首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Perry J  Short KM  Romer JT  Swift S  Cox TC  Ashworth A 《Genomics》1999,62(3):385-394
Opitz G/BBB syndrome (OS) is a genetically heterogeneous disorder with an X-linked locus and an autosomal locus linked to 22q11.2. OS affects multiple organ systems with often variable severity even between siblings. The clinical features, which include hypertelorism, cleft lip and palate, defects of cardiac septation, hypospadias, and anorectal anomalies, indicate an underlying disturbance of the developing ventral midline of the embryo. The gene responsible for X-linked OS, FXY/MID1, is located on the short arm of the human X chromosome within Xp22.3 and encodes a protein with both an RBCC (RING finger, B-box, coiled coil) and a B30.2 domain. The Fxy gene in mice is also located on the X chromosome but spans the pseudoautosomal boundary in this species. Here we describe a gene closely related to FXY/MID1, called FXY2, which also maps to the X chromosome within Xq22. The mouse Fxy2 gene is located on the distal part of the mouse X chromosome within a region syntenic to Xq22. Analysis of genes flanking both FXY/MID1 and FXY2 (as well as their counterparts in mouse) suggests that these regions may have arisen as a result of an intrachromosomal duplication on an ancestral X chromosome. We have also identified in both FXY2 and FXY/MID1 proteins a conserved fibronectin type III domain located between the RBCC and B30.2 domains that has implications for understanding protein function. The FXY/MID1 protein has previously been shown to colocalize with microtubules, and here we show that the FXY2 protein similarly associates with microtubules in a manner that is dependent on the carboxy-terminal B30.2 domain.  相似文献   

2.
A novel human X-linked gene shows placenta-specific expression and has been named PLAC1. The gene maps 65 kb telomeric to HPRT at Xq26 and has been completely sequenced at the cDNA and genomic levels. The mouse orthologue Plac1 maps to the syntenically equivalent region of the mouse X chromosome. In situ hybridization studies with the antisense mRNA during mouse embryogenesis detect Plac1 expression from 7.5 dpc (days postcoitum) to 14.5 dpc in ectoplacental cone, giant cells, and labyrinthine trophoblasts. The putative human and murine PLAC1 proteins are 60% identical and 77% homologous. Both include a signal peptide and a peptide sequence also found in an interaction domain of the ZP3 (zona pellucida 3) protein. These results make PLAC1 a marker for placental development, with a possible role in the establishment of the mother–fetus interface.  相似文献   

3.
The methyl CpG binding proteins (MeCP1 and MeCP2) are a class of proteins that bind to templates containing symmetrically methylated CpGs. Using an interspecific backcross segregating a number of X-linked markers, we have localized the Mecp2 gene in mouse to the X chromosome close to the microsatellite marker DXMit1. Detailed physical mapping utilizing an available YAC contig encompassing the DXMit1 locus has localized the Mecp2 gene to a 40-kb region between the L1cam and the Rsvp loci, indicating the probable position of a homologue on the human X chromosome.  相似文献   

4.
We have recently identified a novel RING finger protein expressed in the rat brain, which associates with myosin V and α-actinin-4. Here we have cloned and characterized the orthologous human BERP cDNA and gene (HGMW-approved symbol RNF22). The human BERP protein is encoded by 11 exons ranging in size from 71 to 733 bp, and fluorescence in situ hybridization shows that the BERP gene maps to chromosome 11p15.5, 3′ to the FE65 gene. The human BERP protein is 98% identical to the rat and mouse proteins, and we have identified a highly conserved potential orthologue in Caenorhabditis elegans. BERP belongs to the RING finger–B-box–coiled coil (RBCC) subgroup of RING finger proteins, and a cluster of these RBCC protein genes is present in chromosome 11p15. Chromosome region 11p15 is thought to harbor tumor suppressor genes, and deletions of this region occur frequently in several types of human cancers. These observations indicate that BERP may be a novel tumor suppressor gene.  相似文献   

5.

Background  

Patients with Opitz GBBB syndrome present with a variable array of developmental defects including craniofacial, cardiac, and genital anomalies. Mutations in the X-linked MID1 gene, which encodes a microtubule-binding protein, have been found in ~50% of Opitz GBBB syndrome patients consistent with the genetically heterogeneous nature of the disorder. A protein highly related to MID1, called MID2, has also been described that similarly associates with microtubules.  相似文献   

