首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 579 毫秒
1.
1. The heart rates (fH) of 12-day-old embryos (young), 16- and 18-day-old embryos (late) and of 20-day-old embryos (externally pipped eggs, EP) were measured noninvasively at a temperature of 38 degrees C and after a 5 hr exposure to an ambient temperature (Ta) within the range 34-46 degrees C. 2. All embryos survived the 5 hr exposure to Ta of 42 degrees C. The lethal Ta ranged from 44 degrees C (EP eggs) to 46 degrees C (young embryos). 3. The temperature coefficient (Q10) of fH became smaller than 2 in EP eggs as Ta was decreased or increased from 38 degrees C, implying an incipient homeothermic response of fH.  相似文献   

2.
During the final stages of embryonic development in chickens, diffusive gas exchange through the chorioallantoic membrane (CAM) is progressively replaced by pulmonary respiration that begins with internal pipping (IP) of the CAM. Late chick embryos going through the transition from CAM respiration to pulmonary respiration were exposed to hyperoxic (100% O(2)) and hypoxic (10% O(2)/N(2)) environments for 2-h and the responses of baseline heart rate (HR), and HR fluctuation patterns were investigated. 16- and 18-day-old (referred to as 18-d) embryos and 20-d externally pipped (EP) embryos were examined as pre-pipped embryos and pipped embryos, respectively. 19-d embryos were divided into two groups: embryos that had not yet internally pipped (Pre-IP embryos) and embryos that had internally pipped (IP embryos). IP was identified by detecting the breathing signal with a condenser microphone attached hermetically on the eggshell (i.e. acoustorespirogram) on day 19 of incubation. In the hyperoxic environment, HR baseline of pre-pipped embryos remained unchanged and that of pipped embryos was depressed. In the hypoxic environment, HR baseline of 16-d pre-pipped embryos was depressed and that of pipped (IP and EP) embryos elevated. These different responses in pipped embryos might be partially attributed to increased cholinergic input from the vagus nerve in hyperoxia and increased adrenergic response in hypoxia. While hyperoxia did not induce marked modification of instantaneous heart rate (IHR) fluctuation patterns, hypoxia tended to augment transient decelerations of IHR in late pre-pipped embryos and markedly depressed HR fluctuations in pipped embryos.  相似文献   

3.
Cryomicroscopy and differential scanning calorimetry (DSC) were used to characterize the incidence of intracellular ice formation (IIF) in 12- to 13-hr-old embryos of Drosophila melanogaster (Oregon-R strain P2) as influenced by the state of the eggcase (untreated, dechorionated, or permeabilized), the composition of the suspending medium (with and without cryoprotectants), and the cooling rate. Untreated eggs underwent IIF over a very narrow temperature range when cooled at 4 or 16 degrees C/min with a median temperature of intracellular ice formation (TIIF50) of -28 degrees C. The freezable water volume of untreated eggs was approximately 5.4 nl as determined by DSC. IIF in dechorionated eggs occurred over a much broader temperature range (-13 to -31 degrees C), but the incidence of IIF increased sharply below -24 degrees C, and the cumulative incidence of IIF at -24 degrees C decreased with cooling rate. In permeabilized eggs without cryoprotectants (CPAs), IIF occurred at much warmer temperatures and over a much wider temperature range than in untreated eggs, and the TIIF50 was cooling rate dependent. At low cooling rates (1 to 2 degrees C/min), TIIF50 increased with cooling rate; at intermediate cooling rates (2 to 16 degrees C/min), TIIF50 decreased with cooling rate. The total incidence of IIF in permeabilized eggs was 54% at 1 degree C/min, and volumetric contraction almost always occurred during cooling. Decreasing the cooling rate to 0.5 degree C/min reduced the incidence of IIF to 43%. At a cooling rate of 4 degrees C/min, ethylene glycol reduced the TIIF50 by about 12 degrees C for each unit increase in molarity of CPA (up to 2.0 M) in the suspending medium. The TIIF50 was cooling rate dependent when embryos were preequilibrated with 1.0 M propylene glycol or ethylene glycol, but was not so in 1.0 M DMSO. For embryos equilibrated in 1.5 M ethylene glycol and then held at -5 degrees C for 1 min before further cooling at 1 degree C/min, the incidence of IIF was decreased to 31%. Increasing the duration of the isothermal hold to 10 min reduced the incidence of IIF to 22% and reduced the volume of freezable water in embryos when intracellular ice formation occurred. If the isothermal hold temperature was -7.5 or -10 degrees C, a 10- to 30-min holding time was required to achieve a comparable reduction in the incidence of IIF.  相似文献   

