首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spontaneous changes in isometric developed tension (IDT) as a function of time after isolation (contractile constancy) in uteri from control-castrated and castrated chronic streptozotocin-diabetic rats, were explored. The effects of injecting 17-beta estradiol (E0) were also studied. No differences in the minor changes of contractile constancy, between control and diabetic preparations, during a period of 60 min, were detected, whereas uteri from non-diabetic EO injected animals (0.5+1.0 ug, prior to sacrifice), exhibited a profound reduction of IDT, significantly greater than in tissues obtained from E0 injected-diabetic rats. Moreover, basal generation and outputs into the suspending solution of prostaglandins (PGs) E1, E2 and F, were explored in the same groups, at 60 min following tissue isolation. The basal outputs of these three PGs were similar in castrated control rats, but preparations from castrated-diabetics released significantly more PGE1. The administration of E0 to castrated-diabetics, failed to alter the releases of the three PGs explored. In addition, the metabolism of labelled arachidonic acid (AA) into different prostanoids (6-keto-PGF1, PGF2, PGE2 and thromboxane B2-TXB2), was also investigated. The non-diabetic spayed rat uterus converted AA into these four prostanoids, the transformation into 6-keto-PGF1α (as an index of PGI2 formation) being the most prominent. In preparations from diabetic rats the formation) being the most prominent. In preparations from diabetic rats the formation of 6-keto-PGF1α, PGF2α and PGE2, was significantly smaller than in controls, whereas a greater % of TXB2 formation (as an index of TXA2), was detected. On the other hand uterine preparations from non-diabetic spayed rats injected with E0 formed less 6-
amounts of PGF2α or of TXB2 from AA, than E0 injected controls, whereas uteri from castrated diabetic animals injected with E0, formed a similar % of 6-keto-PGF1α, PGF2α and PGE2 from AA, than tissue preparations from non-estrogenized controls. However, the enhanced transformation of the labelled fatty acid precursor (AA) into TXB2 in the diabetic group, was significantly reduced by the steroid. The role of the augmented generation and release of PGE1 in uteri from diabetic rats is discussed in terms of precedents indicating the relevance of PGs type E supporting rat uterine motility. In addition the influence of E0 is attractive, because its reducing effect on TX production, in diabetes, a disease known to be accompanied by enhanced synthesis of vasoconstrictor and platelet aggregation TXA2, and by frequent obstructive circulatory problems.  相似文献   

2.
Severe uterine and placental disturbances have been described in diabetes pathology. The relative severity of these changes appears to correlate with high glucose levels in the plasma and incubating environment. In order to characterize changes in eicosanoid production we compared uterine and placental arachidonic acid conversion from control and non-insulin-dependent diabetes mellitus (NIDDM) rats on day 21 of pregnancy, into different prostanoids, namely PGE2, PGF22alpha, TXB2 (indicating the production of TXA2) and 6-keto-PGF1 (indicating the generation of PGI2). PGE2, PGF2alpha and TXB2 production was higher and 6-keto-PGF1alpha was similar in diabetic compared to control uteri. PLA2 activity was found diminished in the NIDDM uteri in comparison to control. A role for PLA2 diminution as a protective mechanism to avoid prostaglandin overproduction in uterine tissue from NIDDM rats is discussed. Placental tissues showed an increment in TXB2 generation and a decrease in 6-keto PGF1alpha level in diabetic rats when compared to control animals. Moreover, when control uterine tissue was incubated in the presence of elevated glucose concentrations (22 mM), similar generation of 6-keto PGF1alpha and elevated production of PGE2, PGF2alpha and TXB2 were found when compared to those incubated with glucose 11 mM. Placental TXB2 production was higher and 6-keto PGF1alpha was lower when control tissues were incubated in the presence of high glucose concentrations. However, high glucose was unable to modify uterine or placental prostanoid production in diabetic rats. We conclude that elevated glucose levels induced an abnormal prostanoid profile in control uteri and placenta, similar to those observed in non-insulin-dependent diabetic tissues.  相似文献   

