首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Abstract: Intracerebral administration of the excitotoxin ibotenate to newborn mice induces white matter lesions mimicking periventricular leukomalacia, the most frequent brain lesion occurring in premature human babies. In this model, coinjection of vasoactive intestinal peptide prevents white matter lesions. In the present study, coadministration of ibotenate, vasoactive intestinal peptide, and selective transduction inhibitors showed that protein kinase C and mitogen-associated protein kinase pathways were critical for neuroprotection. In vivo and in vitro immunocytochemistry revealed that vasoactive intestinal peptide activated protein kinase C in astrocytes and neurons, and mitogen-associated protein kinase in neurons. In vitro neuronal transduction activation was indirect and required medium conditioned by astrocytes in which protein kinase C had been activated by vasoactive intestinal peptide. Although vasoactive intestinal peptide did not prevent the initial in vivo appearance of white matter lesion, it promoted a secondary repair of this lesion with axonal regrowth. Through protein kinase C activation, vasoactive intestinal peptide also prevented ibotenate-induced white matter astrocyte death. These data support the following hypothetical model: Vasoactive intestinal peptide activates protein kinase C in astrocytes, which promotes astrocytic survival and release of soluble factors; these released factors activate neuronal mitogen-associated protein kinase and protein kinase C, which will permit axonal regrowth.  相似文献   

2.
为了考察血管活性肠肽和NF-κB信号通路在骨关节炎中的作用机制,本研究以5周龄SD雄性大鼠为研究材料,通过改良Hulth法建立骨关节炎大鼠模型,然后向大鼠关节内注射血管活性肠肽质粒进行治疗。研究显示,骨关节炎大鼠软骨细胞数量明显减少,细胞弥漫性增加,出现大量细胞簇。在用血管活性肠肽质粒处理后,大鼠膝关节的病理改变显著改善,并且OARSI评分显著降低(p<0.05)。血管活性肠肽质粒处理可显著降低大鼠血清IL-2和TNF-α水平,并升高IL-4水平(p<0.05)。血管活性肠肽质粒处理可显著降低滑膜细胞的增殖能力(p<0.05)。血管活性肠肽质粒处理可显著上调滑膜细胞中的CollagenⅡ和Osteoprotegerin蛋白表达,并下调ADAMTS-5和MMP-13蛋白表达。血管活性肠肽质粒处理可显著下调p-p65表达,并上调p-IκBα表达。综上所述,本研究表明血管活性肠肽可通过抑制滑膜细胞增殖、炎症反应、软骨退变等作用来治疗骨关节炎,其作用机制与抑制NF-κB信号通路的激活有关。  相似文献   

3.
A vasoactive intestinal peptide-sensitive adenylate cyclase in intestinal epithelial cell membranes was characterized. Stimulation of adenylate cyclase activity was a function of vasoactive intestinal peptide concentration over a range of 1 · 10−10−1 · 10−7 M and was increased six-times by a maximally stimulating concentration of vasoactive intestinal peptide. Half-maximal stimulation was observed with 4.1 ± 0.7 nM vasoactive intestinal peptide. Fluoride ion stimulated adenylate cyclase activity to a higher extent than did vasoactive intestinal peptide. Under standard assay conditions, basal, vasoactive inteetinal peptide- and fluoride-stimulated adenylate cyclase activities were proportional to time of incubation up to 15 min and to membrane concentration up to 60 μg protein per assay. The vasoactive intestinal peptide-sensitive enzyme required 5–10 mM Mg2+ and was inhibited by 1 · 10−5 M Ca2+. At sufficiently high concentrations, both ATP (3 mM) and Mg2+ (40 mM) inhibited the enzyme.Secretin also stimulated the adenylate cyclase activity from intestinal epithelial cell membranes but its effectiveness was 1/1000 that of vasoactive intestinal peptide. Prostaglandins E1 and E2 at 1 · 10−5 M induced a two-fold increase of cyclic AMP production. Vasoactive intestinal peptide was the most potent stimulator of adenylate cyclase activity, suggesting an important physiological role of this peptide in the cyclic AMP-dependent regulation of the intestinal epithelial cell function.  相似文献   

