首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Southern blot analyses using reduced stringency hybridization conditions have been employed to search for sequence homologies between rodent VL30 genes and murine leukemia virus (MuLV) proviruses. These constitute two classes of transposon-like elements previously believed to be genetically unrelated. Our results demonstrate that cloned representatives of both ecotropic and xenotropic-like proviruses share discrete regions of sequence homology with VL30 genes of both rat and mouse origin. These regions of homology exist in both 3' and 5' halves of the MuLV genome but do not include extensive portions of the long terminal repeat (LTR) or a 0.4 Kbp segment of the env gene specific for recently acquired ecotropic-type MuLV proviruses. DNA sequencing, however, revealed that the short inverted terminal repeat sequence of MuLV proviral LTRs is almost perfectly conserved at the terminus of an integrated mouse VL30 gene. These results suggest that recombination events with rodent VL30-type sequences occurred during early MuLV evolution. The strong conservation of the inverted terminal repeat sequence may reflect a common integration mechanism for VL30 elements and MuLV proviruses.  相似文献   

2.
Structure and expression of mouse VL30 genes.   总被引:20,自引:8,他引:12       下载免费PDF全文
DNA sequencing and blot hybridization analyses have been used to study the structure of a mouse VL30 gene and the molecular nature of VL30-related RNA which is induced upon the stimulation of cultured AKR mouse embryo cells with defined peptide growth factors. An integrated mouse VL30 gene was found to contain identical 601-base-pair long terminal repeats (LTRs) which were themselves terminated in short inverted repeats. The entire VL30 gene was flanked by a 4-base-pair direct repeat of cellular DNA. Thus, VL30 genes are structurally analogous to integrated forms of retrovirus proviruses and certain other classes of mobile genetic elements. The LTR sequence was found to contain putative promoter and polyadenylation signals and generally exhibited little sequence homology to murine leukemia virus proviral LTRs. Certain short regions of sequence conservation, however, were evident, including the inverted terminal repeat, LTR-adjacent regions corresponding to origins of murine leukemia virus proviral DNA synthesis, and a 36-base-pair direct repeat bearing homology to the 72-base-pair direct repeat (enhancer sequence) of the murine leukemia virus-related Moloney sarcoma virus. Upon mitogenic stimulation of quiescent cells with epidermal growth factor and insulin, a major 5.5-kilobase VL30-specific RNA complementary to both LTR and non-LTR sequences was rapidly induced. We conclude that a complete VL30 gene(s) is highly regulated by peptide growth factor binding to specific membrane receptors in these cells.  相似文献   

3.
We analyzed 15 recombinant DNA clones of the unintegrated closed circular DNA intermediate of the BALB/c endogenous ecotropic murine leukemia virus WN1802N. Thirteen of these clones had an insert which corresponded to the complete murine leukemia virus genome. Of these, six contained a single long terminal repeat (LTR) and seven contained two LTRs. The viral genomes in nine clones had an LTR of 520 base pairs (bp), one had an LTR of 570 bp, three had an LTR of 600 bp, and one had an LTR of 670 bp. Restriction endonuclease analysis demonstrated that the size variability resides in the U3 region. Seven of eight clones which yielded infectious virus by DNA transfection had the 520-bp LTR, and the other had a 600-bp LTR. More detailed examination of plasmid subclones of three isolates with different-sized LTRs revealed that the approximate position which varies in the U3 region corresponds to the 72-bp repeat region of Moloney sarcoma virus. Possible consequences of these variations are discussed.  相似文献   

4.
5.
Recombinant phages containing murine leukemia virus (MuLV)-reactive DNA sequences were isolated after screening of a BALB/c mouse embryo DNA library and from shotgun cloning of EcoRI-restricted AKR/J mouse liver DNA. Twelve different clones were isolated which contained incomplete MuLV proviral DNA sequences extending various distances from either the 5' or 3' long terminal repeat (LTR) into the viral genome. Restriction maps indicated that the endogenous MuLV DNAs were related to xenotropic MuLVs, but they shared several unique restriction sites among themselves which were not present in known MuLV proviral DNAs. Analyses of internal restriction fragments of the endogenous LTRs suggested the existence of at least two size classes, both of which were larger than the LTRs of known ecotropic, xenotropic, or mink cell focus-forming (MCF) MuLV proviruses. Five of the six cloned endogenous MuLV proviral DNAs which contained envelope (env) DNA sequences annealed to a xenotropic MuLV env-specific DNA probe; in addition, four of these five also hybridized to an ecotropic MuLV-specific env DNA probe. Cloned MCF 247 proviral DNA also contained such dual-reactive env sequences. One of the dual-reactive cloned endogenous MuLV DNAs contained an env region that was indistinguishable by AluI and HpaII digestion from the analogous segment in MCF 247 proviral DNA and may therefore represent a progenitor for the env gene of this recombinant MuLV. In addition, the endogenous MuLV DNAs were highly related by AluI cleavage to the Moloney MuLV provirus in the gag and pol regions.  相似文献   