4.
As an essential step toward cryopreservation of fish embryos, we examined the chilling sensitivity of medaka (Oryzias latipes) embryos at various developmental stages. Embryos at the 2-4 cell, 8-16 cell, morula, blastula, and early gastrula stages were suspended in Hanks solution. They were chilled to various temperatures (usually 0 degrees C), kept for various periods (usually 20 min), then cultured for up to 14 d to determine survival (assessed by the ability to hatch). Embryos at the 2-4 cell stage were the most sensitive to chilling to 0 degrees C, but sensitivity decreased as development proceeded. The survival rate of 2-4 cell embryos was affected after 2 min of chilling at 0 degrees C; although the rate decreased gradually as the duration of chilling increased, 38% of them still survived after 40 min of chilling. Embryos at the 2-4 cell stage were sensitive to chilling at 0 or -5 degrees C, but much less sensitive at 5 or 10 degrees C. The survival rate of 2-4 cell embryos subjected to repeated rapid cooling and warming was similar to that of those kept chilled. When early gastrula embryos were preserved at 0 or 5 degrees C, the hatching rate did not decrease after 12 and 24h of chilling, respectively, but then decreased gradually as storage was prolonged; however, 3-10% of the embryos hatched even after storage for 10 d. In conclusion, although later-stage medaka embryos would be suitable for cryopreservation (from the perspective of chilling sensitivity), chilling injury may not be serious in earlier stage embryos.  相似文献   

5.
Ten-day-old embryos were exposed to 28, 18 and 8 degrees C environments and their electrocardiograms (ECG) monitored. Embryos in 28 and 18 degrees C environments maintained a constant heart rate averaging 97 and 25 beats/min, respectively, followed by arrhythmias and cardiac arrest at 101 and 59 hr. Embryos in an 8 degrees C environment went into cardiac arrest after 2-4 hr, but recovered 20 hr later upon rewarming to 38 degrees C. Six to 20-day-old embryos exposed to 8 degrees C were examined for tolerance time after cardiac arrest. The younger the embryo the longer its tolerance to prolonged cardiac arrest.  相似文献   

6.
Experiments were conducted to determine temperatures between 24 and 4 degrees C at which stallion spermatozoa are most susceptible to cold shock damage. Semen was diluted to 25 x 10(6) spermatozoa/ml in a milk-based extender. Aliquots of extended semen were then cooled in programmable semen coolers. Semen was evaluated by computerized semen analysis initially and after 6, 12, 24, 36 and 48 hours of cooling. In Experiment 1A, semen was cooled rapidly (-0.7 degrees C/minute) from 24 degrees C to either 22, 20, 18 or 16 degrees C; then it was cooled slowly (-0.05 degrees C/minute) to a storage temperature of 4 degrees C. In Experiment 1B, rapid cooling proceeded from 24 degrees C to either 22, 19, 16, or 13 degrees C, and then slow cooling occurred to 4 degrees C. Initiating slow cooling at 22 or 20 degrees C resulted in higher (P<0.05) total and progressive motility over the first 24 hours of cooling than initiating slow cooling at 16 degrees C. Initiation of slow cooling at 22 or 19 degrees C resulted in higher (P<0.05) total and progressive motility over 48 hours of cooled storage than initiation of slow cooling at 16 or 13 degrees C. In Experiment 2A, semen was cooled rapidly from 24 to 19 degrees C, and then cooled slowly to either 13, 10, 7 or 4 degrees C, at which point rapid cooling was resumed to 4 degrees C. Resuming the fast rate of cooling at 7 degrees C resulted in higher (P<0.05) total and progressive motility at 36 and 48 hours of cooled storage than resuming fast cooling at 10 or 13 degrees C. In Experiment 2B, slow cooling proceeded to either 10, 8, 6 or 4 degrees C before fast cooling resumed to 4 degrees C. There was no significant difference (P>0.05) at most storage times in total or progressive motility for spermatozoa when fast cooling was resumed at 8, 6 or 4 degrees C. In Experiment 3, cooling units were programmed to cool rapidly from 24 to 19 degrees C, then cool slowly from 19 to 8 degrees C, and then resume rapid cooling to storage temperatures of either 6, 4, 2 or 0 degrees C. Storage at 6 or 4 degrees C resulted in higher (P<0.05) total and progressive motility over 48 hours of storage than 0 or 2 degrees C.  相似文献   