4.
We studied the uterine venous plasma concentrations of prostaglandins E2, F, 15 keto 13,14 dihydro E2 and 15 keto 13,14 dihydro F in late pregnant dogs in order to evaluate the rates of production and metabolism of prostaglandin E2 and F in pregnancy in vivo. We used a very specific and sensitive gas chromatography-mass spectrometry assay to measure these prostaglandins. The uterine venous concentrations of prostaglandin E2 and 15 keto 13,14 dihydro E2 were 1.35±.27 ng/ml and 1.89±.37 ng/ml, respectively; however, we could not find any prostaglandin F and very little of its plasma metabolite in uterine venous plasma. Since uterine microsomes can generate prostaglandin F and E2 from endoperoxides, prostaglandin F production in vivo must be regulated through an enzymatic step after endoperoxide formation. Prostaglandin E2 is produced by pregnant canine uterus in quantities high enough to have a biological effect in late pregnancy; however, prostaglandin F does not appear to play a role at this stage of pregnancy.  相似文献   

5.
Prostaglandins are biologically active substances used in a wide range of medical treatments. Prostaglandins have been supplied mainly by chemical synthesis; nevertheless, the high cost of prostaglandin production remains a factor. To lower the cost of prostaglandin production, we attempted to produce prostaglandins using a liverwort, Marchantia polymorpha L., which accumulates arachidonic acid, which is known as a substrate of prostaglandins. Here we report the first bioproduction of prostaglandins in plant species by introducing a cyclooxygenase gene from a red alga, Gracilaria vermiculophylla into the liverwort. The transgenic liverworts accumulated prostaglandin F, prostaglandin E2 and prostaglandin D2 which were not detected in the wild-type liverwort. Moreover, we succeeded in drastically increasing the bioproduction of prostaglandins using an in vitro reaction system with the extracts of transgenic liverworts.  相似文献   

6.
Stimulation of prostaglandin synthesis by a material with coronary vasoconstrictor activity extracted from blood plasma was examined. The vasoactive material decreased the Km for arachidonate in the overall synthesis of prostaglandins by rabbit renal microsomal preparations but did not change Vmax. Increases in prostaglandin synthesis caused by the vasoactive material and L-tryptophan or L-epinephrine were additive or synergistic, whereas increases produced by the vasoactive material and hemin or hemoglobin were not. However, hemin and hemoglobin stimulated synthesis of all prostaglandins equally whereas the active material increased the synthesis of prostaglandin F at the expense of other prostaglandins, both in the presence and absence of heme compounds. The increase in prostaglandin F with respect to the other prostaglandins occurred in the presence of reduced glutathione. The vasoactive material attenuated inhibition of prostaglandin synthesis induced by indomethacin or aspirin but not that produced by 5,8,11,14-eicosatetraynoic acid. The interaction of the vasoactive material and indomethacin was competitive whereas hemin attenuated the effects of only low concentrations of indomethacin. Epinephrine enhanced indomethacin inhibition. These data indicate that mode of action of the vasoactive material in prostaglandin synthesis is unlike that of glutathione, aromatic amines, or heme containing compounds.  相似文献   

7.
The effect of sex steroids, 17β-estradiol and testosterone, on the production of 6-keto-prostaglandin F, prostaglandin F and prostaglandin E2 was studied in cultures of piglet aorta endothelial cells. In cells isolated from female animals both steroids stimulated the secretion of prostaglandins. In contrast, sex steroids did not affect prostaglandin synthesis by endothelial cells taken from male animals. In addition, female endothelial cells convert testosterone into Estriol, estrone and estradiol. estradiol-induced stimulation of prostacyclin production may explain in part the beneficial role generally attributed to naturally occuring estrogens in cardiovascular diseases.  相似文献   

8.
F Haour  B Kouznetzova  F Dray  J M Saez 《Life sciences》1979,24(23):2151-2158
Testicular levels of prostaglandin E2 and F were measured in decapsulated adult rat testis following hCG stimulation. Basal levels were, respectively, 342 ± 74 and 502 ± 89 pg/testis. Following hCG administration these basal values are not significantly modified up to 2 hours. From 2 to 24 hours the concentrations are clearly increased above the basal level: at 12 hrs they are 1925 ± 165 for E2 and 3200 ± 190 for F. Levels are back to normal at 48 hrs and remain so until 144 hrs. An identical pattern of prostaglandin release is observed in vitro in Leydig cell preparations isolated at different times following in vivo hCG injection. This suggests that prostaglandins are secreted by Leydig cells. In hypophysectomized animals the release of both prostaglandins E2 and F is similar to controls indicating that prostaglandin secretion is not directly linked to testosterone production. alternatively testosterone injections (10 mg) does not modify prostaglandin levels. Binding sites for prostaglandins E1, E2 and F are present on the Leydig cells and consequently Leydig cell function may be modulated by endogenous or exogenous prostaglandins. Their level is slightly increased at 24 hrs following hCG stimulation. Since the acute changes in prostaglandin E2 and F secretion occur during the period of “desensitization” and of acute “down regulation” of the LH-hCG receptor in the Leydig cells it is suggested that prostaglandins are involved in both phenomena.  相似文献   

