首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Background

Infection with Wuchereria bancrofti can cause severe disease characterized by subcutaneous fibrosis and extracellular matrix remodeling. Matrix metalloproteinases (MMPs) are a family of enzymes governing extracellular remodeling by regulating cellular homeostasis, inflammation, and tissue reorganization, while tissue-inhibitors of metalloproteinases (TIMPs) are endogenous regulators of MMPs. Homeostatic as well as inflammation-induced balance between MMPs and TIMPs is considered critical in mediating tissue pathology.

Methods

To elucidate the role of MMPs and TIMPs in filarial pathology, we compared the plasma levels of a panel of MMPs, TIMPs, other pro-fibrotic factors, and cytokines in individuals with chronic filarial pathology with (CP Ag+) or without (CP Ag−) active infection to those with clinically asymptomatic infections (INF) and in those without infection (endemic normal [EN]). Markers of pathogenesis were delineated based on comparisons between the two actively infected groups (CP Ag+ compared to INF) and those without active infection (CP Ag− compared to EN).

Results and Conclusion

Our data reveal that an increase in circulating levels of MMPs and TIMPs is characteristic of the filarial disease process per se and not of active infection; however, filarial disease with active infection is specifically associated with increased ratios of MMP1/TIMP4 and MMP8/TIMP4 as well as with pro-fibrotic cytokines (IL-5, IL-13 and TGF-β). Our data therefore suggest that while filarial lymphatic disease is characterized by a non-specific increase in plasma MMPs and TIMPs, the balance between MMPs and TIMPs is an important factor in regulating tissue pathology during active infection.  相似文献   

2.

Background

Matrix metalloproteinases (MMPs) are members of the metzincin superfamily of proteinases that cleave structural elements of the extracellular matrix and many molecules involved in signal transduction. Although there is evidence that MMPs promote the proper development of retinotectal projections, the nature and working mechanisms of specific MMPs in retinal development remain to be elucidated. Here, we report a role for zebrafish Mmp14a, one of the two zebrafish paralogs of human MMP14, in retinal neurogenesis and retinotectal development.

Results

Whole mount in situ hybridization and immunohistochemical stainings for Mmp14a in developing zebrafish embryos reveal expression in the optic tectum, in the optic nerve and in defined retinal cell populations, including retinal ganglion cells (RGCs). Furthermore, Mmp14a loss-of-function results in perturbed retinoblast cell cycle kinetics and consequently, in a delayed retinal neurogenesis, differentiation and lamination. These Mmp14a-dependent retinal defects lead to microphthalmia and a significantly reduced innervation of the optic tectum (OT) by RGC axons. Mmp14b, on the contrary, does not appear to alter retinal neurogenesis or OT innervation. As mammalian MMP14 is known to act as an efficient MMP2-activator, we also explored and found a functional link and a possible co-involvement of Mmp2 and Mmp14a in zebrafish retinotectal development.

Conclusion

Both the Mmp14a expression in the developing visual system and the Mmp14a loss-of-function phenotype illustrate a critical role for Mmp14a activity in retinal and retinotectal development.  相似文献   

3.
Agrin is a heparan sulfate proteoglycan, which plays an essential role in the development and maintenance of the neuromuscular junction. Agrin is a stable component of the synaptic basal lamina and strong evidence supports the hypothesis that agrin directs the formation of the postsynaptic apparatus, including aggregates of AChRs, and junctional folds. Changes in the distribution of agrin during synaptic remodeling, denervation and reinnervation reveal that agrin can be quickly and efficiently removed from the synaptic basal lamina in a regulated manner. In order to fully understand this mechanism we sought to identify those molecules that were responsible for the removal of agrin. Matrix Metalloproteinases (MMPs) were the most likely molecules since MMPs are involved in the regulation of the pericellular space, including the cleavage of matrix proteins. In particular, MMP3 has been shown to be effective in cleaving heparan sulfate proteoglycans. Antibodies to MMP3 recognize molecules concentrated in the extracellular matrix of perisynaptic Schwann cells. MMP3 specific phylogenic compounds reveal that active MMP3 is localized to the neuromuscular junction. Purified recombinant MMP3 can directly cleave agrin, and it can also remove agrin from synaptic basal lamina. MMP3 activity is itself regulated as activation of MMP3 is lost in denervated muscles. MMP3 null mutant mice have altered neuromuscular junction structure and function, with increased AChRs, junctional folds and agrin immunoreactivity. Altogether these results support the hypothesis that synaptic activity induces the activation of MMP3, and the activated MMP3 removes agrin from the synaptic basal lamina.  相似文献   