7.
We asked to what extent cold exposure during embryonic growth, and the accompanying hypometabolism, may interfere with the normal development of thermogenesis. White Leghorn chicken eggs were incubated in control conditions (38 degrees C) or at 36 or 35 degrees C. Embryos incubated at a lower temperature (34 degrees C) failed to hatch. The cold-incubated embryos had lower oxygen consumption (VO2) and body weight (W) throughout incubation, and hatching was delayed by about, respectively, 1 and 2 days. The W-VO2 relationship of the cold-incubated embryos was as in controls, indicating that cold-induced hypometabolism was at the expense of the growth, not the maintenance, component of VO2. At embryonic day E11, the metabolic response to changes in ambient temperature (T) over the 30-39 degrees C range was typically poikilothermic, with Q10 = 1.8-1.9, and similar among all sets of embryos. Toward the end of incubation (E20), the thermogenic responses of the cold-incubated embryos were significantly lower than in controls. This difference occurred also in the few-hour old hatchlings (H1), even though, at this time, W was similar among groups. Exposure to cold during only the last 3 days of incubation (from E18 to H1), i.e. during the developmental onset of the endothermic mechanisms, did not lower the thermogenic capacity of the hatchlings. In conclusion, sustained cold-induced hypometabolism throughout incubation blunted the rate of embryonic growth and the development of thermogenesis. This latter phenomenon could be an example of epigenetic regulation, i.e. of environmental factors exerting a long-term effect on gene expression.  相似文献   

8.
A total of 228 embryos was nonsurgically collected from superovulated cows and dehydrated in dimethyl sulfoxide (DMSO) or glycerol by a three-step procedure or a (T.I.T.) timed interval titration procedure. Embryos were loaded in straws, frozen by cooling to -6.0 degrees C at 1.0 degrees C/min, and seeded, followed by cooling to -30 degrees C at 0.3 degrees C/min and to -38 degrees C at 0.1 degrees C/min. At this time the straws were plunged into liquid nitrogen at -195 degrees C. Embryos were thawed in a 27 degrees C or 37 degrees C water bath and rehydrated by a six-step, three-step (sucrose) or one-step (sucrose) procedure. This yielded a 2 x 2 x 2 x 3 factorial treatment structure. Survival was based on development after 12 h in in vitro culture. The only significant single factor affecting survival was the initial quality grade of the embryo. Grades 1 and 2 embryos survived more often than Grade 3 embryos (P < 0.05). Using DMSO as the cryoprotectant resulted in better scores for the post dehydration to post thawing interval (P = 0.02). For both intervals, post dehydration to post thawing and post thawing to post rehydration, the previous quality grade was significant in determining the subsequent quality grade (P < 0.01). At each step of the freeze-thaw process, the embryos became progressively less morphologically intact.  相似文献   