6.
Transient neonatal diabetes mellitus (TNDM) is a rare disease characterized by intrauterine growth retardation, dehydration, and failure to thrive due to a lack of normal insulin secretion. This disease is associated with paternal uniparental disomy or paternal duplication of chromosome 6, suggesting that the causative gene(s) for TNDM is imprinted. Recently, Gardner et al. (1999, J. Med. Genet. 36: 192–196) proposed that a candidate gene for TNDM lies within chromosome 6q24.1–q24.3. To find human imprinted genes, we performed a database search for EST sequences that mapped to this region, followed by RT-PCR analysis using monochromosomal hybrid cells with a human chromosome 6 of defined parental origin. Here we report the identification of a novel imprinted gene, HYMAI. This gene exhibits differential DNA methylation between the two parental alleles at an adjacent CpG island and is expressed only from the paternal chromosome. A previously characterized imprinted gene, ZAC/LOT1, is located 70 kb downstream of HYMAI and is also expressed only from the paternal allele. In the pancreas, both genes are moderately expressed. HYMAI and ZAC/LOT1 are therefore candidate genes involved in TNDM. Furthermore, the human chromosome 6q24 region is syntenic to mouse chromosome 10 and represents a novel imprinted domain.  相似文献   

7.
Summary Homology with the mouse bare patches mutant suggests that the gene for the X-linked dominant chondrodysplasia punctata / ichthyosis / cataract / short stature syndrome (Happle syndrome) is located in the human Xq28 region. To test this hypothesis, we performed a linkage study in three families comprising a total of 12 informative meioses. Multiple recombinations appear to exclude the Xq28 region as the site of the gene. Surprisingly, multiple crossovers were also found with 26 other markers spread along the rest of the X chromosome. Two-point linkage analysis and analysis of recombination chromosomes seem to exclude the gene from the entire X chromosome. Three different mechanisms are discussed that could explain the apparent exclusion of an X-linked gene from the X chromosome by linkage analysis: (a) different mutations on the X chromosome disturbing X inactivation, (b) metabolic interference, i.e. allele incompatibility of an X-linked gene, and (c) an unstable pre-mutation that can become silent in males. We favour the last explanation, as it would account for the unexpected sex ratio (MF) of 1.21 among surviving siblings, and for the striking clinical variability of the phenotype, including stepwise increases in disease expression in successive generations.  相似文献   

8.
Various polymorphic markers with a random distribution along the X chromosome were used in a linkage analysis performed on a family with apparently Xlinked recessive inheritance of neural tube defects (NTD). The lod score values were used to generate an exclusion map of the X chromosome; this showed that the responsible gene was probably not located in the middle part of Xp or in the distal region of Xq. A further refining of these results was achieved by haplotype analysis, which indicated that the gene for X-linked NTD was located either within Xp21.1-pter, distal from the DMD locus, or in the region Xq12–q24 between DXS106 and DXS424. Multipoint linkage analysis revealed that the likelihood for gene location is highest for the region on Xp. The region Xq26–q28, which has syntenic homology with the segment of the murine X chromosome carrying the locus for bent tail (Bn), a mouse model for X-linked NTD, is excluded as the location for the gene underlying X-linked NTD in the present family. Thus, the human homologue of the Bn gene and the present defective gene are not identical, suggesting that more than one gene on the X chromosome plays a role in the development of the neural tube.  相似文献   

9.
The SCF complex is a type of ubiquitin ligase that consists of the invariable components SKP1, CUL1, and RBX1 as well as a variable component, known as an F-box protein, that is the main determinant of substrate specificity. The Caenorhabditis elegans F-box- and WD40-repeat-containing protein SEL-10 functionally and physically associates with LIN-12 and SEL-12, orthologues of mammalian Notch and presenilin, respectively. We have now identified a gene (which we call Fbxw6) that encodes a mouse homologue (F-box–WD40 repeat protein 6, or FBW6) of SEL-10 and is expressed mainly in brain, heart, and testis. Co-immunoprecipitation analysis showed that FBW6 interacts with SKP1 and CUL1, indicating that these three proteins form an SCF complex. Comparison of the genomic organization of Fbxw6, which is located on mouse chromosome 3.3E3, with that of mouse Fbxw1, Fbxw2, and Fbxw4 showed only a low level of similarity, indicating that these genes diverged relatively early and thereafter evolved independently.  相似文献   

10.
11.
The intrachromosomal localization of three X-linked gene loci (PGK, HGPRT and G6PD) has been determined using a somatic cell genetic approach. A human cell line possessing an X/14 translocation was used as one parent in the formation of human/mouse hybrids. The translocation separates the human X into two parts: Xp and t(Xq14q). The data indicate that all three X-linked loci segregate with the t(Xq14q) rearrangement product thus permitting their assignment to the X chromosome's long arm. Secondary rearrangements and data from other laboratories suggest that the order of the the three markers from the centromere to the distal end of the X long arm is PGK, HGPRT, G6PD. It was also observed that NP, an autosomal locus, segregated with the t(Xq14q) chromosome. This provides strong support for the assignment of NP to 14.  相似文献   

