首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nerve growth factor (NGF) increases expression of nitric oxide synthase (NOS) isozymes leading to enhanced production of nitric oxide (NO). NOS inhibitors attenuate NGF-mediated increases in cholinergic gene expression and neurite outgrowth. Mechanisms underlying this are unknown, but the mitogen-activated protein (MAP) kinase pathway plays an important role in NGF signaling. Like NGF, NO donors activate Ras leading to phosphorylation of MAP kinase. The present study investigated the role of NO in NGF-mediated activation of MAP kinase in PC12 cells. Cells were treated with 50 ng/mL NGF to establish the temporal pattern for rapid and sustained activation phases of MAP kinase kinase (MEK)-1/2 and p42/p44-MAP kinase. Subsequently, cells were pretreated with NOS inhibitors Nomega-nitro-L-arginine methylester and s-methylisothiourea and exposed to NGF for up to 24 h. NGF-induced activation of MEK-1/2 and p42/p44-MAP kinase was not dependent on NO, but sustained phosphorylation of MAP kinase was modulated by NO. This modulation did not occur at the level of Ras-Raf-MEK signaling or require activation of cGMP/PKG pathway. NOS inhibitors did not affect NGF-mediated phosphorylation of MEK. Expression of constitutively active-MEKK1 in cells led to phosphorylation of p42/p44-MAP kinase and robust neurite outgrowth; constitutively active-MKK1 also caused differentiation with neurite extension. NOS inhibitor treatment of cells expressing constitutively active kinases did not affect MAP kinase activation, but neurite outgrowth was attenuated. NOS inhibitors did not alter NGF-mediated nuclear translocation of phospho-MAP kinase, but phosphorylated kinases disappeared more rapidly from NOS inhibitor-treated cells suggesting greater phosphatase activity and termination of sustained activation of MAP kinase.  相似文献   

2.
Src homology (SH) domains of phospholipase C-gamma1 (PLC-gamma1) impair NGF-mediated PC12 cells differentiation. However, whether the enzymatic activity is also implicated in this process remains elusive. Here, we report that the enzymatic activity of phospholipase C-gamma1 (PLC-gamma1) is at least partially involved to the blockage of neuronal differentiation via an abrogation of MAPK activation, as well as sustained Akt activation. By contrast, Overexpression of WT-PLC-gamma1 exhibited sustained NGF-induced MAPK activation, and triggered transient Akt activation resulting in profound inhibition of neurite outgrowth. However, lipase-inactive mutant (LIM) PLC-gamma1 cells fail to suppress neurite outgrowth, although it contains intact SH domains, specifically enhancing the expression of cyclin D1 and p21 proteins, which regulate the function of retinoblastoma Rb protein. These observations show that the lipase inactive mutant of PLC-gamma1 does not alter NGF-induced neuronal differentiation via enzymatic inability and the odulation of cell cycle regulatory proteins independent on SH3 domain.  相似文献   

3.
4.
Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation.  相似文献   

5.
In this study, we examined the role of specific protein kinase C (PKC) isoforms in the differentiation of PC12 cells in response to nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells express PKC-alpha, -beta, -gamma, -delta, -epsilon, -mu, and -zeta. For PKC-delta, -epsilon, and -zeta, NGF and EGF exerted differential effects on translocation. Unlike overexpression of PKC-alpha and -delta, overexpression of PKC-epsilon caused enhanced neurite outgrowth in response to NGF. In the PKC-epsilon-overexpressing cells, EGF also dramatically induced neurite outgrowth, arrested cell proliferation, and induced a sustained phosphorylation of mitogen-activated protein kinase (MAPK), in contrast to its mitogenic effects on control cells or cells overexpressing PKC-alpha and -delta. The induction of neurite outgrowth by EGF was inhibited by the MAPK kinase inhibitor PD95098. In cells overexpressing a PKC-epsilon dominant negative mutant, NGF induced reduced neurite outgrowth and a more transient phosphorylation of MAPK than in controls. Our results suggest an important role for PKC-epsilon in neurite outgrowth in PC12 cells, probably via activation of the MAPK pathway.  相似文献   

