首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
Insulin is released from the pancreas in pulses with a period of ∼ 5 min. These oscillatory insulin levels are essential for proper liver utilization and perturbed pulsatility is observed in type 2 diabetes. What coordinates the many islets of Langerhans throughout the pancreas to produce unified oscillations of insulin secretion? One hypothesis is that coordination is achieved through an insulin-dependent negative feedback action of the liver onto the glucose level. This hypothesis was tested in an in vitro setting using a microfluidic system where the population response from a group of islets was input to a model of hepatic glucose uptake, which provided a negative feedback to the glucose level. This modified glucose level was then delivered back to the islet chamber where the population response was again monitored and used to update the glucose concentration delivered to the islets. We found that, with appropriate parameters for the model, oscillations in islet activity were synchronized. This approach demonstrates that rhythmic activity of a population of physically uncoupled islets can be coordinated by a downstream system that senses islet activity and supplies negative feedback. In the intact animal, the liver can play this role of the coordinator of islet activity.  相似文献   

2.
《Biophysical journal》2022,121(5):692-704
Pulsatile insulin secretion by pancreatic beta cells is necessary for tight glucose control in the body. Glycolytic oscillations have been proposed as the mechanism for generating the electrical oscillations underlying pulsatile insulin secretion. The glycolytic enzyme 6-phosphofructokinase-1 (PFK) synthesizes fructose-1,6-bisphosphate (FBP) from fructose-6-phosphate. It has been proposed that the slow electrical and Ca2+ oscillations (periods of 3–5 min) observed in islets result from allosteric feedback activation of PFKM by FBP. Pancreatic beta cells express three PFK isozymes: PFKL, PFKM, and PFKP. A prior study of mice that were engineered to lack PFKM using a gene-trap strategy to delete Pfkm produced a mosaic reduction in global Pfkm expression, but the islets isolated from the mice still exhibited slow Ca2+ oscillations. However, these islets still expressed residual PFKM protein. Thus, to more fully test the hypothesis that beta cell PFKM is responsible for slow islet oscillations, we made a beta-cell-specific knockout mouse that completely lacked PFKM. While PFKM deletion resulted in subtle metabolic changes in vivo, islets that were isolated from these mice continued to exhibit slow oscillations in electrical activity, beta cell Ca2+ concentrations, and glycolysis, as measured using PKAR, an FBP reporter/biosensor. Furthermore, simulations obtained with a mathematical model of beta cell activity shows that slow oscillations can persist despite PFKM loss provided that one of the other PFK isoforms, such as PFKP, is present, even if its level of expression is unchanged. Thus, while we believe that PFKM may be the main regulator of slow oscillations in wild-type islets, PFKP can provide functional redundancy. Our model also suggests that PFKM likely dominates, in vivo, because it outcompetes PFKP with its higher FBP affinity and lower ATP affinity. We thus propose that isoform redundancy may rescue key physiological processes of the beta cell in the absence of certain critical genes.  相似文献   

3.
Insulin is released from the pancreas in pulses with a period of ∼ 5 min. These oscillatory insulin levels are essential for proper liver utilization and perturbed pulsatility is observed in type 2 diabetes. What coordinates the many islets of Langerhans throughout the pancreas to produce unified oscillations of insulin secretion? One hypothesis is that coordination is achieved through an insulin-dependent negative feedback action of the liver onto the glucose level. This hypothesis was tested in an in vitro setting using a microfluidic system where the population response from a group of islets was input to a model of hepatic glucose uptake, which provided a negative feedback to the glucose level. This modified glucose level was then delivered back to the islet chamber where the population response was again monitored and used to update the glucose concentration delivered to the islets. We found that, with appropriate parameters for the model, oscillations in islet activity were synchronized. This approach demonstrates that rhythmic activity of a population of physically uncoupled islets can be coordinated by a downstream system that senses islet activity and supplies negative feedback. In the intact animal, the liver can play this role of the coordinator of islet activity.  相似文献   