6.
We studied the infectivity of endogenous ecotropic murine leukemia virus genomes contained in high-molecular-weight DNA prepared from virus-free cells of the AKR-2B line, and from RF, BALB/c, B6, and (BALB/c x B6)F(1) mouse embryo cells. When DNA prepared from virus-free AKR-2B cells was transfected into NIH-3T3 cells, no virus-positive cultures were observed, a result consistent with previous reports. However, when DNAs from virus-free AKR-2B cells or virus-free cells containing the RF/J or BALB/c ecotropic proviruses were transfected into chicken embryo cells that were then cocultivated with SC-1 (mouse) cells, virus-positive cultures were recovered. The specific infectivities of the AKR provirus(es) contained in virus-free cells and the molecularly cloned Akv-1 provirus were similar when chicken embryo cells were used as primary recipients. Virus-positive cultures were also observed when secondary mouse embryo cells were used as recipients for DNA from virus-free AKR-2B and RF/J cells. The transfected chicken embryo-SC-1 cultures produced XC-positive murine leukemia virus that is N-tropic. Virus-positive recipient cultures were observed 10- to 100-fold more frequently when AKR-2B DNA was used than when BALB/c DNA was used as the donor DNA. Our studies indicate that some nonexpressed ecotropic murine leukemia virus proviruses are activated upon transfection into chicken embryo cells. Such studies suggest that there are different factors governing the expression of murine leukemia virus after transfection into established cell lines (NIH-3T3) and into nonestablished secondary cultures (chicken and mouse).  相似文献   

7.
8.
9.
The molecularly cloned infectious Kaplan radiation leukemia virus has previously been shown to be unable to replicate on mouse fibroblasts (E. Rassart, M. Shang, Y. Boie, and P. Jolicoeur, J. Virol. 58:96-106, 1986). To map the viral sequences responsible for this, we constructed chimeric viral DNA genomes in vitro with parental cloned infectious viral DNAs from the nonfibrotropic (F-) BL/VL3 V-13 radiation leukemia virus and the fibrotropic (F+) endogenous BALB/c or Moloney murine leukemia viruses (MuLV). Infectious chimeric MuLVs, recovered after transfection of Ti-6 lymphocytes with these recombinant DNAs, were tested for capacity to replicate on mouse fibroblasts in vitro. We found that chimeric MuLVs harboring the long terminal repeat (LTR) of a fibrotropic MuLV replicated well on mouse fibroblasts. Conversely, chimeric MuLVs harboring the LTR of a nonfibrotropic MuLV were restricted on mouse fibroblasts. These results indicate that the LTR of BL/VL3 radiation leukemia virus harbors the primary determinant responsible for its inability to replicate on mouse fibroblasts in vitro. Our results also show that the primary determinant allowing F+ MuLVs (endogenous BALB/c and Moloney MuLVs) to replicate on mouse fibroblasts in vitro resides within the LTR.  相似文献   

10.
Three series of recombinant DNA clones were constructed, with the bacterial chloramphenicol acetyltransferase (CAT) gene as a quantitative indicator, to examine the activities of promoter and enhancer sequence elements in the 5' long terminal repeat (LTR) of murine leukemia virus (MuLV)-related proviral sequences isolated from the mouse genome. Transient CAT expression was determined in mouse NIH 3T3, human HT1080, and mink CCL64 cultured cells transfected with the LTR-CAT constructs. The 700-base-pair (bp) LTRs of three polytropic MuLV-related proviral clones and the 750-bp LTRs of four modified polytropic proviral clones, in complete structures either with or without the adjacent downstream sequences, all showed very little or negligible activities for CAT expression, while ecotropic MuLV LTRs were highly active. The MuLV-related LTRs were divided into three portions and examined separately. The 3' portion of the MuLV-related LTRs that contains the CCAAC and TATAA boxes was found to be a functional promoter, being about one-half to one-third as active as the corresponding portion of ecotropic MuLV LTRs. A MboI-Bg/II fragment, representing the distinct 190- to 200-bp inserted segment in the middle, was found to be a potential enhancer, especially when examined in combination with the simian virus 40 promoter in CCL64 cells. A PstI-MboI fragment of the 5' portion, which contains the protein-binding motifs of the enhancer segment as well as the upstream LTR sequences, showed moderate enhancer activities in CCL6 cells but was virtually inactive in NIH 3T3 cells and HT1080 cells; addition of this fragment to the ecotropic LTR-CAT constructs depressed CAT expression. Further analyses using chimeric LTR constructs located the presence of a strong negative regulatory element within the region containing the 5' portion of the enhancer and the immediate upstream sequences in the MuLV-related LTRs.  相似文献   

