首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seed dispersal by ants is an important means of migration for plants. Many myrmecochorous plants have specialized appendages in their seeds called elaiosome, which provides nutritional rewards for ants, and enable effective seed dispersal. However, some nonmyrmecochorous seeds without elaiosomes are also dispersed by ant species, suggesting the additional mechanisms other than elaiosomes for seed dispersal by ants. The seeds of the achlorophyllous and myco‐heterotrophic herbaceous plant Monotropastrum humile are very small without elaiosomes; we investigated whether odor of the seeds could mediate seed dispersal by ants. We performed a bioassay using seeds of M. humile and the ant Nylanderia flavipes to demonstrate ant‐mediated seed dispersal. We also analyzed the volatile odors emitted from M. humile seeds and conducted bioassays using dummy seeds coated with seed volatiles. Although elaiosomes were absent from the M. humile seeds, the ants carried the seeds to their nests. They also carried the dummy seeds coated with the seed volatile mixture to the nest and left some dummy seeds inside the nest and discarded the rest of the dummy seeds outside the nest with a bias toward specific locations, which might be conducive to germination. We concluded that, in M. humile seeds, volatile odor mixtures were sufficient to induce seed‐carrying behavior by the ants even without elaiosomes.  相似文献   

2.
3.
The separate contributions of different vectors to net seed dispersal curves of diplochorous systems have rarely been characterised. In Australia, myrmecochory is a common seed dispersal syndrome and in the majority of such systems, seeds are initially dispersed ballistically. We measured ballistic and myrmecochorous seed dispersal distances in relation to canopies of Adriana quadripartita (Euphorbiaceae) and used a simulation model to estimate the net dispersal curve. We also compared seed removal rates and ant abundances under, and outside, plant canopies to examine how foraging patterns by ants may affect net dispersal.Overall ant abundance did not show a significant numerical response to seedfall; however, the abundance of the main seed dispersing ant, Rhytidoponera ‘metallica’ did. Despite this, seed removal rates did not differ significantly between canopy and open locations. Rhytidoponera ‘metallica’ account for 93% of observed seed dispersal events. On average, the ants dispersed seeds 1.54 m and in doing so, moved seed a mean radial distance of 0.76 m away from canopy edges. This contribution to net dispersal distance by ants is considerable since ballistic dispersal moved seeds a median distance of 7.5 cm. Our simulation model indicated that the combination of ballistic and ant seed dispersal is expected to result in seeds being transported a median net radial dispersal distance of 1.05 m from the canopy edge.Thus in this system, an important function of diplochory may simply be to move a higher proportion of seeds from under the canopy of parent plants than is possible by ballistic dispersal alone. This ‘dispersal-for-distance’ may result in reduced parent–offspring competition or may increase the probability that seeds reach rare safe sites for germination and recruitment.  相似文献   

4.
《Acta Oecologica》2006,29(3):213-220
Erodium paularense is a threatened plant species that is subject to seed predation by the granivorous ant Messor capitatus. In this paper we assessed the intensity and pattern of ant seed predation and looked for possible adaptive strategies at the seed and plant levels to cope with this predation. Seed predation was estimated in 1997 and 1998 at the population level by comparing total seed production and ant consumption, assessed by counting seed hulls in refuse piles. According to this method, ant seed predation ranged between 18% and 28%. A more detailed and direct assessment conducted in 1997 raised this estimate to 43%. In this assessment spatial and temporal patterns of seed predation by ants were studied by mapping all nest entrances in the studied area and marking the mature fruits of 109 reproductive plants with a specific colour code throughout the seed dispersal period. Intact fruit coats were later recovered from the refuse piles, and their mother plants and time of dispersal were identified. Seeds dispersed at the end of the dispersal period had a greater probability of escaping from ant seed predation. Similarly, in plants with late dispersal a greater percentage of seeds escaped from ant predation. Optimum dispersal time coincided with the maximum activity of granivorous ants because, at this time, ants focused their harvest on other plant species of the community. It was also observed that within-individual seed dispersal asynchrony minimised seed predation. From a conservation perspective, results show that the granivorous ant–plant interaction cannot be assessed in isolation and that the intensity of its effects basically depends on the seed dispersal pattern of the other members of the plant community. Furthermore, this threat must be assessed by considering the overall situation of the target population. Thus, in E. paularense, the strong limitation of safe-sites for seedling establishment reduces the importance of seed predation.  相似文献   