4.

Background

Matrix metalloproteinases (MMPs) 2 and 9 are two gelatinase members which have been found elevated in exudative pleural effusions. In endothelial cells these MMPs increase paracellular permeability via the disruption of tight junction (TJ) proteins occludin and claudin. In the present study it was investigated if MMP2 and MMP9 alter permeability properties of the pleura tissue by degradation of TJ proteins in pleural mesothelium.

Results

In the present study the transmesothelial resistance (RTM) of sheep pleura tissue was recorded in Ussing chambers after the addition of MMP2 or MMP9. Both enzymes reduced RTM of the pleura, implying an increase in pleural permeability. The localization and expression of TJ proteins, occludin and claudin-1, were assessed after incubation with MMPs by indirect immunofluorescence and western blot analysis. Our results revealed that incubation with MMPs did not alter neither proteins localization at cell periphery nor their expression.

Conclusions

MMP2 and MMP9 increase the permeability of sheep pleura and this finding suggests a role for MMPs in pleural fluid formation. Tight junction proteins remain intact after incubation with MMPs, contrary to previous studies which have shown TJ degradation by MMPs. Probably MMP2 and MMP9 augment pleural permeability via other mechanisms.
  相似文献   

5.

Introduction

The pathology of ankylosing spondylitis (AS) suggests that certain cytokines and matrix metalloproteinases (MMPs) might provide useful markers of disease activity. Serum levels of some cytokines and MMPs have been found to be elevated in active disease, but there is a general lack of information about biomarker profiles in AS and how these are related to disease activity and function. The purpose of this study was to investigate whether clinical measures of disease activity and function in AS are associated with particular profiles of circulating cytokines and MMPs.

Methods

Measurement of 30 cytokines, five MMPs and four tissue inhibitors of metalloproteinases was carried out using Luminex® technology on a well-characterised population of AS patients (n = 157). The relationship between biomarker levels and measures of disease activity (Bath ankylosing spondylitis disease activity index (BASDAI)), function (Bath ankylosing spondylitis functional index) and global health (Bath ankylosing spondylitis global health) was investigated. Principal component analysis was used to reduce the large number of biomarkers to a smaller set of independent components, which were investigated for their association with clinical measures. Further analyses were carried out using hierarchical clustering, multiple regression or multivariate logistic regression.

Results

Principal component analysis identified eight clusters consisting of various combinations of cytokines and MMPs. The strongest association with the BASDAI was found with a component consisting of MMP-8, MMP-9, hepatocyte growth factor and CXCL8, and was independent of C-reactive protein levels. This component was also associated with current smoking. Hierarchical clustering revealed two distinct patient clusters that could be separated on the basis of MMP levels. The high MMP cluster was associated with increased C-reactive protein, the BASDAI and the Bath ankylosing spondylitis functional index.

Conclusions

A profile consisting of high levels of MMP-8, MMP-9, hepatocyte growth factor and CXCL8 is associated with increased disease activity in AS. High MMP levels are also associated with smoking and worse function in AS.  相似文献   

6.

Background

Matrix metalloproteinases (MMPs) have recently been considered to be involved in the neurogenic response of adult neural stem/progenitor cells. However, there is a lack of information showing direct association between the activation of MMPs and the development of neuronal progenitor cells involving proliferation and/or further differentiation in vulnerable (Cornus Ammoni-CA1) and resistant (dentate gyrus-DG) to ischemic injury areas of the brain hippocampus.