6.
Rat pheochromocytoma 12 (PC12) cells undergo neuronal differentiation in response to nerve growth factor (NGF). NGF-induced differentiation involves a number of protein kinases, including extracellular signal-regulated kinase (ERK). We studied the effect of iron on neuronal differentiation, using as model the neurite outgrowth of PC12 cells triggered by NGF when the cells are plated on collagen-coated dishes in medium containing 1% serum. The addition of iron enhanced NGF-mediated cell adhesion, spreading and neurite outgrowth. The differentiation-promoting effect of iron seems to depend on intracellular iron, since nitrilotriacetic acid (an efficient iron-uptake mediator) enhanced the response to iron. In agreement with this, intracellular, but not extracellular, iron enhanced NGF-induced neurite outgrowth in pre-spread PC12 cells, and this was correlated with increased ERK activity. Taken together, these data suggest that intracellular iron promotes NGF-stimulated differentiation of PC12 cells by increasing ERK activity.  相似文献   

7.
Rho-family GTPases regulate cytoskeletal dynamics in various cell types. p21-activated kinase 1 (PAK1) is one of the downstream effectors of Rac and Cdc42 which has been implicated as a mediator of polarized cytoskeletal changes in fibroblasts. We show here that the extension of neurites induced by nerve growth factor (NGF) in the neuronal cell line PC12 is inhibited by dominant-negative Rac2 and Cdc42, indicating that these GTPases are required components of the NGF signaling pathway. While cytoplasmically expressed PAK1 constructs do not cause efficient neurite outgrowth from PC12 cells, targeting of these constructs to the plasma membrane via a C-terminal isoprenylation sequence induced PC12 cells to extend neurites similar to those stimulated by NGF. This effect was independent of PAK1 ser/thr kinase activity but was dependent on structural domains within both the N- and C-terminal portions of the molecule. Using these regions of PAK1 as dominant-negative inhibitors, we were able to effectively inhibit normal neurite outgrowth stimulated by NGF. Taken together with the requirement for Rac and Cdc42 in neurite outgrowth, these data suggest that PAK(s) may be acting downstream of these GTPases in a signaling system which drives polarized outgrowth of the actin cytoskeleton in the developing neurite.  相似文献   

8.
The proto-oncogene cyclin D1 and the neuron-specific cyclins p35 and p39 are expressed during brain maturation. To investigate the role of these cyclins in neuronal differentiation, we used a conditionally immortalized rat hippocampal cell line, H19-7, that expresses cyclin-dependent kinases 4 and 5 (cdk4 and -5). Cyclin D1, which activates cdk4 and binds but does not activate cdk5, was increased upon differentiation of the H19-7 cells. However, microinjection of either sense or antisense cyclin D1 cDNA or anti-cyclin D1 antibodies had no effect on morphological differentiation of the cells. On the other hand, neurite outgrowth was stimulated by expression of p35 or p39, both of which activate cdk5. A dominant-negative mutant of cdk5 blocked both p35- and p39-induced neurite extension as well as basic fibroblast growth factor (bFGF)-induced neuronal differentiation. However, of these cyclins, only antisense p39 prevented bFGF-induced neurite outgrowth. These studies indicate that cyclin D1 is neither necessary nor sufficient for morphological differentiation, that p35 is sufficient but not required, and that p39 is both necessary and sufficient for neurite outgrowth in the hippocampal cells. Taken together, these results represent the first demonstration of a specific role for p39 in neuronal differentiation, implicate the cyclin-activated kinase cdk5 in this process, and indicate that p39 is able to mediate neurite outgrowth in the presence or absence of cyclin D1.  相似文献   