5.
Seed dispersal by ants (myrmecochory) can be influenced by changes to ant assemblages resulting from habitat disturbance as well as by differences in disperser behaviour. We investigated the effect of habitat disturbance by fire on the dispersal of seeds of a myrmecochorous shrub, Pultenaea daphnoides. We also investigated the consequence of the seed relocation behaviours of two common dispersers (Pheidole sp. A and Rhytidoponera metallica) for the redispersal of seeds. Pheidole sp. A colonies did not relocate seeds outside their nests. In contrast, R. metallica colonies relocated 43.6 % of seeds fed to them, of which 96.9 % had residual elaiosome that remained attached. On average, R. metallica relocated seeds 78.9 and 60.7 cm from the nest entrances in burned and unburned habitat, respectively. Seeds were removed faster in burned than in unburned habitat, and seeds previously relocated by R. metallica were removed at similar rates to seeds with intact elaiosomes, but faster than seeds with detached elaiosomes. Dispersal distances were not significantly different between burned (51.3 cm) and unburned (70.9 cm) habitat or between seeds with different elaiosome conditions. Differences between habitat types in the frequency of seed removal, the shape of the seed dispersal curve, and the relative contribution of R. metallica and Pheidole sp. A to seed dispersal were largely due to the effect of recent fire on the abundance of Pheidole sp. A. Across habitat types, the number of seeds removed from depots and during dispersal trials most strongly related to the combined abundances of R. metallica and Pheidole. Our findings show that myrmecochory can involve more than one dispersal phase and that fire indirectly influences myrmecochory by altering the abundances of seed-dispersing ants.  相似文献   

6.
Fremontodendron decumbens grows in a single county in central California, USA. Prior research showed that its elaiosome-bearing seeds are dispersed by the harvester ant Messor andrei. I tested several hypotheses regarding the positive role of ant-mediated dispersal to F. decumbens: (1) Does ant-mediated seed dispersal facilitate seed escape from rodent predation?; (2) Does ant processing of seeds stimulate germination?; (3) Are ant middens more suitable microsites for seed or seedling survival in unburned chaparral areas?; and (4) Do survival benefits of dispersal occur post-fire in the form of differences in seedling survival probabilities and, if so, why? Results of tests of each hypothesis were: (1) similar percentages of seeds placed on ant middens and under F. decumbens shrub canopies were destroyed by rodents, but seeds from which elaiosomes had been removed were more likely to escape rodent predation; (2) seeds processed by ants did not germinate more readily than seeds removed directly from shrub branches; (3) seedling predation was a major cause of mortality in unburned chaparral on both ant middens and under shrubs, and overall seedling survival did not differ between the two microsites; (4) post-burn seedling survival was significantly greater for seedlings dispersed away from F. decumbens shrub canopies, because dispersed seedlings were both less likely to be killed by predators and more likely to be growing in a gap created by the fire-caused death of an established shrub. I concluded that the major ecological benefit to F. decumbens of ant-mediated seed dispersal was elevated post-fire seedling survival resulting from enhanced escape by dispersed seedlings from both predation and competition.  相似文献   

7.
Genet survival in seeds of Acacia suaveolens was examined through both dispersal and dormancy in the soil in populations near Sydney. Following initial passive seed-fall, the majority of seeds lie within a 1 m radius of the stem of the parent. Further dispersal is predominately mediated by ants. A. suaveolens seeds possess an elaiosome which attracts ants. When elaiosomes are removed, the potential for further dispersal of seeds is greatly reduced. Three species of ant disperse seeds of A. suaveolens and the fate of seeds following ant dispersal was observed to depend on the particular species of ant involved. Ants of both Iridomyrmex sp. and Pheidole sp. B are too small to drag seeds and, instead, ants of these species usually remove the elaiosome in situ, with little dispersal of the-seed resulting. Ants of Pheidole sp. A are larger and disperse seeds further, frequently taking them into their nests where the elaisosome is removed. Seeds are retained inside the nests and incorporated into the floors and walls of passageways and chambers. Several supposed ‘advantages’ of myrmecochory were examined but none were verified. Instead, two distinct ‘disadvantages’ were identified. These were: burial of seeds by ants of Pheidole sp. A into ‘unsafe sites’; and too deep a burial of seeds in nests for seeds to receive a stimulus to germinate during fires, and for seedlings to emerge successfully. Outside nests of Pheidole sp. A. seeds are concentrated in the top 5 cm of the soil, whilst within nests of these ants, seeds are found up to 15 cm deep. The dynamics of various components of the soil seed-bank were examined using seeds buried in nylon mesh containers. The seed-bank is persistent without annual recruitment to seedlings, enabling a population to persist as seeds after all above-ground plants have perished.  相似文献   