3.
We attempted to explore possible mechanism(s) subserving the influence of oxytocin on uterine motility by studying the action of the hormone on: 1) the contractile activity of isolated rat uteri in the presence or absence of indomethacin; 2) the synthesis and release of prostaglandins (PGs) into the solution incubating the uterine tissue as well as the metabolism of labelled arachidonic acid; 3) the uptake of 45Ca2+ by uterine strips. The experiments were bone with uterine preparations isolated from spayed rats treated or not with 17-beta-estradiol. The values of isometric developed tension (IDT) and of frequency of contractions (FC) induced by oxytocin in uterine strips isolated from spayed and spayed-estrogenized rats, were not modified by indomethacin at 10(-6) M. On the other hand, uterine strips from untreated spayed rats, release into the incubating medium approximately equal amounts of PGE1, PGE2 and PGF2 alpha. The in vitro presence of oxytocin (50 mU/ml) increased significantly (p 0.05) the output of PGF 2 alpha without changing the release of PGE1 or PGE2. Uteri from spayed rats injected prior to sacrifice with 17-beta-estradiol released significantly less PGE1 and PGE2 (p less than 0.005) than preparations from non-injected animals, whereas the output of PGF2 alpha in the suspending solution remained unchanged. Following estrogenization the addition of oxytocin to preparations obtained from spayed-estrogenized rats also increased the output of uterine PGF2 alpha (p less than 0.001) without changing that of PGs E1 or E2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The ability of de novo biosynthesis of prostaglandins (PGs) in individual whole corpora lutea (CL) obtained from sterile-mated adult pseudopregnant rats on different days of the luteal phase and the post-luteolytic period was evaluated. Production of PGs, progesterone and 20 alpha-dihydroprogesterone were determined after in vitro incubation of CL extirpated from Day 2 to Day 19 after mating. A time-relationship with increased accumulation of PGs in the medium was demonstrated from 18 s to 5 h, with large increments during the first 30 min. Basal accumulation of PGs in the incubation medium was highest for 6-keto-PGF1 alpha (the stable metabolite of prostacyclin) greater than PGE2 greater than PGF2 alpha greater than thromboxane B2 (TXB2) and basal accumulation of PGF2 alpha and PGE2 measured in the medium was maximal on Day 10-11 of pseudopregnancy, concomitantly with a decline in secretion of progesterone. Addition of arachidonic acid (AA) dose-dependently increased synthesis of PGs, with absolute amounts of PGE2 greater than 6-keto-PGF1 alpha greater than PGF2 alpha greater than TXB2 and addition of 14 microM indomethacin markedly inhibited accumulation of all PGs measured. Luteinizing hormone (LH, 10 micrograms/ml) stimulated progesterone secretion on all days during pseudopregnancy, but not on the post-luteolytic Day 19. LH increased PGF2 alpha, PGE2 and 6-keto-PGF1 alpha secretion on Day 13 of pseudopregnancy by 76%, 91% and 28%, respectively, but not on the other days tested. Furthermore, stimulation of PG-synthesis by addition of AA abrogated the LH-induced progesterone accumulation markedly, but only on Day 13 of pseudopregnancy. Epinephrine (5 micrograms/ml) increased production of progesterone and also PGs, but only on Day 2 of pseudopregnancy, whereas oxytocin (100 mIU/ml) was found to be without effect on progesterone as well as PG secretion on all days tested. The results of the present study demonstrates the independent ability of the rat CL to synthesize PGG/PGH2-derived prostaglandins, including the putative luteolysin PGF2 alpha. Secondly, we demonstrate that LH and AA-induced increases in PGF2 alpha and PGE2 production during the luteolytic period, may be an autocrine or paracrine mechanism involved in luteolysis.  相似文献   