4.
The role of the Ca2+/phospholipid-dependent protein kinase C (PKC) in cholinergic potentiation of insulin release was investigated by measuring islet PKC activity and insulin secretion in response to carbachol (CCh), a cholinergic agonist. CCh caused a dose-dependent increase in insulin secretion from cultured rat islets at stimulatory glucose concentrations (greater than or equal to 7 mM), with maximal effects observed at 100 microM. Short-term exposure (5 min) of islets to 500 microM-CCh at 2 mM- or 20 mM-glucose resulted in redistribution of islet PKC activity from a predominantly cytosolic location to a membrane-associated form. Prolonged exposure (greater than 20 h) of islets to 200 nM-phorbol myristate acetate caused a virtual depletion of PKC activity associated with the islet cytosolic fraction. Under these conditions of PKC down-regulation, the potentiation of glucose-stimulated insulin secretion by CCh (500 microM) was significantly decreased, but not abolished. CCh stimulated the hydrolysis of inositol phospholipids in both normal and PKC-depleted islets, as assessed by the generation of radiolabelled inositol phosphates. These results suggest that the potentiation of glucose-induced insulin secretion by cholinergic agonists is partly mediated by activation of PKC as a consequence of phospholipid hydrolysis.  相似文献   

5.
The pancreatic beta cell, which is responsible for insulin secretion from the islets of Langerhans, exhibits a complex pattern of membrane-potential oscillations called bursting. These oscillations are induced by glucose and are strongly correlated with the release of insulin. Recently a number of the ion channels which are responsible for carrying membrane currents in the beta cell have been uncovered. This has led to several hypothesized mechanisms for bursting and a good deal of mathematical modeling. In this paper the progress in understanding bursting in the beta cell is reviewed, including the impact of the discovery of the ATP-inactivated, ADP-modulated channel on modeling and the effect of single-channel events on electrical activity.  相似文献   

6.
The pancreatic islets of Langerhans are multicellular micro-organs integral to maintaining glucose homeostasis through secretion of the hormone insulin. β-cells within the islet exist as a highly coupled electrical network which coordinates electrical activity and insulin release at high glucose, but leads to global suppression at basal glucose. Despite its importance, how network dynamics generate this emergent binary on/off behavior remains to be elucidated. Previous work has suggested that a small threshold of quiescent cells is able to suppress the entire network. By modeling the islet as a Boolean network, we predicted a phase-transition between globally active and inactive states would emerge near this threshold number of cells, indicative of critical behavior. This was tested using islets with an inducible-expression mutation which renders defined numbers of cells electrically inactive, together with pharmacological modulation of electrical activity. This was combined with real-time imaging of intracellular free-calcium activity [Ca2+]i and measurement of physiological parameters in mice. As the number of inexcitable cells was increased beyond ∼15%, a phase-transition in islet activity occurred, switching from globally active wild-type behavior to global quiescence. This phase-transition was also seen in insulin secretion and blood glucose, indicating physiological impact. This behavior was reproduced in a multicellular dynamical model suggesting critical behavior in the islet may obey general properties of coupled heterogeneous networks. This study represents the first detailed explanation for how the islet facilitates inhibitory activity in spite of a heterogeneous cell population, as well as the role this plays in diabetes and its reversal. We further explain how islets utilize this critical behavior to leverage cellular heterogeneity and coordinate a robust insulin response with high dynamic range. These findings also give new insight into emergent multicellular dynamics in general which are applicable to many coupled physiological systems, specifically where inhibitory dynamics result from coupled networks.  相似文献   

7.
OBJECTIVE: Pancreatic islets isolated from mice treated neonatally with monosodium L-glutamate (MSG) were used to study insulin secretion. MATERIALS AND METHODS: Total acetylcholinesterase (AchE) activity of tissue extract was measured as a cholinergic activity marker. Obesity recorded in 90-day-old MSG mice (OM) by Lee index reached 366.40 +/- 1.70, compared to control mice (CM) 324.40 +/- 1.10 (p < 0.0001). Glucose 5.6 mM induced insulin secretion of 36 +/- 5 pg/15 min from islets of CM and 86 +/- 13 from OM (p < 0.001). When glucose was raised to 16.7 mM, islets from OM secreted 1,271 +/- 215 and 1,017 +/- 112 pg/30 min to CM. AchE activity of pancreas from OM was 0.64 +/- 0.02 nmol of substrate hydrolyzed/min/mg of tissue and 0.52 +/- 0.01 to CM (p < 0.0001). Liver of obese animals also presented increase of AchE activity. RESULTS: These indicate that OM insulin oversecretion in low glucose may be attributed, at least in part, to an enhancement of parasympathetic tonus.  相似文献   