9.
p53 is necessary for the elimination of neural cells inappropriately differentiated or in response to stimuli. However, the role of p53 in neuronal differentiation is not certain. Here, we showed that nerve growth factor (NGF)-mediated differentiation in PC12 cells is enhanced by overexpression of wild-type p53 but inhibited by mutant p53 or knockdown of endogenous wild-type p53, the latter of which can be rescued by expression of exogenous wild-type p53. Interestingly, p53 knockdown or overexpression of mutant p53 attenuates NGF-mediated activation of TrkA, the high-affinity receptor for NGF and a tyrosine kinase, and activation of the mitogen-activated protein kinase pathway. In addition, p53 knockdown reduces the constitutive levels of TrkA, which renders PC12 cells inert to NGF. And finally, we showed that both constitutive and stimuli-induced expressions of TrkA are regulated by p53 and that induction of TrkA by activated endogenous p53 enhances NGF-mediated differentiation. Taken together, our data demonstrate that p53 plays a critical role in NGF-mediated neuronal differentiation in PC12 cells at least in part via regulation of TrkA levels.  相似文献   

10.
The Rsu-1 Ras suppressor gene was isolated based on its ability to inhibit v-Ras transformation. Using Rsu-1 transfectants of the pheochromocytoma cell line PC12, we demonstrated previously that Rsu-1 expression inhibited Jun kinase activation but enhanced Erk2 activation in response to epidermal growth factor. In the present study, the Rsu-1 PC12 transfectants were used to investigate the role of Rsu-1 in nerve growth factor (NGF)- and v-Ki-ras-mediated neuronal differentiation. NGF-induced neurite extension was enhanced, not inhibited, by the expression of Rsu-1 in PC12 cells. The activation of Erk kinase activity in response to NGF was sustained longer in the Rsu-1 transfectants compared with the vector control cells. During NGF-mediated differentiation, an increase in the expression of specific mRNAs for the early response genes Fos, cJun, and NGF1a was detected in both the vector control and Rsu-1 transfectants. The expression of the differentiation-specific genes VGF8 and SCG10 was similar in Rsu-1 transfectants compared with the vector control cells. The induction of Rsu-1 expression in these cell lines did not inhibit v-Ki-ras-induced differentiation, as measured by neurite extension. These data suggest that although Rsu-1 blocked some Ras-dependent response(s), these responses were not required for differentiation. Moreover, the induction of Rsu-1 expression in the PC12 clones resulted in growth inhibition and p21(WAF/CIP) expression. Hence, Rsu-1 expression enhances NGF-induced differentiation while inhibiting the growth of cells.  相似文献   

11.
The Gab1-docking protein has been shown to regulate phosphatidylinositol 3-kinase PI3K activity and potentiate nerve growth factor (NGF)-induced survival in PC12 cells. Here, we investigated the potential of Gab1 to induce neurite outgrowth and DNA synthesis, two other important aspects of NGF-induced neuronal differentiation of PC12 cells and NGF-independent survival. We generated a recombinant adenovirus encoding hemagglutinin (HA)-epitope-tagged Gab1 and expressed this protein in PC12 cells. HA-Gab1 was constitutively tyrosine-phosphorylated in PC12 cells and induced the phosphorylation of Akt/protein kinase B and p44/42 mitogen-activated protein kinase. HA-Gab1-stimulated a 10-fold increase in neurite outgrowth in the absence of NGF and a 5-fold increase in NGF-induced neurite outgrowth. HA-Gab1 also stimulated DNA synthesis and caused NGF-independent survival in PC12 cells. Finally, we found that HA-Gab1-induced neuritogenesis was completely suppressed by pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) activity and 50% suppressed by inhibition of PI3K activity. In contrast, HA-Gab1-stimulated cell survival was efficiently suppressed only by inhibition of both PI3K and MEK activities. These results indicate that Gab1 is capable of mediating differentiation, DNA synthesis, and cell survival and uses both PI3K and MEK signaling pathways to achieve its effects.  相似文献   