5.
T Kobayashi 《Prostaglandins》1986,31(3):469-475
Effects of 10 ppm nitrogen dioxide (NO2) exposure on the contents of prostaglandins (PGs) and thromboxane (TX) B2 in bronchoalveolar lavage (BAL) of rats were studied. In the BAL of normal rats, the amounts of PGs and TXB2 in the whole lavage were 6-keto-PGF1 alpha (38.0 +/- 6.4 ng) greater than TXB2 (11.8 +/- 4.0 ng) greater than PGF2 alpha (5.7 +/- 1.6 ng) much greater than PGE (0.5 +/- 0.3 ng). Rats were exposed to NO2 for 1,3,5,7 and 14 days. The NO2 exposure decreased in the level of 6-keto-PGF1 alpha by about 35% throughout the exposure. The level of TXB2 was higher in the day 5 exposure group (155%). The contents of PGF2 alpha and PGE first, decreased and then transiently increased on days 3 and 5. PG 15-hydroxy-dehydrogenase activity of lung homogenate decreased correspondingly on day 3 and 5. Then the contents PGF2 alpha and PGE decreased on day 7 and 14. 6-keto-PGF1 alpha and TXB2 are stable metabolites of PGI2, a strong bronchorelaxant and TXA2, a strong bronchoconstrictor respectively. Therefore the results suggested that the decrease in 6-keto-PGF1 alpha, a major prostanoid in the BAL and the increase in TXB2 may correlate with broncho constriction by NO2 exposure.  相似文献   

6.
We attempted to explore possible mechanism(s) subserving the influence of oxytocin (O) and of progesterone (P) in the isolated rat uterus studying the action of these hormones on: the synthesis and release of prostaglandins (PGs), the metabolism of labelled arachidonic acid and the uptake of Ca2+ by the tissue from ovariectomized animals. The experiments were done with uterine preparations isolated from spayed rats treated or not with P prior to sacrifice and afterward incubated or not with O 'in vitro'. While uterine strips from untreated spayed rat uterus exhibited a basal release into the incubating medium of approximately the same amounts of PGF2 alpha, and PGE2, the 'in vitro' addition of O (50 mU/ml) increased significantly (p < 0.05) the output of PGF2 alpha without changing the release of PGE2. In tissue from rats injected with P prior to sacrifice the output of PGF2 alpha rose significantly (p < 0.01) as it did after the addition of O to preparations obtained from spayed rats treated with P in comparison to findings in uteri from spayed rats but not in comparison to uteri from spayed rats treated with P alone. Moreover, the 'in vitro' addition of O (50 mU/ml) only increased the formation of PGF2 alpha (p < 0.05) and of 5-HETE (p < 0.05); nevertheless the administration of P to spayed rats diminished significantly (p < 0.05) the formation of 6-keto-PGF1 alpha from uteri, but increased that of PGF2 alpha (p < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Prostaglandin (PG) synthesis and degradation were examined in different regions (epithelial versus non-epithelial structures) of the rat distal colon by both HPLC analysis of [14C] arachidonate (AA) metabolites and by specific radioimmunoassays. Intact isolated colonic epithelial cells synthesized mainly PGF2 alpha and TXA2, as monitored from the formation of its stable degradation product TXB2 (PGF2 alpha greater than TXB2 greater than 6-keto-PGF1 alpha, the stable degradation product of PGI2 = PGD2 = PGE2 = 13,14-dihydro-15-keto-PGF2 alpha). The profile of PG products of isolated surface epithelial cells was identical to that of proliferative epithelial cells. However, generation of PGs by surface epithelium was 2 to 3-fold higher than by proliferative cells both basally and in the presence of a maximal stimulating concentration (0.1 mM) of AA. The latter implied a greater synthetic capacity of surface epithelium, rather than differences due to endogenous AA availability. The major sites of PG synthesis in colon clearly resided in submucosal structures; the residual colon devoid of epithelial cells accounted for at least 99% of the total PGs produced by intact distal colon. The profile of AA metabolites formed by submucosal structures also differed markedly from that of the epithelium. The dominant submucosal product was PGE2. PGE2 and its degradation product 13,14-dihydro-15-keto-PGE2 accounted for 63% of the PG products formed by submucosal structures (PGE2 much greater than PGD2 greater than 13,14-dihydro-15-keto-PGE2 greater than PGF2 alpha = TXB2 = 6-keto-PGF1 alpha greater than 13,14-dihydro-15-keto-PGF2 alpha). By contrast, epithelial cells, and particularly surface epithelium, contributed disproportionately to the PG degradative capacity of colon, as assessed from the metabolism of either PGE2 or PGF2 alpha. When expressed as a percentage, epithelial cells accounted for 71% of total colonic PGE2 degradative capacity but only 23% of total colonic protein. Approximately 15% of [3H] PGE2 added to the serosal side of everted colonic loops crossed to the mucosal side intact. Thus, at least a portion of the PGE2 formed in the submucosa reaches, and thereby can potentially influence functions of the epithelium.  相似文献   