8.
The impact of muscarinic type 3 receptor knockout (M3KO) on the cholinergic regulation of insulin secretion and phospholipase C (PLC) activation was determined. Islets isolated from control, wild-type mice or heterozygotes responded with comparable insulin secretory responses to 15 mM glucose. This response was markedly amplified by the inclusion of 10 microM carbachol. While 15 mM glucose-induced release remained similar to wild-type and heterozygote responses in M3KO mice, the stimulatory impact of carbachol was abolished. Stimulation with 15 mM glucose plus 50 microM carbachol increased fractional efflux rates of myo-[2-3H]inositol from control wild-type and heterozygote islets but not from M3KO islets. Fed plasma insulin levels of M3KO mice were reduced 68% when compared to values obtained from combined wild-type and heterozygote animals. These studies support the conclusion that the M3 receptor in islets is coupled to PLC activation and insulin secretion and that cholinergic stimulation of the islets may play an important role in the regulation of plasma insulin levels.  相似文献   

9.
10.
Plasmin (PLS) and urokinase-type plasminogen activator (UPA) are ubiquitous proteases that regulate the extracellular environment. Although they are secreted in inactive forms, they can activate each other through proteolytic cleavage. This mutual interplay creates the potential for complex dynamics, which we investigated using mathematical modeling and in vitro experiments. We constructed ordinary differential equations to model the conversion of precursor plasminogen into active PLS, and precursor urokinase (scUPA) into active urokinase (tcUPA). Although neither PLS nor UPA exhibits allosteric cooperativity, modeling showed that cooperativity occurred at the system level because of substrate competition. Computational simulations and bifurcation analysis predicted that the system would be bistable over a range of parameters for cooperativity and positive feedback. Cell-free experiments with recombinant proteins tested key predictions of the model. PLS activation in response to scUPA stimulus was found to be cooperative in vitro. Finally, bistability was demonstrated in vitro by the presence of two significantly different steady-state levels of PLS activation for the same levels of stimulus. We conclude that ultrasensitive, bistable activation of UPA-PLS is possible in the presence of substrate competition. An ultrasensitive threshold for activation of PLS and UPA would have ramifications for normal and disease processes, including angiogenesis, metastasis, wound healing, and fibrosis.  相似文献   

11.
Insulin secretion from pancreatic beta-cells is pulsatile with a period of 5-10 min and is believed to be responsible for plasma insulin oscillations with similar frequency. To observe an overall oscillatory insulin profile it is necessary that the insulin secretion from individual beta-cells is synchronized within islets, and that the population of islets is also synchronized. We have recently developed a model in which pulsatile insulin secretion is produced as a result of calcium-driven electrical oscillations in combination with oscillations in glycolysis. We use this model to investigate possible mechanisms for intra-islet and inter-islet synchronization. We show that electrical coupling is sufficient to synchronize both electrical bursting activity and metabolic oscillations. We also demonstrate that islets can synchronize by mutually entraining each other by their effects on a simple model "liver," which responds to the level of insulin secretion by adjusting the blood glucose concentration in an appropriate way. Since all islets are exposed to the blood, the distributed islet-liver system can synchronize the individual islet insulin oscillations. Thus, we demonstrate how intra-islet and inter-islet synchronization of insulin oscillations may be achieved.  相似文献   

12.
Individual mouse pancreatic islets exhibit oscillations in [Ca2+]i and insulin secretion in response to glucose in vitro, but how the oscillations of a million islets are coordinated within the human pancreas in vivo is unclear. Islet to islet synchronization is necessary, however, for the pancreas to produce regular pulses of insulin. To determine whether neurohormone release within the pancreas might play a role in coordinating islet activity, [Ca2+]i changes in 4-6 isolated mouse islets were simultaneously monitored before and after a transient pulse of a putative synchronizing agent. The degree of synchronicity was quantified using a novel analytical approach that yields a parameter that we call the “Synchronization Index”. Individual islets exhibited [Ca2+]i oscillations with periods of 3-6 min, but were not synchronized under control conditions. However, raising islet [Ca2+]i with a brief application of the cholinergic agonist carbachol (25 μM) or elevated KCl in glucose-containing saline rapidly synchronized islet [Ca2+]i oscillations for ≥30 min, long after the synchronizing agent was removed. In contrast, the adrenergic agonists clonidine or norepinephrine, and the KATP channel inhibitor tolbutamide, failed to synchronize islets. Partial synchronization was observed, however, with the KATP channel opener diazoxide. The synchronizing action of carbachol depended on the glucose concentration used, suggesting that glucose metabolism was necessary for synchronization to occur. To understand how transiently perturbing islet [Ca2+]i produced sustained synchronization, we used a mathematical model of islet oscillations in which complex oscillatory behavior results from the interaction between a fast electrical subsystem and a slower metabolic oscillator. Transient synchronization simulated by the model was mediated by resetting of the islet oscillators to a similar initial phase followed by transient “ringing” behavior, during which the model islets oscillated with a similar frequency. These results suggest that neurohormone release from intrapancreatic neurons could help synchronize islets in situ. Defects in this coordinating mechanism could contribute to the disrupted insulin secretion observed in Type 2 diabetes.  相似文献   