12.
Opitz G/BBB syndrome (OS) is a genetically heterogeneous disease. We report on an OS patient with a novel inherited mutation in MID1. Metaphase analysis showed a normal male karyotype. Array CGH revealed a maternally inherited duplication at Xp22.31 (6,467,203–7,992,261, hg18), the size was estimated to 1.5 Mb. Sequence analysis of the MID1 coding region revealed a novel missense mutation in exon 8 (c.1561C>T/p. R521C) which resulted in an ammonia acid substitution (R521C) in the PRX domain of the MID1 protein. The mutation was inherited from unaffected grandmother and mildly affected mother. Prenatal diagnosis was performed for the third pregnancy after identification of the causative mutation in the family. The third fetus was found to be a female carrier. Postnatal follow-up at 2-month-old showed normal phenotype. In conclusion, we reported a familial OS patient with a novel mutation in exon 8 which provided another evidence for that mutation clustered in C-terminal domain of MID1. The newly identified mutation in our patient expands mutation spectrum in MID1 gene.  相似文献   

13.
Opitz BBB/G syndrome (OS) is a heterogenous malformation syndrome mainly characterised by hypertelorism and hypospadias. In addition, patients may present with several other defects of the ventral midline such as cleft lip and palate and congenital heart defects. The syndrome-causing gene encodes the X-linked E3 ubiquitin ligase MID1 that mediates ubiquitin-specific modification and degradation of the catalytic subunit of the translation regulator protein phosphatase 2A (PP2A). Here, we show that the MID1 protein also associates with elongation factor 1α (EF-1α) and several other proteins involved in mRNA transport and translation, including RACK1, Annexin A2, Nucleophosmin and proteins of the small ribosomal subunits. Mutant MID1 proteins as found in OS patients lose the ability to interact with EF-1α. The composition of the MID1 protein complex was determined by several independent methods: (1) yeast two-hybrid screening and (2) immunofluorescence, (3) a biochemical approach involving affinity purification of the complex, (4) co-fractionation in a microtubule assembly assay and (5) immunoprecipitation. Moreover, we show that the cytoskeleton-bound MID1/translation factor complex specifically associates with G- and U-rich RNAs and incorporates MID1 mRNA, thus forming a microtubule-associated ribonucleoprotein (RNP) complex. Our data suggest a novel function of the OS gene product in directing translational control to the cytoskeleton. The dysfunction of this mechanism would lead to malfunction of microtubule-associated protein translation and to the development of OS. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
We have isolated the DNMT3L gene that is related to the cytosine-5-methyltransferase 3 (DNMT3) family. The gene is located on chromosome 21q22.3 between the AIRE and the KIAA0653 genes and spans approximately 16 kb of genomic sequence. The encoded protein of 387 amino acids has a cysteine-rich region containing a novel-type zinc finger domain that is conserved in DNMT3A and DNMT3B but also in ATRX, a member of the SNF2 protein family. The novel domain, called an ADD (ATRX, DNMT3, DNMT3L)-type zinc finger, contains two subparts: a C2C2 and an imperfect PHD zinc finger. Expression of the DNMT3L mRNA was not detectable by Northern blotting; however, RT-PCR amplification revealed that it is expressed at low levels in several tissues including testis, ovary, and thymus.  相似文献   

16.
17.
Proteasomes are nonlysosomal multicatalytic proteases involved in antigen processing. Three of the 10 mammalian proteasome β subunits (LMP2, LMP7, and LMP10) are induced by IFN-γ. Two of these (LMP2 and LMP7) are encoded in the major histocompatibility complex of both human (chromosome 6) and mouse (chromosome 17). However, the human homologue ofLmp10, MECL1,is found on chromosome 16. Here we show that in mice,Lmp10is a single-copy gene localized to chromosome 8, in a region of conserved synteny with human chromosome 16. Sequencing of a 129/SvJ strain genomic clone revealed that the gene has eight exons spanning 2.3 kb. Characterization of a full-length mouse cDNA clone indicates thatLmp10encodes a protein of 273 amino acids with a calculated molecular weight of 29 kDa and an isoelectric point of 6.86. Northern analysis ofLmp2, Lmp7,andLmp10showed expression in heart, liver, thymus, lung, and spleen, but not in brain, kidney, skeletal muscle, or testis.  相似文献   

18.
19.
20.
We have mapped the TNNC1 gene, whose protein product is the cardiac TnI protein. TnI is one of the proteins that makes up the troponin complex, which mediates the response of muscle to calcium ions. The human TNNC1 locus had been assigned to a large region of chromosome 19, and we have refined the mapping position to the distal end of the chromosome by amplification of DNAs from a chromosome 19 mapping panel. We have also mapped the mouse Tnnc1 locus, by following the segregation of an intron sequence through DNAs from the European Interspecific Backcross. Tnnc1 maps close to the centromere on mouse chromosome 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号