8.
The effects of progesterone (P4) and of calcium-ionophore A-23187, on the release of prostaglandins (PGs) E2 and F2 alpha, in uteri isolated from ovariectomized rats and the influences of mepacrine and nifedipine, were explored. The metabolism of labelled arachidonic acid (AA) into different prostanoids (6-keto-PGF 1 alpha, PGE 2 and PGF2 alpha) in uterine segments from spayed rats, injected or not with P4, was also studied. In all cases ovariectomy was performed 20-25 days prior to sacrifice. One group of spayed rats were injected with 4.0 mg of P4 during two days and sacrificed 24 h after the last injection. The remaining spayed animals were considered as controls. Tissue samples from both groups were incubated for one hour in the absence or in the presence of either A-23187 (1.0 microgram/ml), mepacrine (10(-3) M) or nifedipine (10(-6) M), or a combination of A-23187 plus mepacrine. At the end of the incubating period PGs in the suspending solution were extracted, separated, identified (TLC) and quantitated. The metabolism of 14C-AA into different prostanoids was explored in uterine segments from spayed rats, injected or not with P4 prior to sacrifice. Tissue prepared from P4-injected rats as well as those from rats not receiving P4 but incubated with ionophore A-23187, generated and released significantly more PGF2 alpha into the incubating solution than basal controls, but failed to exhibit changes in the basal output of PGE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Patients with diabetes mellitus have an increased susceptibility to heart disease. The exact mechanism for this phenomenon is unclear. Abnormalities in prostaglandin (PG) production have been suggested as a possible cause. In this connection, we examined the PG synthetic capacity of cardiac microsomes from spontaneously diabetic rats. Cardiac microsomes from diabetic and control rats produced varying amounts of 6-keto-PGF1 alpha (stable degradation product of PGI2), PGE2, PGD2, PGF2 alpha, and TXB2 (stable breakdown product of TXA2). In both instances the production of 6-keto-PGF1 alpha predominated, however, microsomes from diabetic rats showed markedly greater conversion of arachidonic acid to all the PG products, especially 6-keto-PGF1 alpha. When PGF2 alpha metabolism was detected between diabetic and control heart preparations. These results show an enhanced cyclooxygenase activity in diabetic rat hearts without any change in prostaglandin dehydrogenase activity. Such a change may promote some of the cardiac alterations seen in diabetic mellitus.  相似文献   