9.
Effect of various prostaglandins on the uptake of α-aminoisobutylic acid by cultured fibroblasts was studied. All the prostaglandins having an OH functional group in an intramolecular 5-membered ring showed an inhibitory effect on the amino acid uptake. The active compounds can be ranked in potency according to the values for the inhibition of the amino acid uptake per cent of control: prostaglandin F(53 %) >F(54 %) >D2(56 %) >E2(62 %) >thromboxane B2 (66 %). Thus, prostaglandin F was found to be the most potent inhibitor to membrane permeability and the inhibitory effect was dose dependent. The inhibition was maximal after 1 hour of exposure to prostaglandin F, persisted at least up to 6 hours in the presence of prostaglandin F.  相似文献   

10.
Abstract— Particulate fractions from rat brain homogenate containing the synaptosomes synthesize and release prostaglandins F and E on aerobic incubation. The prostaglandin of the F-typc released could be further identified as proslaglandin F using specific radioimmunoassays for prostaglandins F, and F2α-. The metabolite 13,14-dihydro-15-keto-prostaglandin F could not be detected. The amount of prostaglandins released is dependent on incubation time and temperature as well as pH and osmolarity of the incubation medium. Total brain homogenate released more prostaglandins than purified synaptosomes per mg protein, indicating that synaptosomes are probably not a main source of prostaglandins when compared with other subcellular brain fractions. While prostaglandin synthesis was only moderately increased by the addition of the precursor fatty acid arachidonic acid, anti-inflammatory drugs like indomethacin, high concentrations of some local anaesthetics and Δ1-tetrahydrocannabinol inhibited prostaglandin release. The neurotransmitters noradrenaline, dopamine and 5-hydroxytryptamine did not influence prostaglandin release from the synaptosomal rat brain fractions.  相似文献   

11.
Mouse myeloid leukemia cells (Ml) were induced to differentiate into mature macrophages and granulocytes by various inducers. The differentiated Ml cells synthesized and released prostaglandins, whereas untreated Ml cells did not. When the cells were prelabelled with [14C]arachidonate, the major prostaglandins released into the culture media were found to be prostaglandin E2, D2, and F in an early stage of differentiation, but the mature cells produced predominantly prostaglandin E2. The synthesis and release of prostaglandins were completely inhibited by indomethacin. Dexamethasone, a potent inducer of differentiation of Ml cells, did not induce production of prostaglandins in resistant Ml cells that could not differentiate even with a high concentration of dexamethasone. These results suggest that production of prostaglandins in Ml cells is closely associated with differentiation of the cells. Homogenates of dexamethasone-treated Ml cells converted arachidonate to prostaglandins, but this conversion was scarcely observed with homogenates of untreated Ml cells. Dexamethasone and the other inducers stimulated the release of arachidonate from phospholipids. Therefore, induction of prostaglandin synthesis during differentiation of Ml cells may result from induction of prostaglandin synthesis activity and stimulation of the release of arachidonate from cellular lipids. Lysozyme activity, which is a typical biochemical marker of macrophages, was induced in Ml cells by prostaglandin E2 or D2 alone, as well as by inducers of differentiation of the cells, but it was not induced by arachidonate or prostaglandin F. These results suggest that prostaglandin synthesis is important in differentiation of myeloid leukemia cells.  相似文献   

12.
Tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6) are potent inflammatory cytokines produced by osteoblasts and whose contribution to bone loss occurring in oestrogen deficiency is well documented. Calcitonin gene-related peptide (CGRP) is a neuropeptide abundantly concentrated in sensory nerve endings innervating bone metaphyses and periosteum suggesting that it controls bone homeostasis locally. Since CGRP was shown to inhibit TNF-α production by T cells and stimulate IL-6 expression by fibroblasts, this study was designed to investigate whether CGRP regulated TNF-α and IL-6 production by osteoblasts. We show that CGRP inhibits the production of TNF-α by both lipopolysaccharide (LPS)- and IL-1-stimulated fetal rat osteoblasts. Like CGRP, the cAMP agonists prostaglandin E2(PGE2), dibutyryl cAMP (Bt2cAMP) and forskolin inhibit TNF-α production by osteoblasts. Exposure of osteoblasts to a high dose of phorbol myristoyl acetate (PMA) to deplete PKC activity abolished CGRP-mediated TNF-α suppression. In contrast with its potent inhibition of TNF-α production, we show that CGRP is a weak inducer of IL-6 when compared to PGE2, Bt2cAMP and forskolin. However, in presence of isobutylmethylxanthine (IBMX) CGRP stimulates the production of IL-6. Collectively, these data suggest that the inhibition of TNF-α CGRP is cAMP dependent and PMA sensitive and that the concentration of intracellular cAMP may be a regulatory mechanism for IL-6 expression in osteoblasts.  相似文献   