12.
We have characterized the cell cycle deficit of a novel TrkA receptor mutant (TrkAS3) that fails to support nerve growth factor (NGF)-dependent cell cycle arrest and neurite outgrowth. TrkAS3 receptors fail to support an NGF-dependent increase in the expression of cyclin D1 and the cell cycle inhibitor, p21(Waf1/Cip1), two important regulators of G(1) /S transition, and do not down-regulate expression of the G(2) /M phase marker, cdc2/cdk1, or the S phase marker, proliferating cell nuclear antigen. Moreover, NGF-activated TrkAS3 receptors do not down-regulate cyclin-dependent kinase 4 phosphorylation of the retinoblastoma protein, essential for G(1) arrest, in comparison to NGF-activated wild-type TrkA. Collectively these data indicate that TrkAS3 receptors fail to support NGF-dependent G(1) arrest. Interestingly, ectopic expression of regulators of G(1) /S arrest, such as cyclin D1 or inhibitors of cell cycle (p21(Waf1/Cip1), p16(INK4A) ), or the fibroblast growth factor (FGF) receptor substrate-2 (FRS2) in cells expressing TrkAS3 reconstitutes NGF-dependent neurite outgrowth. Collectively, these data suggest a model in which NGF-stimulated TrkA-dependent activation of FRS2 supports neurite outgrowth through a mechanism that likely involves the induction of p21(Waf1/Cip1) expression and the arrest of cells at G(1) /S.  相似文献   

13.
Disabled-2 (DAB2) is an adapter protein that plays a key role in cell proliferation and differentiation. We reported here that DAB2 is expressed in various regions of rat central nervous system and is most abundant in the olfactory bulb. The up-regulation of DAB2 upon 5,7-dihydroxytryptamine-induced spinal cord lesion implicates that DAB2 may participate in the regulation of neuronal plasticity. To investigate DAB2 function in the regulation of neurite outgrowth, the rat p59 and p82 form of DAB2 was individually and stably expressed in the PC12 cells. Both p59 and p82 inhibited nerve growth factor (NGF)-induced neurite outgrowth concomitantly with a decrease in the expression of neuron-specific cytoskeleton protein beta-tubulin III. To unveil the molecular mechanism of DAB2 in NGF signaling, we found that RhoA-GTPase activity was up-regulated in DAB2 stable lines whereas the Ras/MAPK and PI3-kinase/Akt signaling was not affected. The inhibitory effect of DAB2 on NGF-mediated neurite outgrowth was reversed by the pretreatment of Rho-kinase (ROCK) inhibitor Y27632, implicating that DAB2 modulates RhoA/ROCK signaling. Together, this study defines a role of DAB2 in the control of neuronal plasticity and demonstrates for the first time that DAB2 is a negative regulator in NGF-mediated neurite outgrowth.  相似文献   

14.
Abstract: Nerve growth factor (NGF) and dibutyryl cyclic AMP (dbcAMP) have synergistic effects on the neurite outgrowth of rat pheochromocytoma PC12 cells. The sites of interaction between NGF and dbcAMP have been studied extensively; however, the role of Ca2+ in differentiation induced by the two agents remains unclear. To understand whether intracellular Ca2+ is involved in the differentiation induced by the two agents, PC12 cells were treated with NGF, dbcAMP, or NGF plus dbcAMP for 2 days, and then effects on neurite outgrowth, ATP-induced Ca2+ influx, and Ca2+ mobilization from intracellular Ca2+ pools were examined. NGF or dbcAMP alone enhanced neurite outgrowth and Ca2+ accumulation by nonmitochondrial Ca2+ pools or the thapsigargin (TG)-sensitive Ca2+ pool. The dbcAMP acted synergistically with NGF to increase neurite outgrowth and to enlarge the TG-sensitive Ca2+ pool. The synergistic effect occurred within the first hour of treatment with dbcAMP plus NGF. On the other hand, dbcAMP abolished NGF's ability to enhance ATP-induced influx of extracellular Ca2+. Therefore, NGF and dbcAMP induced different effects on Ca2+ signaling pathways through two different but interacting pathways. In PC12 cells pretreated with TG to deplete the TG-sensitive Ca2+ pool, the dbcAMP- or dbcAMP plus NGF-mediated neurite outgrowth was significantly inhibited, whereas NGF-mediated neurite outgrowth was not affected by TG pretreatment. Our results suggest that the intracellular nonmitochondrial Ca2+ pools were changed in the differentiation process and were necessary for the synergistic effect of NGF and dbcAMP.  相似文献   