10.
Many lines of evidence indicate that an increased pancreatic production of nitric oxide (NO) and prostaglandins (PGs) is found in the pancreas of streptozotocin-diabetic rats and that endothelins (ETs) are closely related to the nitridergic and prostanoid pathway in several tissues. In the present study the relationship between NO, ETs, and PGs has been explored in isolated pancreatic tissue from streptozotocin-diabetic rats. Pancreatic ET levels are higher in pancreatic tissues from diabetic (D) rats compared to control (C) animals. The addition of nitric oxide synthase (NOS) inhibitors (1 mM N(G)-nitro-l-arginine methyl ester, 600 microM N(G)-monomethyl-l-arginine) in the incubating medium reduces and NO donors (SIN-1, 300 microM spermine suppress, NONOate 100 microM) increases ET levels in pancreatic slices from C and D animals. PGE(2) (10(-7) M) increases and indomethacin (10(-6) M) decreases ET pancreatic production only in D but not in C tissues when added into the incubating bath. When tissues are incubated in the presence of endothelin 1 (ET-1) (10(-7) M), NOS activity is higher in C pancreas, while the ET-receptor antagonist bosentan (B) decreases NOS levels in D but not in C tissues. When pancreatic arachidonic acid (AA) conversion to prostaglandins was explored, ET-1 increased PGF(2alpha), PGE(2), and TXB(2) levels in C but not in D tissues. B abolishes TXB(2) increment due to the diabetic state, but failed in modulating AA conversion to 6-keto PGF(1alpha), PGF2(alpha) and PGE(2) in D pancreas. Our results show an alteration in AA metabolism, ET production, and NO increment associated with pancreatic damage due to streptozotocin.  相似文献   

11.
Three newly established human melanoma cell lines (WU-BI, PN-JC, MJ-ZJ) of different morphology and different stage of malignancy were incubated with ionophore A23187 (2.5 to 40 microM) or arachidonic acid (AA, 6.25 to 100 microM). PGF2 alpha, 6-keto-PGF1 alpha, PGE2, TXB2 and 2,3-dinor-TXB2 from isolated cells and supernatants were measured by negative ion chemical ionization gas chromatography/mass spectrometry (GC/MS). PGE2 decreased in the fibroblastoid MJ-ZJ cells from 36.7 ng/mg cell protein about 70% (A23187) and about 20% (AA), respectively. However, in the cell supernatant PGE2 increased up to 295.4 +/- 66.5 ng/mg cell protein. Production of PGF2 alpha and PGE2 increased up to 5.7 +/- 1.2 ng/mg cell protein for polydendritic WU-BI cells and spindle shaped PN-JC cells. Up to 9.3 +/- 4.3 ng PGF2 alpha and 13.4 +/- 4.7 ng PGE2 was measured for WU-BI and PN-JC in the cell supernatants. All three melanoma cell lines completely lacked formation of 6-keto-PGF1 alpha, TXB2, and 2,3-dinor-TXB2.  相似文献   

12.
W Y Chan 《Prostaglandins》1987,34(6):889-902
We measure oxytocin (OT) responsiveness and prostaglandins (PGs) synthesis in uteri of 19, 20, 21 and 22-day pregnant and 2-day postpartum rats to determine whether the enhanced OT sensitivity and PG synthesis in the parturient uterus is the result of a higher cyclooxygenase activity. We also investigated the effects of suppression of PG synthesis on OT responsiveness and OT receptor in 22-day and 23-day pregnant rats. PG productions (PGE2, PGF2 alpha, 6-keto-PGF1 alpha and TXB2 in microsomal fractions were quantitated by radio- immunoassays (RIAs). OT receptor concentrations were measured in plasma membrane fractions by radioligand-receptor binding assays. Naproxen sodium was used to inhibit endogenous PG synthesis. We found a close temporal relationship between enhanced OT responsiveness and increased uterine PGE2 alpha synthesis, but no significant difference in cyclooxygenase activities among the microsomes prepared from uteri of different gestational ages. Suppression of PG synthesis attenuated OT responsiveness and markedly reduced OT binding sites, from 242 to 78 fmol/mg protein. There was no change in the binding affinity. These findings suggest that PG stimulates OT receptor formation which leads to enhanced OT responsiveness. The increase in PG production is not mediated by a higher cyclooxygenase activity.  相似文献   