8.
The reproductive biology of Ipomoea pes-caprae, a pantropical beach morning glory, was studied at five sites around the Gulf of Mexico. The primary pollinators were Xylocopa species (carpenter bees) which dispersed pollen up to 90 m. Exclusion experiments demonstrated that ants feeding on extrafloral nectaries increased seed set but did not protect seeds from predation by the bruchid beetle Megacerus. The water-dispersed seed and long-range dispersal of pollen may function to counter the sporophytic incompatability mechanism of the plant; populations exhibit a large neighborhood size. Key reproductive factors in the life cycle of I. pes-caprae are the long-range pollen flow and mass germination of water-dispersed seeds.  相似文献   

9.
Ants have been traditionally considered either as predators or dispersers of seeds, but not both. That is, ant dispersal is restricted to myrmecochorous seeds, while almost all seeds removed by seed‐harvesting ants are eaten. However, harvesting ants might be simultaneously antagonistic and mutualistic towards seeds. This study analyzes the predation–dispersal relationship between seed‐harvesting ants and seeds of Lobularia maritima, a non‐myrmechorous perennial herb, in order to disentangle the dual role of ants as dispersers and predators of L. maritima seeds. The results obtained confirm the role of harvesting ants as both predators and dispersers of the non‐myrmechorous seeds of L. maritima. The removal activity of Messor bouvieri on L. maritima seeds is very important, particularly in autumn, which is the flowering and fruiting peak of this plant. It can be estimated that harvesting ants collect more than 85% of seeds, and almost 70% of them are effectively lost to predation. However, these granivorous ants also have drawbacks as seed dispersers. There is a relatively small percent of seeds collected by ants that escape predation, either because they are dropped on the way to the nest (16.4% of seeds harvested), or because they are mistakenly rejected on the refuse pile (0.9%). Abiotic dispersal of L. maritima seeds in the absence of ants occurs over very short distances from the plant stem. As seeds dispersed by ants reach a considerably greater distance than that obtained by gravity, this might represent a real advantage for the species, because it reduces intraspecific adult competition for seedlings, which directly influences seedling survivorship. These results challenge the generalization that seed removal by ants generally leads to successful seed dispersal if done by legitimate seed dispersers, or seed loss if done by seed consumers that eat them, and confirm that harvesting ants might have a dual role as both predators and dispersers of nonmyrmechorous seeds.  相似文献   

10.
Trillium ovatum (Liliaceae) is myrmecochorous: its seeds bear large elaiosomes that are attractive to ants. Nevertheless, in coastal second-growth redwood forests of northern California, most seedlings occur in mixed-age clusters close to potential parents, suggesting that seed dispersal is limited. Ants were absent or rare at two relatively cool, moist study sites. At these sites, most seeds either eventually fell passively from fruits or were knocked to the ground by banana slugs that foraged on the elaiosomes. At two warmer, drier sites, a single species of ant, Lasius pallitarsis, dispersed the seeds but tended to remove the elaiosomes before returning to the nest. Thus at all sites a large number of seeds remained close to adults, accounting for the observed pattern of seedling distribution. The dispersal adaptations of T. ovatum and other redwood forest myrmecochores probably evolved in forests where seed-carrying ants were more common.  相似文献   