15.
Panaxynol, a polyacetylene ((3R)-heptadeca-1,9-diene-4,6-diyn-3-ol; syn. falcarinol), was isolated from the lipophilic fractions of Panax notoginseng, a Chinese traditional medicinal plant. In the present study, we reported the neurotrophic effects of panaxynol on PC12D cells and mechanism involved in neurite outgrowth of the cells. Panaxynol could morphologically promote neurite outgrowth in PC12D cells, concentration-dependently reduce cell division and up-regulate molecular marker (MAP1B) expression in PC12D cells. Panaxynol induces the elevation of intracellular cAMP in PC12D cells. The neurite outgrowth in PC12D cells induced by panaxynol could be inhibited by the protein kinase A inhibitor RpcAMPS and by MAP kinase kinase 1/2 inhibitor U0126. These observations reveal that panaxynol could induce the differentiation of PC12D cells in a process similar to but distinct from that of NGF and the panaxynol's effects were via cAMP- and MAP kinase-dependent mechanisms.  相似文献   

16.
17.
Since the biological role of phospholipase C (PLC) gamma1 in neuronal differentiation still barely understood, here, we report that overexpression of PLC gamma1 inhibits neurite outgrowth and prolonged proliferation ability of PLC gamma1 contribute to the alteration of cell cycle regulatory proteins, subsequently exiting from cell growth arrest. Deletion of the SH3 or the entire SH223 domains, but not deletion of the N-SH2 or both the N-SH2 and C-SH2 domains expressing cells abolishes the differentiation-inhibitory effects of PLC gamma1, displaying depression of PCNA and elevation of cyclin D1. Moreover, these cells declined CDK1 and CDK2 expression and increased p21WAF-1, accompanying with G2/M accumulation. Some antiproliferative reagents are able to restore neurite outgrowth in PLC gamma1 cells, showing G2/M arrest. Our findings suggest that the proliferation activity of PLC gamma1 via its SH3 domain may be coupled with the flight from growth arrest by NGF, thereby inhibiting neuronal differentiation.  相似文献   

18.
19.
Oxidative stress has been implicated in the pathogenesis of a wide variety of neuronal diseases, including ischemic neuronal injury, Alzheimer’s disease, and Parkinson’s disease. Thioredoxin reduces exposed protein disulfides and couples with peroxiredoxin to scavenge reactive oxygen species. Nerve growth factor (NGF) has profound effects on neurons, including promotion of survival and differentiation via multiple signaling pathways. As for the NGF-induced neurite outgrowth, the CREB-cAMP responsive element (CRE) pathway is important to the activation of immediate-early genes such as c-fos. Thioredoxin is upregulated by NGF through ERK and the CREB-CRE pathway in PC12 cells. Thioredoxin is necessary for NGF signaling through CRE leading to c-fos expression and also plays a critical role in the NGF-mediated neurite outgrowth in PC12 cells. Therefore, thioredoxin appears to be a neurotrophic cofactor that augments the effect of NGF on neuronal differentiation and regeneration. NGF acts also as a neuronal survival factor. Previous reports showed that thioredoxin exerts a cytoprotective effect in the nervous system. The cytoprotective effect is mediated by enhancing the action of NGF, via the regulation of antiapoptotic signaling, or through its antioxidative stress activity.  相似文献   

20.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号