13.
The effects of morphine on the constancy of spontaneous contractions (isometric developed tension = IDT and contractile frequency = CF), in uterine strips isolated from ovariectomized rats and the influence of naloxone, were explored. The inotropic responses to added prostaglandins (PGs) E2 and F2 alpha and the influences of morphine and of morphine in the presence of naloxone on PG actions, were also determined. Moreover, the synthesis and outputs of PGs E and F from uteri and the effects of morphine alone and of morphine plus naloxone, were studied. Morphine (10(-6) M) significantly depressed uterine constancy of IDT during the first hours following delivery, but its action on CF did not differ from controls. Naloxone, neither at 10(-8) M nor at 10(-6) M, altered the negative inotropic influence of morphine on IDT. Exogenous PGs E2 and F2 alpha, stimulated uterine inotropism in a concentration-dependent fashion. Morphine altered dose-response curves for exogenous PGE2, evoking a parallel surmountable shift to the right, but did not affect the inotropic action of added PGF2 alpha. This antagonistic effect of the opioid was not altered by preincubation with naloxone. Basal synthesis and outputs of PGs E and F in uteri from ovariectomized rats were significantly depressed by morphine (10(-6) M) but not altered by incubating tissues with morphine in presence of naloxone. Results are discussed in terms of a presumptive dual action of morphine on uterine motility, i.e., antagonizing PGE2 receptors and inhibiting the synthesis of some PGs by the uterus. These influences of morphine do not appear to be subserved by the activation of mu opioid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Streptozotocin-induced pancreatic damage involves nitric oxide (NO) and prostaglandins (PGs) overproduction. In this work we aim to evaluate a putative relationship between the elevated NO levels and the altered prostanoid production in pancreatic tissue from streptozotocin-diabetic rats. Total NOS activity and nitrate/nitrite pancreatic levels in tissues from diabetic rats are decreased when the cyclooxygenase (COX) inhibitor indomethacin (INDO) is added to the incubating medium, while the addition of PGE(2)increases nitrate/nitrite production and NOS levels. INDO and PGE(2)selectively affect Ca(2+)-dependent NOS (iNOS) activity in diabetic tissues, and they have not been able to modify nitrate/nitrite levels, iNOS or Ca(2+)-dependent (cNOS) in control tissues. When the NOS inhibitor L-NMMA was present in the incubating medium, control pancreatic [(14)C]-Arachidonic Acid ([(14)C]-AA) conversion to 6-keto PGF(1 alpha)and to TXB(2)was lower, and PGF(2 alpha), PGE(2)and TXB(2)production from diabetic tissues diminished. The NO donors, spermine nonoate (SN) and SIN-1, enhanced TXB(2)levels in control tissues, while PGF(2 alpha), PGE(2)and TXB(2)levels from diabetic tissues were increased. PGE(2)production from control and diabetic tissues was assessed in the presence of the NO donor SN plus INDO or NS398, a specific PG synthase 2 inhibitor. When SN combined with INDO or NS398 was added, the increment of PGE(2)production was abolished by both inhibitors in equal amounts, indicating that the activating effect of nitric oxide is exerted on the inducible isoform of cyclooxygenase. In the diabetic rat, prostaglandins and NO seem to stimulate the generation of each other, suggesting a lack of regulatory mechanisms that control the levels of vasoactive substances in acute phase of beta-cell destruction.  相似文献   