9.
Antifreeze proteins (AFPs) non-colligatively lower the freezing point of aqueous solutions, block membrane ion channels and thereby confer a degree of protection during cooling. Ovine embryos following prolonged hypothermic storage were used to determine 1) the type and concentration of a group of AFPs that can confer hypothermic tolerance, 2) the storage temperature, 3) the cooling rate, and 4) the in vitro and in vivo viability. In Experiment 1, Grade 1 and 2 embryos produced following superovulation were either cultured fresh (control) or stored at 4 degrees C for 4 d in media containing protein from 1 of 3 sources: Winter Flounder (WF; AFP Type 1); Ocean Pout (OP; AFP Type 3) at a concentration of 1 or 10 mg/ml; or bovine serum albumen (BSA) at 4 mg/ml in phosphate buffered saline (PBS). Following 72 h of culture, the viability rates were not different between controls (18 21 ); BSA (9 15 ); WF at 1 mg/ml (14 15 ); WF at 10 mg/ml (13 15 ) or OP at I mg/n-d (15 21 ), but were decreased (P < 0.05) in embryos stored in OP at 1 0 mg/ml (I 1 20 ). Pooled data showed higher (P < 0.05) viability rates for WF (27 30 ) than for OP (26 41 ) or BSA (9 15 ). There was no effect of protein source on hatching rates, but mean hatched diameters of embryos were lower (P < 0.05) following storage in BSA. In Experiment 2, Grade I to 3 embryos were either cultured fresh or stored for 4 d at 0 degrees or 4 degrees C in 4 mg/n-d BSA or 1 mg/ml WF. Embryos stored in WF at 4 degrees C (WF/4 degrees C) had comparable hatching rates (8 12 ) to that of controls (10 10 ), but embryos in the other treatments (WF 0 degrees C, 5 11 , BSA 4 degrees C, 6 11 and BSA 0 degrees C, 3 10 ) had significantly lower hatching rates (P < 0.01) compared with controls. Hatched diameters were comparable between controls and embryos stored in WF 4 degrees C, but embryos stored in WF 0 degrees C and BSA at both temperatures had smaller diameters (P < 0.05). In Experiment 3, Grade 1 to 3 embryos were either transferred fresh or were stored for 4 d at 4 degrees C in 4 mg/ml BSA or 1 mg/ml WF at different cooling rates (T1, BSA > 2 degrees C/min; T2, WF > 2 degrees C/min and T3, WF < 1 degrees C/min) prior to transfer. There were no differences in the number of ewes pregnant (T1, 10 1 1; T2, 6 10 and T3, 8 10 ) or in the number of viable fetuses recovered per treatment (T1, 14 25 ; T2, 10 1 4 and T3, 15 2 1) to indicate a negative effect of cooling rate or protein on embryo survival. In conclusion, ovine embryos can be stored in WF or BSA at 4 degrees C for 4 d, yielding similar pregnancy and embryo survival rates as fresh embryos following transfer to recipient ewes.  相似文献   

10.
The present study was conducted to determine suitable conditions for mouse blastocysts vitrified by a solution containing 25 % v/v (4.5M) ethylene glycol and 25% v/v (3.4M) dimethyl sulfoxide (VSi). In Experiment 1, blastocysts were exposed to 50% diluted VSi (50% VSi) for 10 minutes then to VSi for 0.5 minutes at room temperature (22 approximately 24 degrees C) or at 4 degrees C, followed by vitrification. The survival rates of these embryos exposed at each temperature were not significantly different. In Experiment 2, embryos were exposed directly to VSi for various time periods at room temperature and diluted in mPBS with 0.5 M sucrose without vitrification. The viability of embryos decreased after more than a 3 minute exposure. When the embryos were exposed to VSi for 0.5, 1, 1.5 and 2 minutes followed by vitrification, the survival rates were 78, 80, 76 and 50%, respectively. In Experiment 3, embryos were vitrified after exposure to 50% VSi for various time periods and then to VSi for 0.5 minutes at room temperature. One minute exposure to 50% VSi resulted in the highest survival rate. In Experiment 4 and 5, the cooling rate (from approximately 70 to approximately 2500 degrees C/minute), sucrose concentration (0, 0.5 and 1 M) of dilution solution, and dilution time (1 or 5 minutes) did not affect the viability of the vitrified embryos. Following exposure to 50% VSi for 1 minute and to VSi for 0.5 minutes at room temperature, embryos were cooled 1) at approximately 2500 degrees C/minute and diluted in 0.5 M sucrose in mPBS after warming or 2) at approximately 200 degrees C/minute and diluted in mPBS. In vivo development rates after the transfer to recipients were 38 and 42%, respectively. These values were similar to that of fresh control embryos.  相似文献   