Principal Findings

We showed that dynamics of MMPs activation in the dentate gyrus correlated closely with the rate of proliferation and differentiation of progenitor cells into mature neurons. In contrast, in the damaged CA1 pyramidal cells layer, despite the fact that some proliferating cells exhibited antigen specific characteristic of newborn neuronal cells, these did not attain maturity. This coincides with the low, near control-level, activity of MMPs. The above results are supported by our in vitro study showing that MMP inhibitors interfered with both the proliferation and differentiation of the human neural stem cell line derived from umbilical cord blood (HUCB-NSCs) toward the neuronal lineage.

Conclusion

Taken together, the spatial and temporal profiles of MMPs activity suggest that these proteinases could be an important component in neurogenesis-associated processes in post-ischemic brain hippocampus.  相似文献   

7.

Background

Adjunctive dexamethasone reduces mortality from tuberculous meningitis, but how it produces this effect is not known. Matrix metalloproteinases (MMPs) are important in the immunopathology of many inflammatory CNS diseases thus we hypothesized that that their secretion is important in TBM and might be influenced by dexamethasone.

Methodology/Principal Findings

The kinetics of cerebrospinal fluid (CSF) MMP and tissue inhibitors of MMPs (TIMPs) concentrations were studied in a subset of HIV uninfected adults (n = 37) with TBM recruited to a randomized, placebo-controlled trial of adjuvant dexamethasone. Analysis followed a pre-defined plan. Dexamethasone significantly reduced CSF MMP-9 concentrations in early follow up samples (median 5 days (range 3–8) of treatment), but had no significant influence on other MMPs/TIMPs. Additionally CSF MMP-9 concentration was strongly correlated to concomitant CSF neutrophil count.

Conclusions/Significance

Dexamethasone decreased CSF MMP-9 concentrations early in treatment and this may represent one mechanism by which corticosteroids improve outcome in TBM. The strong correlation between CSF MMP-9 and neutrophil count suggests that polymorphonuclear leukocytes may play a central role in the early pathogenesis of TBM.  相似文献   

8.

Background

There is currently a vast amount of evidence in the literature suggesting that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are involved in the pathogenesis of inflammatory airways diseases, such as asthma and COPD. Despite this, the majority of reports only focus on single MMPs, often only in one model system. This study aimed to investigate the profile of an extensive range of MMP/TIMP levels in three different pre-clinical models of airways disease. These models each have a different and very distinct inflammatory profile, each exhibiting inflammatory characteristics that are similar to that observed in asthma or COPD. Since these models have their own characteristic pathophysiological phenotype, one would speculate that the MMP/TIMP expression profile would also be different.

Methods

With the use of designed and purchased MMP/TIMP assays, investigation of rat MMP-2, 3, 7-14 and TIMP-1-4 mRNA expression was undertaken by Real Time PCR. The three rodent models of airways disease investigated were the endotoxin model, elastase model, and the antigen model.

Results

Intriguingly, we demonstrated that despite the distinct inflammatory profile observed by each model, the MMP/TIMP expression profile is similar between the models, in that the same MMPs/TIMPs were observed to be generally increased or decreased in all three models. It could therefore be speculated that in a particular disease, it may be a complex network of MMPs, rather than an individual MMP, together with inflammatory cytokines and other mediators, that results in the distinct phenotype of inflammatory diseases, such as asthma and COPD.

Conclusion

We believe our data may provide key information necessary to understand the role of various MMPs/TIMPs in different inflammatory airway diseases, and aid the development of more selective therapeutics without the side effect profile of current broad-spectrum MMP inhibitors.  相似文献   

9.

Background

Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ) depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined.