15.
Isolated uteri from rats fed with a normal diet convert [14C]arachidonate into eicosanoids: PGE(2), PGF(2alpha), TXB(2) and 6-keto-F(1alpha). Restricted diet (50% of the normal diet, during 25 days) diminishes the levels of PGE(2), PGF(2alpha) and TXB(2). The addition of Interleukin-1alpha to the Krebs-Ringer bicarbonate medium increases sharply the production of eicosanoids. Inhibitors of nitric oxide synthase, Nomega-nitro-L-arginine methyl ester or aminoguanidine, do not prevent eicosanoids increase. Conversely, NS-398 (a selective inhibitor of COX-2) blocks the increase of eicosanoids while PGE(2) blocks eicosanoids production mediated by IL-1alpha. Other experiments with uteri of underfed rats confirm that interleukin-1alpha produces an increase in the glucose metabolism. The addition of Nomega-nitro-L-arginine methyl ester, aminoguadinine or NS-398 blocked such stimulation. It is concluded that Interleukin-1alpha produces an increase of glucose metabolism in uteri isolated from underfed rats by two different mechanisms, both involving COX-2: (1) nitric oxide independent and (2) nitric oxide dependent.  相似文献   

16.
The effect of 0.01 microM dipyridamole on prostanoid production was studied in atria from normal, acute diabetic and insulin-treated diabetic rats. Diabetes was induced by i.v. administration of 65 mg/kg of streptozotocin (STZ) and the rats were killed 5 days later. Atria were incubated during 60 min in Krebs solution. The prostanoids 6-keto-prostaglandin (PG) F1alpha (6-keto-PGF1alpha) and thromboxane (TX) B2, stable metabolites of prostacyclin and TXA2, respectively, as well as PGE2 were measured by reversed phase high-performance liquid chromatography-UV. In diabetic atria, 6-keto-PGF1alpha production was reduced by 50% whereas TXB2 release was increased two-fold compared to the controls, with a significant decrease in the 6-keto-PGF1alpha/TXB2 ratio. The preincubation with 0.01 microM dipyridamole for 30 min increased 6-keto-PGF1alpha production in control, diabetic and insulin-treated diabetic atria whereas TXB2 release was not modified. This effects provoked an significant increase in the 6-keto-PGF1alpha/TXB2 ratio. In conclusion, STZ diabetes reduces the 6-keto-PGF1alpha/TXB2 ratio impairing the functional status of the atria. Dipyridamole increased this ratio in atria from diabetic and insulin-treated diabetic rats, thus opposing the effects of STZ diabetes. This fact suggests the possibility of a participation of the drug in pathologies characterized by an imbalance in the production of vasodilator and vasoconstrictor prostanoids.  相似文献   

17.
High-performance liquid chromatography procedures were developed which separate leukotrienes (LTs), hydroxy-fatty acids (HETEs), prostaglandins (PGs), the stable metabolite of prostacyclin (6-keto-PGF1 alpha), the stable metabolite of thromboxane A2 (TXB2), 12-hydroxyheptadecatrienoic acid (HHT), and arachidonic acid (AA). Two methods employing reverse-phase columns are described. One method uses a radial compression system, the other a conventional steel column. Both systems employ methanol and buffered water as solvents. The radial compression system requires 60 min for separation of the AA metabolites, while the conventional system requires 100 min. Both methods provide good separation and recovery of 6-keto-PGF1 alpha, TXB2, PGE2, PGF2 alpha, PGD2, LTC4, LTB4, LTD4, LTE4, HHT, 15-, 12-, and 5-HETE; and AA. The 5S,12S-dihydroxy-6-trans, 8-cis, 10-trans, 14-cis-eicosatetraenoic acid (5S,12S-diHETE), a stereoisomer of LTB4, coelutes with LTB4. To determine the applicability of the methods to biologic systems, AA metabolism was studied in two models, guinea pig lung microsomes and rat alveolar macrophages. Both HPLC systems demonstrated good recovery and resolution of eicosanoids from the two biological systems. A simple evaporation technique for HPLC sample preparation, which avoids the use of chromatographic and other time-consuming methodology, is also described.  相似文献   