13.
Nutritional therapy is a challenging but necessary dimension in the management of diabetes and neurodegenerative changes associated with it. The study evaluates the effect of vitamin D3 in preventing the altered function of cholinergic, insulin receptors and GLUT3 in the cerebral cortex of diabetic rats. Muscarinic M3 acetylcholine receptors in pancreas control insulin secretion. Vitamin D3 treatment in M3 receptor regulation in the pancreatic islets was also studied. Radioreceptor binding assays and gene expression was done in the cerebral cortex of male Wistar rats. Immunocytochemistry of muscarinic M3 receptor was studied in the pancreatic islets using specific antibodies. Y-maze was used to evaluate the exploratory and spatial memory. Diabetes induced a decrease in muscarinic M1, insulin and vitamin D receptor expression and an increase in muscarinic M3, α7 nicotinic acetylcholine receptor, acetylcholine esterase and GLUT3 expression. Vitamin D3 and insulin treatment reversed diabetes-induced alterations to near control. Diabetic rats showed a decreased Y-maze performance while vitamin D3 supplementation improved the behavioural deficit. In conclusion, vitamin D3 shows a potential therapeutic effect in normalizing diabetes-induced alterations in cholinergic, insulin and vitamin D receptor and maintains a normal glucose transport and utilisation in the cortex. In addition vitamin D3 modulated muscarinic M3 receptors activity in pancreas and plays a pivotal role in controlling insulin secretion. Hence our findings proved, vitamin D3 supplementation as a potential nutritional therapy in ameliorating diabetes mediated cortical dysfunctions and suggest an interaction between vitamin D3 and muscarinic M3 receptors in regulating insulin secretion from pancreas.  相似文献   

14.
The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of β-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet.  相似文献   

15.
Numerous studies have reported the implication of calcium-independent phospholipase A2 (iPLA2) in various biological mechanisms. Most of these works have used in vitro models and only a few have been carried out in vivo on iPLA2−/− mice. The functions of iPLA2 have been investigated in vivo in the heart, brain, pancreatic islets, and liver, but not in the retina despite its very high content in phospholipids. Phospholipids in the retina are known to be involved in several various key mechanisms such as visual transduction, inflammation or apoptosis. In order to investigate the implication of iPLA2 in these processes, this work was aimed to build an in vivo model of iPLA2 activity inhibition. After testing the efficacy of different chemical inhibitors of iPLA2, we have validated the use of bromoenol lactone (BEL) in vitro and in vivo for inhibiting the activity of iPLA2. Under in vivo conditions, a dose of 6 μg/g of body weight of BEL in mice displayed a 50%-inhibition of retinal iPLA2 activity 8–16 h after intraperitoneal administration. Delivering the same dose twice a day to animals was successful in producing a similar inhibition that was stable over one week. In summary, this novel mouse model exhibits a significant inhibition of retinal iPLA2 activity. This model of chemical inhibition of iPLA2 will be useful in future studies focusing on iPLA2 functions in the retina.  相似文献   