13.
Use of (125I)-labeled histamine-prostaglandin tracer increases the sensitivity of the radioimmunoassays of prostaglandin derivatives. Six different antisera were produced for prostaglandins and their derivatives (prostaglandins E1, E2, F, F, 13,14-dihydro-15-ketoprostaglandin E2, and 13,14-dihydro-15-ketoprostaglandin F) and were investigated with the corresponding tritiated and lodinated tracers. Displacement of iodinated tracers by the methyl esters of the prostaglandin compounds resulted, in most cases, in a three- to fivefold increase in sensitivity compared to unesterified inhibitors. Esterification also caused some alteration in the specificities observed. Our results suggest that conformational changes in the esterified prostaglandins (tracer and inhibitor) could explain these charges.  相似文献   

14.
Prostaglandins F and F, at high concentrations (≥28 μM) enhanced cyclic AMP accumulation in dog thyroid slices. At lower concentrations, they inhibited the cyclic AMP accumulation induced by thyrotropin (TSH), prostaglandin E1, and cholera toxin. This effect was rapid in onset and of short duration, calcium-dependent and suppressed by methylxanthines. Prostaglandin Fα also inhibited TSH-induced secretion and activated iodine binding to proteins. These characteristics are similar to those of carbamylcholine action, except that prostaglandins F did not enhance cyclic GMP accumulation. The effect of prostaglandin Fα was not inhibited by atropine, phentolamine and adenosine deaminase and can therefore not be ascribed to an induced secretion of acetylcholine, norepinephrine or adenosine. It is suggested that prostaglandins F act by increasing influx of extracellular Ca2+. Arachidonic acid also inhibited the TSH-induced cyclic AMP accumulation. However this effect was specific for TSH, it was enhanced in the absence of calcium and was not inhibited by methylxanthines or by indomethacin at concentrations which completely block its conversion to prostaglandin Fα. Arachidonic acid action is sustained. This suggests that arachidonic acid inhibits thyroid adenylate cyclase at the level of its TSH receptor and that this effect is not mediated by prostaglandin Fα or any other cyclooxygenase product.  相似文献   

15.
Boiled cytosol of various rat tissues each affected prostaglandin biosynthesis by bovine seminal vesicle microsomes in a specific way. Kidney cytosol enhanced 6-ketoprostaglandin F production in a dose-dependent manner. This stimulatory effect was lost after dialysis. Liver, spleen and carrageenin granuloma cytosol inhibited 6-ketoprostaglandin F production but enhanced prostaglandin E2 production.  相似文献   

16.
The sensitivity of portal veins from 14 to 18 week-old Okamoto-Aoki spontaneously hypertensive rats to prostaglandins A2, B2, D2 and F were enhanced whereas the sensitivity to prostaglandin E2 was diminished when compared with responses of veins from normotensive Wistar-Kyoto rats. Inhibition of prostaglandin synthesis with both eicosotetraynoic acid (ETYA) and indomethacin (INDO) abolished the observed differences in sensitivity to prostaglandins. Synthesis of prostaglandin-like substance (with arachidonic acid as precursor) was significantly enhanced in portal veins from spontaneously hypertensive rats. Metabolism of prostaglandins E2 and F, employing the oil-immersion technique of Kalsner and Nickerson, appeared to be similar in veins from normotensive and hypertensive rats. These findings suggest that prostaglandin synthesis is enhanced in venous smooth muscle from hypertensive rats. The increased concentration of endogenous prostaglandin at the venous smooth muscle cell may modify the responses to exogenously administered prostaglandins thus accounting, in part, for the altered sensitivity to these fatty acids.  相似文献   