Methodology/Principal Findings

In this study we used biochemical, cell biological and molecular assays to investigate a possible role in AChR clustering of cortactin, a protein which is a tyrosine kinase substrate and a regulator of F-actin assembly and which has also been previously localized at AChR clustering sites. We report that cortactin was co-enriched at AChR clusters in situ with its target the Arp2/3 complex, which is a key stimulator of actin polymerization in cells. Cortactin was further preferentially tyrosine phosphorylated at AChR clustering sites and treatment of myotubes with agrin significantly enhanced the tyrosine phosphorylation of cortactin. Importantly, forced expression in myotubes of a tyrosine phosphorylation-defective cortactin mutant (but not wild-type cortactin) suppressed agrin-dependent AChR clustering, as did the reduction of endogenous cortactin levels using RNA interference, and introduction of the mutant cortactin into muscle cells potently inhibited synaptic AChR aggregation in response to innervation.

Conclusion

Our results suggest a novel function of phosphorylation-dependent cortactin signaling downstream from agrin/MuSK in facilitating AChR clustering at the developing NMJ.  相似文献   

10.

Objective

IL-17A plays an important role in many inflammatory diseases and cancers. We aimed to examine the effect of IL-17A on the invasion of cervical cancer cells and study its related mechanisms.

Methods

Wound healing and matrigel transwell assays were used to examine the effect of IL-17A on cervical cancer cell migration and invasion by a panel of cervical cancer cell lines. The levels of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) were investigated using western blotting. The activity of p38 and nuclear factor-kappa B (NF-κB) signal pathway was detected too.

Results

Here, we showed that IL-17A could promote the migration and invasion of cervical cancer cells. Further molecular analysis showed that IL-17A could up-regulate the expressions and activities of MMP2 and MMP9, and down-regulate the expressions of TIMP-1 and TIMP-2. Furthermore, IL-17A also activates p38 signal pathway and increased p50 and p65 nuclear expression. In addition, treatment of cervical cancer cells with the pharmacological p38/NF-κB signal pathway inhibitors, SB203580 and PDTC, potently restored the roles of invasion and upregulation of MMPs induced by IL-17A.

Conclusion

IL-17A could promote the migration and invasion of cervical cancer cell via up-regulating MMP2 and MMP9 expression, and down-regulating TIMP-1 and TIMP-2 expression via p38/NF-κB signal pathway. IL-17A may be a potential target to improve the prognosis for patients with cervical cancer.  相似文献   

11.

Backgound

Alveolarization requires coordinated extracellular matrix remodeling, a process in which matrix metalloproteinases (MMPs) play an important role. We postulated that polymorphisms in MMP genes might affect MMP function in preterm lungs and thus influence the risk of bronchopulmonary dysplasia (BPD).

Methods and Findings

Two hundred and eighty-four consecutive neonates with a gestational age of <28 weeks were included in this prospective study. Forty-five neonates developed BPD. Nine single-nucleotide polymorphisms (SNPs) were sought in the MMP2, MMP14 and MMP16 genes. After adjustment for birth weight and ethnic origin, the TT genotype of MMP16 C/T (rs2664352) and the GG genotype of MMP16 A/G (rs2664349) were found to protect from BPD. These genotypes were also associated with a smaller active fraction of MMP2 and with a 3-fold-lower MMP16 protein level in tracheal aspirates collected within 3 days after birth. Further evaluation of MMP16 expression during the course of normal human and rat lung development showed relatively low expression during the canalicular and saccular stages and a clear increase in both mRNA and protein levels during the alveolar stage. In two newborn rat models of arrested alveolarization the lung MMP16 mRNA level was less than 50% of normal.

Conclusions

MMP16 may be involved in the development of lung alveoli. MMP16 polymorphisms appear to influence not only the pulmonary expression and function of MMP16 but also the risk of BPD in premature infants.  相似文献   

12.

Background

The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC.

Methods

Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention.

Results

In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls.

Conclusion

We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by future anti-fibrogenic agents.  相似文献   

13.