11.
祝艳  王东 《生态学报》2014,34(17):4938-4942
蚂蚁是无脊椎动物中重要的种子传播者,蚂蚁散布影响植物种子的传播和扩散,进而会影响种苗的空间分布格局。在野外研究了蚂蚁觅食及搬运行为对阜平黄堇(Corydalis wilfordii Regel)和小花黄堇(C.racemosa(Thunb.)Pers.)种子散布的影响。结果显示,双针棱胸蚁和束胸平结蚁是两种植物种子的共同搬运者,前者行使群体募集,后者行使简单协作募集。在搬运阜平黄堇种子时,双针棱胸蚁在原地或搬运途中取食油质体后抛弃的种子约占种子总数的56%,而拖至蚁巢的种子约占种子总数的44%,平均搬运距离为(1.85±0.24)m,搬运效率为(43.8±7.5)粒/h;而束胸平结蚁将完整种子全部直接搬运至蚁巢,平均搬运距离为0.45 m,搬运效率为(7.3±2.2)粒/h。在搬运小花黄堇种子时,双针棱胸蚁和束胸平结蚁均将完整种子全部直接搬运至蚁巢,平均搬运距离分别为(6.27±4.40)m和(6.65±1.64)m,搬运效率分别为(34.2±6.5)粒/h和(10.6±3.2)粒/h。这说明行使群体募集的蚂蚁比行使简单协作募集的蚂蚁有较高的搬运效率,蚂蚁散布导致阜平黄堇和小花黄堇种子到达蚁巢的数量和搬运距离不同,而这种不同与相应搬运蚂蚁的觅食对策、搬运行为和种子特征有关。阜平黄堇种子比小花黄堇种子大,但阜平黄堇的油质体质量比小于小花黄堇的油质体质量比,讨论了种子特征对蚂蚁散布的影响。  相似文献   

12.
Although neighboring plants can influence animal-seed dispersal interactions, little is known about the effect of neighboring seeds and the influence of habitat on seed dispersal by ants. Here we investigated the influence of neighboring seeds on seed removal in two coexisting myrmecochorous species (Epimedium pubescens and Helleborus thibetanus) from temperate deciduous forests of Qinling Mountains, central China, by examining (1) the potential role of ants and rodents and (2) whether the neighboring seed effect differed between forest edge and interior. We found that, presence of the higher-ESMR (elaiosome: seed mass ratio) E. pubescens did not significantly affect seed removal of the lower-ESMR H. thibetanus. By contrast, the presence of H. thibetanus decreased the seed removal rates of E. pubescens, with only a significant effect in rodent exclusion (ant alone) rather than in both ant exclusion (rodent alone) and full access (rodent + ant). Moreover, we found that those effects were not significantly different between the forest edge and the interior, which may be attributed to a similar pattern of overall seed-dispersing ant abundance in the two habitats. This suggested that neighboring seeds could influence seed removal of the focal plant depending on the absence of rodents; when rodents were present, the interaction of rodents and ants rendered no influence of neighboring seeds on seed removal. Our results show that the neighborhood effect was regulated by both dispersers and predators, and this effect was not context-dependent at a small spatial scale. This study highlights the importance to understand the effect of shared seed-removing animals and habitat context to assess the neighboring seed effect on plant-animal interactions.  相似文献   

13.
The directed dispersal hypothesis has two components: (1) non-random seed deposition by a predicted vector, which removes greater amounts of seeds to specific sites, and (2) higher seed survival and seedling establishment in these specific sites. Several studies suggest that ants perform both tasks. This study was designed to cover the processes from post-dispersed seeds to established juvenile plants of a typical ant-dispersed species. Our main objective was to determine whether Ricinus communis benefits from directed dispersal by ants to maintain its populations in previously colonized habitats. We examined whether there were differences between ant nest pile mounds and their vicinities in the: (1) densities of seeds with and without elaiosome, seedlings and juveniles; (2) performance of post-dispersed seeds (without elaiosome), which may be affected by seed density, a key feature attracting seed predators; (3) nutrient quantities; (4) number of germinated seeds and juvenile biomass measurements; and (5) ant protection of seedlings from herbivores. There were more seeds without elaiosome, seedlings and juveniles in pile mounds, and seeds with elaiosome were equally distributed. There was no difference in the number of non-removed seeds in pile mounds and in their vicinities, and there was no tendency for this difference to increase or decrease with time or with initial seed density. Apparently, there was no difference in nutrient contents in soils of pile mounds and their vicinities. Likewise, there was no difference in the number of seeds germinated and in the biomass measurements of juveniles in both soils. Ants did not provide differential protection for seedlings in pile mounds against potential herbivores. The dispersal of Ricinus seeds by ants had a marked effect on the distribution pattern of the seeds, seedlings and juveniles of this species. However, there were no additional advantages for the seeds, seedlings and juveniles in pile mounds and, therefore, Ricinus does not benefit from directed dispersal by ants to maintain its populations in the study sites.  相似文献   