17.
18.
The prostaglandin biosynthetic and catabolic capacity of homogenates of lungs fetal sheep of various gestational ages was measured. Prostaglandin biosynthesis was assayed by the deuterium-isotope dilution technique making us e of mas fragmentography whereas prostaglandin catabolism was measured by the radioisotope-dilution method described previously (Pace-Asciak, C.R. and Rangaraj, G. (1976) J. Biol. Chem. 251, 3381–3385).Homogenates of lung sform fetuses of all ages tested (40 days to term) formed both prostaglandins E2 and F; although prostaglandin F was formed to a greater extent than prostaglandin E2 by the 40 day lung, prostaglandin E2 increased with increasing age until at term the ratio of both prostaglandins approached unity. Total prostaglandin biosynthesis (E2 + F) rose gradually with age (approx. 3 fold increase between 40 days and term). Prostaglandin F catabolism occurred mainly by the prostaglandin 15-hydroxy dehydrogenase pathway; this activity was detectable even at 40 days and remained unchanged up to 80 days. Prostaglandin catabolic activity rose sharply at 90 days (approx. 3 fold) with a maximum around 110 days (approx. 4 fold) decreasing back to 40 day levels by term (143 days).The increasing prostaglandin catabolic activity around 90–100 days in this species is discussed in relation to the hemodynamic changes in the lungs starting around this age and the appearance of surfactant. Prostaglandin catabolism might play an important role in the developing organ controlling steady state concentrations of prostaglandins during certain periods of organogenesis.  相似文献   

19.
Canonical transient receptor potential (TRPC) channels are Ca(2+)-permeable, nonselective cation channels that are widely expressed in numerous cell types. Here, we demonstrate a new mechanism of TPRC isofom 5 (TRPC5) regulation, via cAMP signaling via Gα(s). Monovalent cation currents in human embryonic kidney-293 cells transfected with TRPC5 were induced by G protein activation with intracellular perfusion of GTPγS or by muscarinic stimulation. This current could be inhibited by a membrane-permeable analog of cAMP, 8-bromo-cAMP, by isoproterenol, by a constitutively active form of Gα(s) [Gα(s) (Q227L)], and by forskolin. These inhibitory effects were blocked by the protein kinase A (PKA) inhibitors, KT-5720 and H-89, as well as by two point mutations at consensus PKA phosphorylation sites on TRPC5 (S794A and S796A). Surface expression of several mutated versions of TRPC5, quantified using surface biotinylation, were not affected by Gα(s) (Q227L), suggesting that trafficking of this channel does not underlie the regulation we report. This mechanism of inhibition was also found to be important for the closely related channel, TRPC4, in particular for TRPC4α, although TRPC4β was also affected. However, this form of regulation was not found to be involved in TRPC6 and transient receptor potential vanilloid 6 function. In murine intestinal smooth muscle cells, muscarinic stimulation-induced cation currents were mediated by TRPC4 (>80%) and TRPC6. In murine intestinal smooth muscle cells, 8-bromo-cAMP, adrenaline, and isoproterenol decreased nonselective cation currents activated by muscarinic stimulation or GTPγS. Together, these results suggest that TRPC5 is directly phosphorylated by G(s)/cAMP/PKA at positions S794 and S796. This mechanism may be physiologically important in visceral tissues, where muscarinic receptor and β(2)-adrenergic receptor are involved in the relaxation and contraction of smooth muscles.  相似文献   

20.
The in vitro action of thyrotropin-releasing hormone (TRH) on the cyclic AMP level and iodine metabolism in dog thyroid, has been studied. TRH inhibited cyclic AMP accumulation and subsequent secretion in slices stimulated by thyrotropic hormone (TSH), prostaglandin E1, cholera toxin and to a lesser extent forskolin. The effect of TRH was suppressed in a medium deprived of calcium or in the presence of isobutylmethylxanthine. TRH also stimulated iodide binding to proteins, but not cyclic GMP accumulation. Although all these characteristics of TRH action on dog thyroid fit those of prostaglandin F in this tissue, TRH effects were not relieved by indomethacine. The possibility of a TRH action through other known inhibitors of the cyclic AMP system in dog thyroid such as: acetylcholine, α-adrenergic agents, adenosine, iodide were checked and ruled out. The possible involvement of other neurotransmitters, such as ATP or vasoactive intestinal peptide were studied but could not be substantiated. Our data suggest the existence of a direct negative action of TRH on the thyroid itself besides its stimulatory role at the pituitary level. The great variability of the TRH effect was overcome by pretreatment of the dog by pyridostigmine, an acetylcholinesterase inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号