18.
The present study was performed in order to explore the influence of ova present within rat oviducts on: a) tubal spontaneous motility and b) oviduct prostaglandin production. It was found that the isometric developed tension (IDT) of tubes isolated from proestrous rats (preovulatory oviducts) was significantly higher (P less than 0.01) than the IDT of tubes from rats at estrus and at metestrus (postovulatory oviducts). After flushing the oviducts with KRB solution (i.e., after removing existing ova) the IDT of the oviducts obtained from estrous rats increased significantly (P less than 0.01), whereas the IDT of tubes isolated from proestrous rats (i.e., preparations without ova) was not modified. On the other hand, isolated tubes containing their corresponding ova released into the suspending solution significantly more PGE1 than PGE2 or PGF2 alpha (P less than 0.005). It was particularly interesting to find that after flushing the oviducts, tissue production of PGE1, PGE2 and PGF2 alpha was similar. Finally, when dose response curves for PGE1 and for PGE2 on the spontaneous contractions of oviducts isolated from rats at proestrus, estrus and metestrus were constructed, both PGs evoked an inhibitory inotropic action. The ED50 for PGE1 in tubes from estrous rats was significantly smaller (P less than 0.01) than that for metestrous animals but significantly greater (P less than 0.01) than that observed in oviducts from proestrous rats. The ED50 for PGE2 did not change in the different tested periods of the sex cycle. Results reported herein suggest the possibility that the ova present within rat oviducts, may influence their own transport along the tubes by modifying the amount of prostaglandins produced by the oviducts or via their own prostaglandin synthesis.  相似文献   

19.
Prostanoids can be formed throughout the gastrointestinal tract, and qualitative gas chromatography--mass spectrometry has shown that human gastric mucosa can produce PGD2, PGE2, PGF2 alpha 6 keto-PGF1 alpha, thromboxane A2 and lipoxygenase material. Quantitative gas chromatography--mass spectrometry has shown that human gastric mucosa homogenized in Krebs' solution yields mainly 6-keto-PGF1 alpha, with smaller amounts of PGD2 PGE2 and PGF2 alpha. However, the sources of these products and their roles in the gastric mucosa have not been fully elucidated. Recent research from other laboratories indicates that thromboxane formation may be important in gastric ulceration. Our studies with rats in vivo have detected no significant effect of carbenoxolone or deglycyrrhized liquorice on the content of radio-immunoassayable PGE, 6-keto-PGF1 alpha and TXB2 extracted from rat gastric corpus mucosa. The anti-ulcer effect of these drugs in rats therefore does not seem to involve prostanoids.  相似文献   

20.
Prostaglandin E2 (PGE2), thromboxane B2 (TXB2; as a stable metabolite of TXA2), prostaglandin F2 alpha (PGF2 alpha) and 6-keto-PGF1 alpha (as a stable end product of prostacyclin) have been measured by using specific radioimmunoassay in the plasma of the cord artery immediately after delivery before the cord was clamped. Plasma prostanoid concentrations in normal deliveries (n = 8, as controls) were 24.8 +/- 2.6 (PGE2), 246.8 +/- 37.0 (TXB2), 122.2 +/- 13.3 (PGF2 alpha) and 82.1 +/- 7.7 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e). On the other hand, in fetal distressed deliveries showing continuous bradycardia (n = 6), they increased significantly to 275.4 +/- 20.1 (PGE2), 948.6 +/- 102.5 (TXB2), 218.0 +/- 21.4 (PGF2 alpha) and 1498.6 +/- 298.4 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e, p less than 0.005). However, both PGF2 alpha/PGE2 and TXB2/6-keto-PGF1 alpha ratios declined significantly from 4.70 +/- 0.33 to 0.68 +/- 0.05 and from 3.07 +/- 0.37 to 0.68 +/- 0.12 respectively (mean +/- s.e, p less than 0.005) in the fetal distressed group compared with those of the controls. From these results, it may be concluded that the cord artery, which is known as the patent source for the production of PGE2 and prostacyclin, did exert a sufficiently strong reaction to overcome the undesirable haemodynamic changes to maintain the fetal well-being in utero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号