11.
Root respiration has important implications for understanding plant growth as well as terrestrial carbon flux with a changing climate. Although soil temperature and soil moisture often interact, rarely have these interactions on root respiration been studied. This report is on the individual and combined effects of soil moisture and temperature on respiratory responses of single branch roots of 1-year-old Concord grape (Vitis labruscana Bailey) vines grown in a greenhouse. Under moist soil conditions, root respiration increased exponentially to short-term (1 h) increases in temperature between 10 degrees C and 33 degrees C. Negligible increases in root respiration occurred between 33 degrees C and 38 degrees C. By contrast to a slowly decreasing Q10 from short-term temperature increases, when roots were exposed to constant temperatures for 3 d, the respiratory Q10 between 10 degrees C and 30 degrees C diminished steeply with an increase in temperature. Above 30 degrees C, respiration declined with an increase in temperature. Membrane leakage was 89-98% higher and nitrogen concentration was about 18% lower for roots exposed to 35 degrees C for 3 d than for those exposed to 25 degrees C and 15 degrees C. There was a strong interaction of respiration with a combination of elevated temperature and soil drying. At low soil temperatures (10 degrees C), respiration was little influenced by soil drying, while at moderate to high temperatures (20 degrees C and 30 degrees C), respiration exhibited rapid declines with decreases in soil moisture. Roots exposed to drying soil also exhibited increased membrane leakage and reduced N. These findings of acclimation of root respiration are important to modelling respiration under different moisture and temperature regimes.  相似文献   

12.
Effect of warming rate on mouse embryos frozen and thawed in glycerol   总被引:2,自引:0,他引:2  
Mouse embryos (8-cell) fully equilibrated in 1.5 M-glycerol were cooled slowly (0.5 degrees C/min) to temperatures between - 7.5 and - 80 degrees C before rapid cooling and storage in liquid nitrogen (-196 degrees C). Some embryos survived rapid warming (approximately 500 degrees C/min) irrespective of the temperature at which slow cooling was terminated. However, the highest levels of survival of rapidly warmed embryos were observed when slow cooling was terminated between -25 and -80 degrees C (74-86%). In contrast, high survival (75-86%) was obtained after slow warming (approximately 2 degrees C/min) only when slow cooling was continued to -55 degrees C or below before transfer into liquid N2. Injury to embryos cooled slowly to -30 degrees C and then rapidly to -196 degrees C occurred only when slow warming (approximately 2 degrees C/min) was continued to -60 degrees C or above. Parallel cryomicroscopical observations indicated that embryos became dehydrated during slow cooling to -30 degrees C and did not freeze intracellularly during subsequent rapid cooling (approximately 250 degrees C/min) to -150 degrees C. During slow warming (2 degrees C/min), however, intracellular ice appeared at a temperature between -70 and -65 degrees C and melted when warming was continued to -30 degrees C. Intracellular freezing was not observed during rapid warming (250 degrees C/min) or during slow warming when slow cooling had been continued to -65 degrees C. These results indicate that glycerol provides superior or equal protection when compared to dimethyl sulphoxide against the deleterious effects of freezing and thawing.  相似文献   

13.
S Ogawa  S Tomoda 《Jikken dobutsu》1976,25(4):273-282
Preimplantation stage (16-celled and morula) rabbit embryos were successfully frozen to -196 degrees C. The cooling rate (from a room temperature to 0 degrees C), the presence of the mucin layer surrounding embryos, the ice-seeding treatment and the thawing procedure were examined to determine their effects on the survival of the frozen embryos of Japanese white, New Zealand white and Dutch-Belted rabbits. A high proportion (51%; 16-celled, 69%; morula) of Dutch-Belted rabbit embryos developed in vitro, when they were frozen to -196 degrees C, applying the ice-seeding at -4 degrees C in the presence of 12.5% DMSO, after being cooled to 0 degrees C at the rate of 7-9 degrees C/min, and were diluted by a stepwise addition of 4 different strength PBS on thawing. The highest rate of in vitro development (81%; Japanese white, 75%; New Zealand white, 82%; Dutch Belted embryos) was obtained when the morula stage embryos were frozen to -196 degrees C applying seeding at -4 degrees C after being cooled to 0 degrees C at the rate of 1 degrees C/2.5 min and were diluted, on thawing, by stepwise addition of 6, 3 and 1% DMSO solution and a culture medium. No great difference was found in the survival rate between the embryos covered with the mucin layer and those which had not the coat. All the embryos frozen without applying seeding treatment failed to develop in vitro after being thawed and diluted. Nine out of 27 does each of which received 6 reimplantations of the embryos frozen-thawed became pregnant and were found to be carrying 37 normal fetuses on the 12th day of pregnancy.  相似文献   