14.
Forest edges and fire ants alter the seed shadow of an ant-dispersed plant   总被引:3,自引:2,他引:1  
Ness JH 《Oecologia》2004,138(3):448-454
Exotic species invade fragmented, edge-rich habitats readily, yet the distinct impacts of habitat edges and invaders on native biota are rarely distinguished. Both appear detrimental to ant-dispersed plants such as bloodroot, Sanguinaria canadensis. Working in northeastern Georgia (USA), an area characterized by a rich ant-dispersed flora, fragmented forests, and invasions by the red imported fire ant, Solenopsis invicta , I monitored the interactions between ants and S. canadensis seeds in uninvaded forest interiors, uninvaded forest edges, invaded forest interiors, and invaded forest edges. I observed 95% of the seed dispersal events that occurred within the 60-min observation intervals. Seed collection rates were similar among all four (habitat × invasion) groups. The presence of invasive ants had a strong effect on seed dispersal distance: S. invicta collected most seeds in invaded sites, but was a poorer disperser than four of five native ant taxa. Habitat type (interior versus edge) had no effect on seed dispersal distance, but it had a strong effect on seed dispersal direction. Dispersal towards the edge was disproportionately rare in uninvaded forest edges, and ants in those habitats moved the average dispersed seed approximately 70 cm away from that edge. Dispersal direction was also skewed away from the edge in uninvaded forest interiors and invaded forest edges, albeit non-significantly. This biased dispersal may help explain the rarity of myrmecochorous plants in younger forests and edges, and their poor ability to disperse between fragments. This is the first demonstration that forest edges and S. invicta invasion influence seed dispersal destination and distance, respectively. These forces act independently.  相似文献   

15.
W. J. Bond  W. D. Stock 《Oecologia》1989,81(3):412-417
Summary Leucospermum conocarpodendron (L.) Buek (Proteaceae) seedlings were excavated several months after a fire in Cape fynbos. Seedlings under burnt parental skeletons had short hypocotyls (mean 25 mm) indicating passive dispersal whereas seedlings in the open were more deeply buried (mean 48 mm) by ants. Soil nutrient concentrations at the site of germination were negatively related to depth of burial and distance from parent. Ant dispersal resulted in seedlings emerging in soils with lower nutrient concentrations than passively dispersed seeds. Tissue analysis supported the soil results with lower P content in seedlings from open (ant dispersed) sites. Seedling survival in the first year of establishment was also lower in open sites, but not significantly so. However seedlings were slightly taller in the open. The results of this study, the first on naturally occurring intraspecific variation in myrmecochory, strongly contradict current explanations for the high incidence of myrmecochory in nutrient poor environments.  相似文献   

16.
In contrast to other plant–animal mutualisms, seed dispersal interactions, and particularly seed dispersal by ants, are generally considered asymmetric, non-specialized relationships in which dispersers depend less on plants than vice versa. Although myrmecochory is well understood in many terrestrial ecosystems, dispersal of non-elaiosome-bearing seeds by ants has barely been studied outside the Neotropics. Aphaenogaster senilis, a common ant in Southern Spain, collects a great variety of non-myrmecochorous diaspores along with insect prey. At our study site, fleshy fruits of Arum italicum, Phillyrea angustifolia and Pistacia lentiscus represent up to one-fourth of the items collected by A. senilis from June to November. However, they are mostly ignored by other ants. In the laboratory, the addition of A. italicum fruits to A. senilis insect-based diet increased male production and both worker and queen pupae size. Seeds were transported up to 8 m away from the mother plant and deposited in a favorable habitat allowing a relatively high proportion of germination. Given important differences in seed production between species, our data suggest that A. senilis removes virtually all seeds of A. italicum, but a negligible fraction of P. lentiscus seeds. We conclude that in contrast to the common view, dispersal of non-myrmecochorous Mediterranean plants by ants might be an important phenomenon. Keystone disperser ants like A. senilis probably obtain an important fitness advantage from non-myrmecochorous diaspore collection. However, plant benefit may vary greatly according to the amount of seeds per individual plant and the existence of alternative dispersal agents.  相似文献   