11.
12.
An infectious NZB xenotropic murine leukemia virus (MuLV) provirus (NZB was molecularly cloned from the Hirt supernatant of NZB-IU-6-infected mink cells, and the nucleotide sequence of its env gene and long terminal repeat (LTR) was determined. The partial nucleotide sequence previously reported for the env gene of NFS-Th-1 xenotropic proviral DNA (Repaske, et al., J. Virol. 46:204-211, 1983) is identical to that of the infectious NZB xenotropic MuLV DNA reported here. Alignment of nucleotide or deduced amino acid sequences, or both, of xenotropic, mink cell focus-forming, and ecotropic MuLV proviral DNAs in the env region identified sequence differences among the three host range classes of C-type MuLVs. Major differences were confined to the 5' half of env; a high degree of homology was found among the three classes of MuLVs in the 3' half of env. Alignment of the nucleotide sequence of the LTR of NZB xenotropic MuLV with those of the LTRs of NFS-Th-1 xenotropic, mink cell focus-forming, and ecotropic MuLVs revealed extensive homology between the LTRs of xenotropic and MCF247 MuLVs. An inserted 6-base-pair repeat 5' to the TATA box was a unique feature of both NZB and NFS-Th-1 xenotropic LTRs.  相似文献   

13.
The murine gene Fv-1 has been shown to exert a major influence over the replication of ecotropic murine leukemia viruses. Studies of the replication of Friend murine leukemia virus have shown that the restriction of viral replication occurs intracellularly after the initiation of viral DNA synthesis. The precise mechanism of the block imposed by the Fv-1 gene product is not completely understood. Our studies of Fv-1 restrictive infection have shown a variable decrease in the accumulation of intracellular unintegrated form I viral DNA. Analysis by microinjection of the viral DNA formed in nonpermissively infected BALB/c cells indicates that this DNA is infectious. These studies indicate that the form I DNA accumulated in nonpermissively infected BALB/c cells contains the complete viral sequences necessary for the production of viral progeny, and therefore, they suggest that the Fv-1 host restrictive mechanism recognizes viral factors other than form I DNA alone. These results support the possibility that Fv-1 host restriction occurs after formation of infectious viral DNA, perhaps at the integration step itself.  相似文献   

14.
The molecular basis has been determined for differences in infectivity and XC phenotype of endogenous ecotropic murine leukemia virus of the low-leukemia mouse strain C3H/He, its relative in the high-leukemia mouse strain AKR, and highly infectious, XC-positive C3H virus variants selected in vitro. Endogenous ecotropic type C virus induced by iododeoxyuridine from the nontransformed C3H/10T1/2 cell line is XC negative and replication deficient. In contrast, viruses produced late after iododeoxyuridine induction in chemically transformed C3H/10T1/2 cells (MCA5) are XC positive and infectious. XC-negative viruses can be converted to XC-positive viruses by being grown in certain transformed cell lines. We have cloned the endogenous ecotropic provirus of C3H/He from MCA5 cells, which is XC negative and replication deficient, as well as two XC-positive C3H proviruses derived by in vitro conversion. Fragment exchange between the XC-negative molecular clone p110 and the XC-positive AKR virus clone p623 revealed that the defect in p110 lies 3' of the SalI site located in the pol region. Nucleotide sequencing established that the C3H p110 provirus was integrated within the R region of an endogenous VL30 long terminal repeat (LTR) in reverse orientation and that the virus differed from the infectious AKR p623 provirus by a point mutation, substituting Lys for Arg at the potential precursor cleavage site for gp70 and p15E. In vitro-converted XC-positive C3H proviral clones 3211 and 4211 are identical to XC-negative C3H p110, except that they have Arg at this site and the normal cleavage site is thus regenerated in these clones. The XC-negative C3H p110 was blocked in processing of Pr85env, whereas clones 3211 and 4211 had normal cleavage of the env precursor into gp70. Both the XC-negative C3H provirus and the in vitro-converted XC-positive C3H proviruses had a single copy of a 99-base-pair enhancer element in the LTR, whereas two copies of this sequence are present in the AKR proviral LTR. Substitution of Arg for Lys at the envelope precursor processing site of C3H p110 by site-directed mutagenesis is sufficient by itself to convert the virus to the XC-positive replication-competent phenotype. Thus, we have established that a single point mutation at the processing site of the envelope precursor protein Pr85 is responsible for the difference in the infectivity and XC phenotype of endogenous ecotropic murine leukemia virus from C3H/He and AKR mice and that the basis for in vitro conversion is a mutation at this site.  相似文献   

15.
16.
17.
18.
19.
20.
We have previously described the construction of a mutant of Moloney murine leukemia virus, in594-2, which carries a 2-base-pair insertion in the U5 region of the genome and is partially defective in forming the integrated proviral DNA. We have now recovered a cloned copy of an unusual provirus from rat cells infected with this mutant. The viral genome is flanked by long terminal repeats in inverted orientation, with U3 sequences joined to cellular DNA at both of the outer edges. In addition, the provirus is a recombinant, containing a segment of a VL30 element in inverted orientation in place of the Moloney murine leukemia virus env region. The recovery of this provirus indicates that two U3 regions can be used for viral integration and suggests that there may be no absolute requirement in the reaction for those U5 sequences outside the 13-base-pair inverted repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号