14.
We asked to what extent sustained hypoxia during embryonic growth might interfere with the normal development of thermogenesis. White Leghorn chicken eggs were incubated at 38 degrees C either in normoxia (Nx, 21% O2) or in hypoxia [Hx, 15% O2, from embryonic day 5 (E5) until hatching]. The Hx embryos had lower body weight (W) throughout incubation, and hatching was delayed by about 10 h. For both groups, all measurements were conducted in normoxia. At embryonic day E11, the static temperature-oxygen consumption (ambient T-Vo2) curve was typically ectothermic (Q10 = 1.92-1.94) and similar between Nx and Hx. Toward the end of incubation (E20), the Q10 averaged 1.41 +/- 0.06 in Nx and 1.79 +/- 0.08 in Hx (P < 0.005), indicating that the onset of the thermogenic response in Hx lagged behind Nx. In the 1-day-old hatchlings (H1), body weight did not significantly differ between Nx and Hx. At H1, the T-Vo2 curves were endothermic-type, and more so in the older (>8 h old) than in the newly hatched (<8 h old) chicks, whether examined statically or dynamically as a function of time. In either case, the thermogenic responses of Hx were lower than those of Nx. In a 43-31 degrees C thermocline, the preferred T of the Hx hatchlings was around 37.3 degrees C, and similar to Nx, suggesting a similar setpoint for thermoregulation. We conclude that hypoxic incubation blunted the development of thermogenesis. This could be interpreted as an example of epigenetic regulation, in which an environmental perturbation during early development alters the phenotypic expression of a regulatory system.  相似文献   

15.
Arrest of respiration and heart activity in new-born rats aged 3-4 days and 10-11 days was shown to occur at a body temperature 6-7 degrees C and 2-3 degrees C lower than in adult rats, resp. At room temperature the body temperature of profoundly cooled rat's litter gradually increases and the functions are restored. In 3-4-day old rats, at the body temperature rising from profound cooling to 15-18 degrees C, the respiration and heart rates are 2-4-fold more than at the same temperature attained from the normal body temperature. These differences in the respiration and heart rates at the same body temperature suggest an inversion of the Arrhenius law (the Q10 coefficient) for physiological functions in early ontogenesis. This effect completely disappears in 10-11-day old rats.  相似文献   

16.
Transportation of equine ovaries would allow shipment of oocytes for research purposes or transfer after the death of a valuable mare. The objective of this study was to compare two temperatures for maintaining ovaries during a transport interval of 18-24 h. The goal was to obtain pregnancies after transport of ovaries, maturation of oocytes in vitro, and transfer of oocytes. Each shipment was composed of ovaries four to seven mares collected from an abattoir. From each mare, one ovary was packaged at approximately 12 degrees C, and the other was packaged at approximately 22 degrees C. Upon arrival at our laboratory, oocytes were collected and cultured for 24 h. For each transfer, between 9 and 15 oocytes from each group were placed into the oviducts of estrous mares through standing flank laparotomies. Recipients received human chorionic gonadotropin (hCG; 2000 IU, i.v.) 30-36 h before transfer (to synchronize ovulation). Recipients were inseminated 18-20 h before transfers with 2 x 10(9) progressively motile sperm. Uteri of recipients were examined with ultrasound to determine the number of developing embryos. On Day 16 ( ovulation = day 0), developing embryos were recovered by uterine lavage. Parentage verification was performed on recovered vesicles. Pregnancy rates were analyzed by Chi-square. The percentage of oocytes that developed into embryonic vesicles on Day 16 was not different between transport temperatures (22 degrees C, 13/73, 18% versus 12 degrees C, 11/73, 15%). In conclusion, pregnancies were obtained from in vitro matured oocytes that were recovered from ovaries transported for 18-24h at 12 or 22 degrees C.  相似文献   