17.
1. In obligate symbioses with horizontal transmission, the population dynamics of the partner organisms are highly interdependent. Host population size limits symbiont number, and distribution of partners is restricted by the presence and thus dispersal abilities of their respective partner. The Crematogaster decameraMacaranga hypoleuca ant–plant symbiosis is obligate for both partners. Host survival depends on colonisation by its ant partner while foundress queens require hosts for colony establishment. 2. An experimental approach and population genetic analyses were combined to estimate dispersal distances of foundresses in their natural habitat in a Bornean primary rainforest. 3. Colonisation frequency was significantly negatively correlated with distance to potential reproductive colonies. Results were similar for seedlings at natural densities as well as for seedlings brought out in the area experimentally. Population genetic analysis revealed significant population differentiation with an FST of 0.041 among foundresses (n = 157) located at maximum 2280 m apart. In genetic spatial autocorrelation, genotypes of foundresses were significantly more similar than expected at random below 550 m and less similar above 620 m. Direct estimation of dispersal distances by pedigree analysis yielded an average dispersal distance of 468 m (maximum 1103 m). 4. For ants that disperse on the wing, genetic differentiation at such small spatial scales is unusual. The specific nesting requirements of the queens and the necessity for queens to find a host quickly could lead to colonisation of the first suitable seedling encountered, promoting short dispersal distances. Nonetheless, dispersal distances of C. decamera queens may vary with habitat or host spatial distribution.  相似文献   

18.
1. Most woody plant species in tropical habitats are primarily vertebrate‐dispersed, but interactions between ants and fallen seeds and fruits are frequent. This study assesses the species‐specific services provided by ants to fallen arillate seeds of Siparuna guianensis, a primarily bird‐dispersed tree in cerrado savanna. The questions of which species interact with fallen seeds, their relative contribution (versus vertebrates) to seed removal, and the potential effects on seedling establishment are investigated. 2. Seeds are removed in similar quantities in caged and control treatments, suggesting that ants are the main dispersers on the ground. Five ant species attended seeds. Pheidole megacephala (≈0.4 cm) cooperatively transported seeds, whereas the smaller Pheidole sp. removed the seed aril on spot. Large (> 1.0 cm) Odontomachus chelifer, Pachycondyla striata, and Ectatomma edentatum individually carried seeds up to 4 m. Bits of aril are fed to larvae and intact seeds are discarded near the nest entrance. 3. Overall, greater numbers of seedlings were recorded near ant nests than in control plots without nests. This effect, however, was only detected near P. megacephala and P. striata nests, where soil penetrability was greater compared with controls. Soil nutrients did not differ between paired plots. 4. This study confirms the prevalence of ant–seed interactions in cerrado and shows that ant‐derived benefits are species‐specific. Ant services range from seed cleaning on the spot to seed displacement promoting non‐random spatial seedling recruitment. Although seed dispersal distances by ants are likely to be shorter than those by birds, our study of S. guianensis shows that fine‐scale ant‐induced seed movements may ultimately enhance plant regeneration in cerrado.  相似文献   

19.
Corydalis ambigua is one of major spring-ephemerals exhibiting ant-dispersal in Hokkaido, northern Japan Seed dispersal in this herb species was observed in a field To attract ants, C ambigua has small spherical seeds with large elaiosomes containing lipids In the quadrat census, 284 (11%) of 2560 seeds were moved away from their mother plants and 131 (46%) of them were recovered into ant nests The mean dispersal distance was 48 3 ± SD 34 4 cm Also the spatial distribution of C ambigua seedlings suggested that the seeds were frequently dispersed by ants The direct observations revealed that the main dispersal ant species were Myrmica kotokui and Lastus japomcus Additionally some ground beetles including Plerostichus spp often devoured elaiosomes and seeds Corydalis ambigua seeds were dropped for about two weeks in late May The collecting by pitfall trap revealed that, in this short period, the frequency of ant foraging on the ground was high and ground beetles were a little yet Moreover, in the seed removal experiments, seeds were more frequently removed in this seed-fall period while seed predation by ground beetles was intensive after the period  相似文献   

20.
Summary Of 36 plant species surveyed, 6 were significantly associated with nests of the desert seed-harvester ant Veromessor pergandei or Pogonomyrmex rugosus; two other plant species were significantly absent from ant nests. Seeds of two common desert annuals, Schismus arabicus and Plantago insularis, realize a 15.6 and 6.5 fold increase (respectively) in number of fruits or seeds produced per plant growing in ant nest refuse piles compared to nearby controls. Mass of individual S. arabicus seed produced by plants growing in refuse piles also increased significantly. Schismus arabicus, P. insularis and other plants associated with ant nests do not have seeds with obvious appendages attractive to ants. Dispersal and reproductive increase of such seeds may represent a relatively primitive form of ant-plant dispersal devoid of seed morphological specializations. Alternatively, evolution of specialized seed structures for dispersal may be precluded by the assemblage of North American seed-harvester ants whose workers are significantly larger than those ants normally associated with elaiosome-attached seed dispersal. Large worker size may permit consumption of elaiosome and seed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号