Background

Matrix metalloproteinases (MMPs) are involved in remodeling of the extracellular matrix (ECM) during pregnancy and parturition. Aberrant ECM degradation by MMPs or an imbalance between MMPs and their tissue inhibitors (TIMPs) have been implicated in the pathogenesis of preterm labor, however few studies have investigated MMPs or TIMPs in maternal serum. Therefore, the purpose of this study was to determine serum concentrations of MMP-3, MMP-9 and all four TIMPs as well as MMP:TIMP ratios during term and preterm labor.

Methods

A case control study with 166 singleton pregnancies, divided into four groups: (1) women with preterm birth, delivering before 34 weeks (PTB); (2) gestational age (GA) matched controls, not in preterm labor; (3) women at term in labor and (4) at term not in labor. MMP and TIMP concentrations were measured using Luminex technology.

Results

MMP-9 and TIMP-4 concentrations were higher in women with PTB vs. GA matched controls (resp. p = 0.01 and p<0.001). An increase in MMP-9:TIMP-1 and MMP-9:TIMP-2 ratio was observed in women with PTB compared to GA matched controls (resp. p = 0.02 and p<0.001) as well as compared to women at term in labor (resp. p = 0.006 and p<0.001). Multiple regression results with groups recoded as three key covariates showed significantly higher MMP-9 concentrations, higher MMP-9:TIMP-1 and MMP-9:TIMP-2 ratios and lower TIMP-1 and -2 concentrations for preterm labor. Significantly higher MMP-9 and TIMP-4 concentrations and MMP-9:TIMP-2 ratios were observed for labor.

Conclusions

Serum MMP-9:TIMP-1 and MMP-9:TIMP-2 balances are tilting in favor of gelatinolysis during preterm labor. TIMP-1 and -2 concentrations were lower in preterm gestation, irrespective of labor, while TIMP-4 concentrations were raised in labor. These observations suggest that aberrant serum expression of MMP:TIMP ratios and TIMPs reflect pregnancy and labor status, providing a far less invasive method to determine enzymes essential in ECM remodeling during pregnancy and parturition.  相似文献   

14.

Introduction

Tuberculosis (TB) destroys lung tissues and this immunopathology is mediated in part by Matrix Metalloproteinases (MMPs). There are no data on the relationship between local tissue MMPs concentrations, anti-tuberculosis therapy and sputum conversion.

Materials and Methods

Induced sputum was collected from 68 TB patients and 69 controls in a cross-sectional study. MMPs concentrations were measured by Luminex array, TIMP concentrations by ELISA and were correlated with a disease severity score (TBscore). 46 TB patients were then studied longitudinally at the 2nd, 8th week and end of treatment.

Results

Sputum MMP-1,-2,-3,-8,-9 and TIMP-1 and -2 concentrations are increased in TB. Elevated MMP-1 and -3 concentrations are independently associated with higher TB severity scores (p<0.05). MMP-1, -3 and -8 concentrations decreased rapidly during treatment (p<0.05) whilst there was a transient increase in TIMP-1/2 concentrations at week 2. MMP-2, -8 and -9 and TIMP-2 concentrations were higher at TB diagnosis in patients who remain sputum culture positive at 2 weeks and MMP-3, -8 and TIMP-1 concentrations were higher in these patients at 2nd week of TB treatment.

Conclusions

MMPs are elevated in TB patients and associate with disease severity. This matrix-degrading phenotype resolves rapidly with treatment. The MMP profile at presentation correlates with a delayed treatment response.  相似文献   

15.

Introduction

Matrix metalloproteinases (MMPs) are implicated in the destruction of the joint and have been shown to be strongly associated with inflammation in rheumatoid arthritis (RA). Circulating MMPs have also been associated with cardiovascular disease in the general population, and are predictive of cardiovascular mortality. The purpose of the present study was to determine whether circulating levels of MMPs are predictive of mortality in RA.

