovery. In the five-impulse test, PCO2 at 1 min during recovery was similar to the pre-exercise level, and then it decreased to a level lower than the pre-exercise level at 5 min during recovery. Accordingly, PCO2 during recovery (until 30 min) was significantly lower in the five-impulse than in one-impulse test..VE and pH during recovery showed a curvilinear relationship, and at the same pH, ventilation was higher in the one-impulse test. These results suggest that ventilatory kinetics during recovery after impulse-like exercise is attributed partly to pH, but the stimulatory effect of lower pH is diminished by the inhibitory effect of lower PCO2.  相似文献   

12.
A whole-cell model of a macrophage (mphi) is developed to simulate pH and volume regulation during a NH4Cl prepulse challenge. The cell is assumed spherical, with a plasma membrane that separates the cytosolic and extracellular bathing media. The membrane contains background currents for Na+, K+ and Cl-, a Na(+)-K+ pump, a V-type H(+)-extruder (V-ATPase), and a leak pathway for NH4+. Cell volume is controlled by instantaneous osmotic balance between cytosolic and extracellular osmolytes. Simulations reveal that the mphi model can mimic alterations in measured pH(i) and cell volume (Vol(i)) data during and after delivery of an ammonia prepulse, which induces an acid load within the cell. Our analysis indicates that there are substantial problems in quantifying transporter-mediated H+ efflux solely from experimental observations of pH(i) recovery, as is commonly done in practice. Problems stemming from the separation of effects arise, since there is residual NH4+ dissociation to H+ inside the mphi during pH(i) recovery, as well as, proton extrusion via the V-ATPase. The core assumption of conventional measurement techniques used to estimate the H+ extrusion current (I(H)) is that the recovery phase is solely dependent on transporter-mediated H+ extrusion. However, our model predictions suggest that there are major problems in using this approach, due to the complex interactions between I(H), NH3/NH4+ buffering and NH3/NH4+ efflux during the active acid extrusion phase. That is, the conventional buffer capacity-based I(H) estimation must also take into account the perturbation that a prepulse challenge brings to the cytoplasmic acid buffer itself. The importance of this whole-cell model of mphipH(i) and volume regulation lies in its potential for extension to the characterization of several other types of non-excitable cells, such as the microglia (brain macrophage) and the T-lymphocyte.  相似文献   

13.
The cerebal metabolic effects of 60 min exposure to 0.5, 1.0, 1.5, and 2.0% carbon monoxide (CO) and 60 min exposure to 1.0% CO were studied in lightly anesthetized rats by measurement of brain tissue contents of glycolytic and citric acid cycle intermediates, as well as tissue energy phosphates. The results indicate that cerebral energy homeostasis is maintained until advanced levels of CO intoxication (2.0%) are reached. Animals exposed to 2.0% CO developed significant decreases in systemic blood pressure, with attendent decreases in cerebral ATP, increases in ADP and AMP, plus early depletions of tissue citrate and alpha-oxyglutarate. The similarity of this pattern to that previously documented for various cerebral oligemic states suggests a possible modifying role for altered cerebral production in its production. A correlation between conscious behavior and cerebral energy state was suggested by the observation that unanesthetized animals exposed to 1.0% CO for 30 and 60 min retained consciousness, whereas animals exposed to 2.0% CO for 30 min became unresponsive late on in the exposure. A comparison of CO induced changes in intermediary metabolites, energy phosphates, intracellular pH, and cytoplasmic redox state with those seen in hypoxemia indicate no basic qualitative or quantiative differences in the metabolic response of brain tissue to the two conditions.  相似文献   

14.
The purpose of this study was to investigate neonatal brain energy metabolism, acid, and lactate homeostasis in the period immediately following partial ischemia. Changes in brain buffering capacity were quantified by measuring mean intracellular brain pH, calculated from the chemical shift of Pi, in response to identical episodes of hypercarbia before and after ischemia. In addition, the relationship between brain buffer base deficit and intracellular pH was compared during and following ischemia. Thus, in vivo 31P and 1H nuclear magnetic resonance spectra were obtained from the brains of seven newborn piglets exposed to sequential episodes of hypercarbia, partial ischemia, and a second episode of hypercarbia in the postischemic recovery period. For the first episode of hypercarbia, brain buffering was similar to values reported for adult animals of other species (percentage pH regulation = 54 ± 16%). During ischemia, the brain base deficit per unit change in pH was ?19 ± 5 mM/pH unit, which is similar to values reported for adult rats. By 20–35 min postischemia, brain acidosis partly resolved in spite of a net increase in lactate concentration. Therefore, the consumption of lactate could not explain acid homeostasis in the first 35 min following ischemia. We conclude that H+/HCO-3 or other proton equivalent translocation mechanisms must be sufficiently developed in piglet brain to support acid regulation. This is surprising, because a substantial body of evidence implies these processes would be less active in immature brain. The second episode of hypercarbia, from 35 to 65 min postischemia, resulted in a smaller decrease in brain pH compared with the first episode, a result indicating an increase in brain buffering capacity (percentage pH regulation = 79 ± 29%). This was associated with a parallel decrease in brain lactate content, and therefore acid regulation could be attributed to either continued ion translocation or the consumption of lactate. A mild decrease in brain pH and content of energy metabolites was observed, a finding suggesting that the metabolic consequences of severe postischemic hypercarbia are neither particularly dangerous or beneficial.  相似文献   