17.
1. N-acetyltransferase was present in pineal glands of 14-day-old chick embryos though no rhythm either in LL, DD or LD 12:12 was observed in this age. 2. Daily rhythm in pineal NAT activity was found in 18-day-old embryos incubated under LD 12:12 and LD 16:8 but no NAT rhythm was detected in DD or LL. 3. NAT rhythm persists for 2 days in constant darkness and it may be circadian in nature. 4. Presence of melatonin (85 +/- 8 pg/mg tissue) was detected in pineals of 18-day-old chick embryos.  相似文献   

18.
A new and simple method for freezing of bovine morulae and blastocysts was developed. Embryos were predehydrated at room temperature, frozen at -30 degrees C (cooling rate = 12 degrees C/min), and plunged into liquid nitrogen. This method was compared in vitro and in vivo to the slow freezing method (0.3 degrees C/min to -30 degrees C). Predehydration of the embryos in 1.5M glycerol was achieved by sucrose solution that makes the cells osmotically shrink. After the predehydrated morulae and blastocysts were frozen and thawed, 6 .4% (33 52 ) were developed in vitro for 48h and 44.2% (23 52 ) were hatched. Development obtained with slowly frozen embryos were 70.8% (17 24 ) and 58.3% (14 24 ) respectively. After transfer to recipient heifers, 33.3% (7 21 ) of the embryos frozen according this new method developed normally into viable foetuses or calves. This was the case for 48.5% (16 33 ) of the slowly frozen embryos.  相似文献   

19.
Equine embryos (n=43) were recovered nonsurgically 7-8 days after ovulation and randomly assigned to be cryopreserved in one of two cryoprotectants: 48% (15M) methanol (n=22) or 10% (136 M) glycerol (n=21). Embryos (300-1000 microm) were measured at five intervals after exposure to glycerol (0, 2, 5, 10 and 15 min) or methanol (0, 15, 35, 75 and 10 min) to determine changes (%) in diameter over time (+/-S.D.). Embryos were loaded into 0.25-ml plastic straws, sealed, placed in a programmable cell freezer and cooled from room temperature (22 degrees C) to -6 degrees C. Straws were then seeded, held at -6 degrees C for 10 min and then cooled to -33 degrees C before being plunged into liquid nitrogen. Two or three embryos within a treatment group were thawed and assigned to be either cultured for 12 h prior to transfer or immediately nonsurgically transferred to a single mare. Embryo diameter decreased in all embryos upon initial exposure to cryoprotectant. Embryos in methanol shrank and recovered slightly to 76+/-8 % of their original diameter; however, embryos in glycerol continued to shrink, reaching 57+/-6 % of their original diameter prior to cryopreservation. Survival rates of embryos through Day 16 of pregnancy were 38 and 23%, respectively (P>0.05) for embryos cryopreserved in the presence of glycerol or methanol. There was no difference in pregnancy rates of mares receiving embryos that were cultured prior to transfer or not cultured (P>0.05). Preliminary experiments indicated that 48% methanol was not toxic to fresh equine embryos but methanol provided no advantage over glycerol as a cryoprotectant for equine blastocysts.  相似文献   

20.
The effects of a lowered rearing temperature on body weight, core temperature (Tc) and norepinephrine(NE)-stimulated thermogenesis were investigated in 16- to 17-day-old Zucker rat pups. 16-day-old fatty pups were significantly heavier (9%) than lean littermates in litters reared at 18 degrees C ("cold-reared") but not in litters reared at 25 degrees C ("normally-reared"). After 2 h isolation at 25 degrees C, Tc of lean pups was slightly higher (37.1 degrees C) in cold-reared litters than in normally-reared litters (36.4 degrees C), while fatty pups reared at either temperature were severely hypothermic (Tc = 33 - 34 degrees C). At an ambient temperature of 25 degrees C Tc in fatty and lean cold-reared pups increased to 39.5 degrees C after subcutaneous injection of 800 micrograms/kg NE. Normally-reared lean pups reached the same peak Tc after NE injection, while their fatty littermates reached a significantly lower peak Tc of 38.4 degrees C. The hypothermia associated with the onset of excess fat deposition in suckling fatty Zucker rats is not caused by a reduced capacity for NE-stimulated thermogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号