Methods

A multiplex suspension array system (Luminex®) was used to measure levels of MMPs (1, 2, 3, 8 and 9) in sera taken at recruitment of RA patients (n = 487) in a study of factors associated with mortality in RA. Patients were tracked on the National Health Service Central Register for notification of death, and the relationship between baseline MMP levels and mortality was analysed using Cox proportional hazards regression analysis.

Results

At the time of follow-up, 204/486 patients had died, of which 94 (46.1%) had died of circulatory diseases, 49 of malignancy (24.0%), and 42 (20.6%) of respiratory diseases. In a stepwise analysis which included all MMPs, only MMP-8 was significantly associated with all cause mortality (P = 0.0007, 0.6% hazard ratio increase per ng/ml). No association was found between MMP levels and mortality due to circulatory disease or malignancy. However MMP-8 levels were strongly associated with mortality due to respiratory disease (P < 0.0001, 1.3% hazard ratio increase per ng/ml). The association with respiratory disease related mortality remained highly significant in multivariate models which included smoking as well as markers of severity and disease activity such as rheumatoid factor, nodular disease, and C-reactive protein (CRP).

Conclusions

The serum level of MMP-8 is a strong predictor of mortality in RA, especially that due to respiratory disease. This finding is consistent with increased activation of neutrophils in RA and identifies serum MMP-8 as a useful marker for increased risk of premature death.  相似文献   

16.

Background

X-linked adrenoleukodystrophy results from mutations in the ABCD1 gene disrupting the metabolism of very-long-chain fatty acids. The most serious form of ALD, cerebral adrenoleukodystrophy (cALD), causes neuroinflammation and demyelination. Neuroimaging in cALD shows inflammatory changes and indicates blood-brain-barrier (BBB) disruption. We hypothesize that disruption may occur through the degradation of the extracellular matrix defining the BBB by matrix metalloproteinases (MMPs). MMPs have not been evaluated in the setting of cALD.

Methodology/Principal Findings

We used a multiplex assay to correlate the concentration of MMPs in cerebrospinal fluid and plasma to the severity of brain inflammation as determined by the ALD MRI (Loes) score and the neurologic function score. There were significant elevations of MMP2, MMP9, MMP10, TIMP1, and total protein in the CSF of boys with cALD compared to controls. Levels of MMP10, TIMP1, and total protein in CSF showed significant correlation [p<0.05 for each with pre-transplant MRI Loes Loes scores (R2 = 0.34, 0.20, 0.55 respectively). Levels of TIMP1 and total protein in CSF significantly correlated with pre-transplant neurologic functional scores (R2 = 0.22 and 0.48 respectively), and levels of MMP10 and total protein in CSF significantly correlated with one-year post-transplant functional scores (R2 = 0.38 and 0.69). There was a significant elevation of MMP9 levels in plasma compared to control, but did not correlate with the MRI or neurologic function scores.

Conclusions/Significance

MMPs were found to be elevated in the CSF of boys with cALD and may mechanistically contribute to the breakdown of the blood-brain-barrier. MMP concentrations directly correlate to radiographic and clinical neurologic severity. Interestingly, increased total protein levels showed superior correlation to MRI score and neurologic function score before and at one year after transplant.  相似文献   

17.

Background

Matrix metalloproteinases (MMPs) and C-reactive protein (CRP) are involved in chronic obstructive pulmonary disease (COPD) pathogenesis. The aim of the present work was to determine plasma concentrations of MMPs and CRP in COPD associated to biomass combustion exposure (BE) and tobacco smoking (TS).

Methods

Pulmonary function tests, plasma levels of MMP-1, MMP-7, MMP-9, MMP-9/TIMP-1 and CRP were measured in COPD associated to BE (n = 40) and TS (n =40) patients, and healthy non-smoking (NS) healthy women (controls, n = 40).

Results

Plasma levels of MMP-1, MMP-7, MMP-9, and MMP-9/TIMP-1 and CRP were higher in BE and TS than in the NS healthy women (p <0.01). An inverse correlation between MMP-1, MMP-7, MMP-9, MMP-9/TIMP-1 and CRP plasma concentrations and FEV1 was observed.