15.
Six healthy young men were studied in a high-altitude chamber during a 60-min heat exposure at a simulated altitude of 5,600 m or 0.5 atmosphere absolute (ATA). The heat load was provided by increasing the chamber temperature to 38 degrees C at the rate of 1 degree C/min after a 60-min equilibrium period at thermoneutrality (28 degrees C). Our question was whether or not hypoxia causes differential changes in regional cutaneous circulation during heat exposure. Skin blood flow in the forearm (FBF) and the finger (FiBF), temperatures of the esophagus (Tes) and of the skin, and cardiac output (CO) were measured during the heat exposure at 0.5 ATA and at the sea level (1 ATA). During the equilibrium period, hypoxia increased the mean skin temperature and mean heat transfer coefficient, as well as FBF and forearm vascular conductance. The increased blood flow in the cutaneous circulation during the hypoxic exposure may reflect cutaneous vasodilation and vasoconstriction in other regions of the body, since there was no alteration in CO and total peripheral resistance. During heat exposure, Tes rose faster at high altitude than at sea level. However, at the end of the 60-min heat exposure, all thermal as well as circulatory parameters showed no difference between the two altitudes, except for the FiBF. An attenuated vasodilation in the fingers during heat exposure at high altitude suggests differential vascular controls and possible impairment of thermoregulation when additional stress, such as heat, is imposed. The data suggest that cutaneous blood flow during heat exposure is not uniform throughout the entire skin in a hypoxic environment.  相似文献   

16.
The effect of eccentric contraction on force generation and intracellular pH (pH(i)) regulation was investigated in rat soleus muscle. Eccentric muscle damage was induced by stretching muscle bundles by 30% of the optimal length for a series of 10 tetani. After eccentric contractions, there was reduction in force at all stimulation frequencies and a greater reduction in relative force at low-stimulus frequencies. There was also a shift of optimal length to longer lengths. pH(i) was measured with a pH-sensitive probe, 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein AM. pH(i) regulation was studied by inducing an acute acid load with the removal of 20-40 mM ammonium chloride, and the rate of pH(i) recovery was monitored. The acid extrusion rate was obtained by multiplying the rate of pH(i) recovery by the buffering power. The resting pH(i) after eccentric contractions was more acidic, and the rate of recovery from acid load post-eccentric contractions was slower than that from postisometric controls. This is further supported by the slower acid extrusion rate. Amiloride slowed the recovery from an acid load in control experiments. Because the Na(+)/H(+) exchanger is the dominant mechanism for the recovery of pH(i), this suggests that the impairment in the ability of the muscle to regulate pH(i) after eccentric contractions is caused by decreased activity of the Na(+)/H(+) exchanger.  相似文献   

17.
It is commonly believed that during hyperbaric oxygen (HBO) treatment, in spite of the vasoconstriction induced by the increased O2 content in the breathing gas, the elevated carrying capacity of O2 in the arterial blood results in augmented O2 delivery to tissues. The experiments described here tested the hypothesis that HBO treatment would be more efficient in delivering O2 to poorly perfused tissues if the vasoconstriction induced by elevated O2 could be abolished or attenuated by adding CO2 to the breathing gas. Organ blood flow (QOBF), systemic hemodynamics, and arterial blood gases were measured before, during and after exposure to either 300 kPa O2 (group 1) or 300 kPa O2 with 2 kPa CO2 (group 2), in awake, instrumented rats. During the HBO exposure the respiratory frequency (fb) fell (4 breaths x min(-1) x 100 kPa O2(-1)), with no changes in arterial CO2 tension (PaCO2), but when CO2 was added, fb and PaCO2 increased. The left ventricular pressure (LVP) and the systolic arterial pressure (SBP) increased. The maximum velocity of LVP (+dP/dt) rose linearly with LVP whether CO2 was added or not (r2 = 0.72 and 0.75 respectively). Similarly, the cardiac output (Qc) and heart rate (fc) fell, while the stroke volume (SV) was unaltered, independent of PaCO2. There was a general vasoconstriction in most organs in both groups, with the exception of the central nervous system (CNS), eyes, and respiratory muscles. HBO reduced the blood flow to the CNS by 30%, but this vasoconstriction was diminished or eliminated when CO2 was added. In group 2, the blood flow to the CNS rose linearly with increased PaCO2 and decreased pH. After decompression fc and SBP stayed high, while Qc returned to control values by reducing the SV; CNS blood flow remained markedly elevated in group 2, while in group 1, it returned to control levels. We conclude that the changes in fc, Qc, LVP, dP/dt, SBP and most QOBF values induced by HBO were not changed by hypercapnia. Blood flow to the CNS decreased during HBO treatment at a constant PaCO2. Hypercapnia prevented this decline. Elevated PaCO2 augmented O2 delivery to the CNS and eyes, but increased the susceptibility to O2 poisoning. A prolonged suppression of O2 supply to the CNS occurred during the HBO exposure and in air following the decompression in the absence of CO2. This suppression was offset by the addition of CO2 to the breathing gas.  相似文献   