16.
We examined the relation between nutrient-stimulated insulin secretion and the islet lysosome acid glucan-1,4-alpha-glucosidase system in rats undergoing total parenteral nutrition (TPN). During TPN treatment, serum glucose was normal, but free fatty acids, triglycerides, and cholesterol were elevated. Islets from TPN-infused rats showed increased basal insulin release, a normal insulin response to cholinergic stimulation but a greatly impaired response when stimulated by glucose or alpha-ketoisocaproic acid. This impairment of glucose-stimulated insulin release was only slightly ameliorated by the carnitine palmitoyltransferase 1 inhibitor etomoxir. However, in parallel with the impaired insulin response to glucose, islets from TPN-infused animals displayed reduced activities of islet lysosomal enzymes including the acid glucan-1,4-alpha-glucosidase, a putative key enzyme in nutrient-stimulated insulin release. By comparison, the same lysosomal enzymes were increased in liver tissue. Furthermore, in intact control islets, the pseudotetrasaccharide acarbose, a selective inhibitor of acid alpha-glucosidehydrolases, dose dependently suppressed islet acid glucan-1,4-alpha-glucosidase and acid alpha-glucosidase activities in parallel with an inhibitory action on glucose-stimulated insulin secretion. By contrast, when incubated with intact TPN islets, acarbose had no effect on either enzyme activity or glucose-induced insulin release. Moreover, when acarbose was added directly to TPN islet homogenates, the dose-response effect on the catalytic activity of the acid alpha-glucosidehydrolases was shifted to the right compared with control homogenates. We suggest that a general dysfunction of the islet lysosomal/vacuolar system and reduced catalytic activities of acid glucan-1,4-alpha-glucosidase and acid alpha-glucosidase may be important defects behind the impairment of the transduction mechanisms for nutrient-stimulated insulin release in islets from TPN-infused rats.  相似文献   

17.
《Biophysical journal》2022,121(8):1449-1464
ATP-sensitive K+ (K(ATP)) channels were first reported in the β-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet β-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation. Here, we demonstrate a means for determining whether activity-dependent oscillations in K(ATP) conductance play the primary role in driving electrical bursting in β-cells. We use mathematical models to predict that if K(ATP) is the driver, then contrary to intuition, the mean, peak, and nadir levels of ATP/ADP should be invariant to changes in glucose within the concentration range that supports bursting. We test this in islets using Perceval-HR to image oscillations in ATP/ADP. We find that mean, peak, and nadir levels are indeed approximately invariant, supporting the hypothesis that oscillations in K(ATP) conductance are the main drivers of the slow bursting oscillations typically seen at stimulatory glucose levels in mouse islets. In conclusion, we provide, for the first time to our knowledge, causal evidence for the role of K(ATP) channels not only as the primary target for glucose regulation but also for their role in driving bursting electrical activity and pulsatile insulin secretion.  相似文献   

18.

   

Pancreatic islet transplantation is considered an appropriate treatment to achieve insulin independence in type I diabetic patients. However, islet isolation and transplantation-induced oxidative stress and autoimmune-mediated destruction are still the major obstacles to the long-term survival of graft islets in this potential therapy. To protect islet grafts from inflammatory damage and prolong their survival, we transduced islets with an antioxidative gene thioredoxin (TRX) using a lentiviral vector before transplantation. We hypothesized that the overexpression of TRX in islets would prolong islet graft survival when transplanted into diabetic non-obese diabetic (NOD) mice.  相似文献   

19.
20.
Isolated islets from low-protein (LP) diet rats showed decreased insulin secretion in response to glucose and carbachol (Cch). Taurine (TAU) increases insulin secretion in rodent islets with a positive effect upon the cholinergic pathway. Here, we investigated the effect of TAU administration upon glucose tolerance and insulin release in rats fed on a normal protein diet (17%) without (NP) or with 2.5% of TAU in their drinking water (NPT), and LP diet fed rats (6%) without (LP) or with TAU (LPT). Glucose tolerance was found to be higher in LP, compared to NP rats. However, plasma glucose levels, during ipGTT, in LPT rats were similar to those of controls. Isolated islets from LP rats secreted less insulin in response to increasing glucose concentrations (2.8-22.2 mmol/L) and to 100 μmol/L Cch. This lower secretion was accompanied by a reduction in Cch-induced internal Ca(2+) mobilization. TAU supplementation prevents these alterations, as judged by the higher secretion induced by glucose or Cch in LPT islets. In addition, Ach-M3R, syntaxin 1 and synaptosomal associated protein of 25 kDa protein expressions in LP were lower than in NP islets. The expressions of these proteins in LPT were normalized. Finally, the sarcoendoplasmatic reticulum Ca(2+)-ATPase 3 protein expression was higher in LPT and NPT, compared with controls. In conclusion, TAU supplementation to LP rats prevented alterations in glucose tolerance as well as in insulin secretion from isolated islets. The latter effect involves the normalization of the cholinergic pathway, associated with the preservation of exocytotic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号