Conclusions

Increase of MMPs and CRP plasma concentrations in BE suggests a systemic inflammatory phenomenon similar to that observed in COPD associated to tobacco smoking, which may also play a role in COPD pathogenesis.  相似文献   

18.

Background

Tissue inhibitor of metalloproteinases-1 (TIMP-1) displays pleiotropic activities, both dependent and independent of its inhibitory activity on matrix metalloproteinases (MMPs). In the central nervous system (CNS), TIMP-1 is strongly upregulated in reactive astrocytes and cortical neurons following excitotoxic/inflammatory stimuli, but no information exists on its effects on growth and morphology of cortical neurons.

Principal Findings

We found that 24 h incubation with recombinant TIMP-1 induced a 35% reduction in neurite length and significantly increased growth cones size and the number of F-actin rich microprocesses. TIMP-1 mediated reduction in neurite length affected both dendrites and axons after 48 h treatment. The effects on neurite length and morphology were not elicited by a mutated form of TIMP-1 inactive against MMP-1, -2 and -3, and still inhibitory for MMP-9, but were mimicked by a broad spectrum MMP inhibitor. MMP-9 was poorly expressed in developing cortical neurons, unlike MMP-2 which was present in growth cones and whose selective inhibition caused neurite length reductions similar to those induced by TIMP-1. Moreover, TIMP-1 mediated changes in cytoskeleton reorganisation were not accompanied by modifications in the expression levels of actin, βIII-tubulin, or microtubule assembly regulatory protein MAP2c. Transfection-mediated overexpression of TIMP-1 dramatically reduced neuritic arbour extension in the absence of detectable levels of released extracellular TIMP-1.

Conclusions

Altogether, TIMP-1 emerges as a modulator of neuronal outgrowth and morphology in a paracrine and autrocrine manner through the inhibition, at least in part, of MMP-2 and not MMP-9. These findings may help us understand the role of the MMP/TIMP system in post-lesion pre-scarring conditions.  相似文献   

19.

Background

VEGF proteolysis by plasmin or matrix metalloproteinases (MMPs) is believed to play an important role in regulating vascular patterning in vivo by releasing VEGF from the extracellular matrix (ECM). However, a quantitative understanding of the kinetics of VEGF cleavage and the efficiency of cell-mediated VEGF release is currently lacking. To address these uncertainties, we develop a molecular-detailed quantitative model of VEGF proteolysis, used here in the context of an endothelial sprout.

Methodology and Findings

To study a cell''s ability to cleave VEGF, the model captures MMP secretion, VEGF-ECM binding, VEGF proteolysis from VEGF165 to VEGF114 (the expected MMP cleavage product of VEGF165) and VEGF receptor-mediated recapture. Using experimental data, we estimated the effective bimolecular rate constant of VEGF165 cleavage by plasmin to be 328 M−1s−1 at 25°C, which is relatively slow compared to typical MMP-ECM proteolysis reactions. While previous studies have implicated cellular proteolysis in growth factor processing, we show that single cells do not individually have the capacity to cleave VEGF to any appreciable extent (less than 0.1% conversion). In addition, we find that a tip cell''s receptor system will not efficiently recapture the cleaved VEGF due to an inability of cleaved VEGF to associate with Neuropilin-1.

Conclusions

Overall, VEGF165 cleavage in vivo is likely to be mediated by the combined effect of numerous cells, instead of behaving in a single-cell-directed, autocrine manner. We show that heparan sulfate proteoglycans (HSPGs) potentiate VEGF cleavage by increasing the VEGF clearance time in tissues. In addition, we find that the VEGF-HSPG complex is more sensitive to proteases than is soluble VEGF, which may imply its potential relevance in receptor signaling. Finally, according to our calculations, experimentally measured soluble protease levels are approximately two orders of magnitude lower than that needed to reconcile levels of VEGF cleavage seen in pathological situations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号