18.
Ventilatory responses (VRs) were measured via a sealed face mask and pneumotachograph in 30 unsedated, mixed-breed miniature piglets at 12.6 +/- 2.3 days of age (day 1) and then repeated after seven daily 24-min exposures to 10% O(2)-6% CO(2) [hypercapnic hypoxia (HH)]. Arterial blood was sampled at baseline, after 10 min of exposure, and after 10 min of recovery. VRs included hypoxia (10% O(2) in N(2)), hypercapnia (6% CO(2) in air), and HH (10% O(2)-6% CO(2)-balance N(2)). Treatment groups (n = 10 each) were exposed to 24 min of HH from day 2 to 8 as sustained HH (24 min of HH and then 24 min of air) or cyclic HH (4 min of HH alternating with 4 min of air). Day 1 and 9 data were compared in treatment and control groups. After cyclic HH, respiratory responses to CO(2) were reduced during hypercapnia and during HH (P < 0.001 vs. control for minute ventilation in both). In both treatment groups, time to peak minute ventilation was delayed in hypoxia (P = 0.02, ANOVA), and response amplitude was increased (P < 0.001 and P = 0.003, sustained and cyclic HH, respectively, vs. control). Respiratory pattern was also altered during the VRs and among treatment groups. Stimulus presentation characteristics exert effects on VRs that are independent of those elicited by daily HH.  相似文献   

19.
The oceanic carbonate system is changing rapidly due to rising atmospheric CO(2), with current levels expected to rise to between 750 and 1,000?μatm by 2100, and over 1,900?μatm by year 2300. The effects of elevated CO(2) on marine calcifying organisms have been extensively studied; however, effects of imminent CO(2) levels on teleost acid-base and respiratory physiology have yet to be examined. Examination of these physiological processes, using a paired experimental design, showed that 24?h exposure to 1,000 and 1,900?μatm CO(2) resulted in a characteristic compensated respiratory acidosis response in the gulf toadfish (Opsanus beta). Time course experiments showed the onset of acidosis occurred after 15?min of exposure to 1,900 and 1,000?μatm CO(2), with full compensation by 2 and 4?h, respectively. 1,900-μatm exposure also resulted in significantly increased intracellular white muscle pH after 24?h. No effect of 1,900?μatm was observed on branchial acid flux; however, exposure to hypercapnia and HCO(3) (-) free seawater compromised compensation. This suggests branchial HCO(3) (-) uptake rather than acid extrusion is part of the compensatory response to low-level hypercapnia. Exposure to 1,900 μatm resulted in downregulation in branchial carbonic anhydrase and slc4a2 expression, as well as decreased Na(+)/K(+) ATPase activity after 24?h of exposure. Infusion of bovine carbonic anhydrase had no effect on blood acid-base status during 1,900?μatm exposures, but eliminated the respiratory impacts of 1,000 μatm CO(2). The results of the current study clearly show that predicted near-future CO(2) levels impact respiratory gas transport and acid-base balance. While the full physiological impacts of increased blood HCO(3) (-) are not known, it seems likely that chronically elevated blood HCO(3) (-) levels could compromise several physiological systems and furthermore may explain recent reports of increased otolith growth during exposure to elevated CO(2).  相似文献   

20.
Hyperbaric oxygen (HBO2) causes CO2 retention in the brain that leads to the increase in cerebral blood flow (CBF) by poorly understood mechanisms. We have tested the hypothesis that NO is implicated in CBF-responses to hypercapnia under hyperoxic conditions. Alert rats were exposed to HBO2 at 5 ata and blood flow in the striatum measured by H2 clearance every 10 min. Acetazolamide, the inhibitor of carbonic anhydrase, was used to increase brain PCO2. CBF responses to acetazolamide administration (30 mg/kg, i.p.) were assessed in rats breathing air at 1 ata or oxygen at 5 ata with and without NOS inhibition (L-NAME, 30 mg/kg, i.p.). In rats breathing air, acetazolamide increased CBF by 34 +/- 7.4% over 30 min and by 28 +/- 12% over 3 hours while NOS inhibition with L-NAME attenuated acetazolamide-induced cerebral vasodilatation. HBO2 at 5 ata reduced CBF during the first 30 min hyperoxia, after that CBF increased by 55 +/- 19% above pre-exposure levels. In acetazolamide-treated animals, no HBO, induced vasoconstricton was observed and striatal blood flow increased by 53 +/- 18% within 10 min of hyperbaric exposure. After NOS inhibition, cerebral vasodilatation in response to acetazolamide during HBO2 exposure was significantly attenuated. The study demonstrates that NO is implicated in acetazolamide (CO2)-induced cerebral hyperemia under hyperbaric oxygen exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号