首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The starch content and ultrastructure of needles of Norway spruce trees [Picea abies (L.) Karst.] taken from three natural habitats, undamaged or with symptoms of novel forest decline, were investigated during the course of three years. The starch content was clearly dependent on the seasons, with a maximum in spring and a decline during summer and autumn, leading to a minimum in winter. Needles of damaged trees from one habitat exhibited in all three years from August to October a significantly higher starch content than their undamaged counterparts. Microscopic investigations of these needle samples exhibited severe damage symptoms to the phloem in macroscopically green needles, though more intensely in the needles with yellowing symptoms. The phenomenon of starch accumulation is interpreted as a delay in starch mobilization, caused by a reduction in assimilate transport capacity of the needle phloem. The lower degree of starch accumulation in needles of damaged trees from a second natural habitat corresponded well to the lesser extent of phloem damage. The difference in damage patterns are discussed in terms of the differing air pollution situations acting on both habitats.  相似文献   

2.
Torgny Näsholm 《Oecologia》1994,99(3-4):290-296
The concentrations of arginine, protein and total nitrogen (N) and the abundance of15N were measured in 3-and 4-year-old needles of Scots pine trees fertilized with either 0 (C), 36 (N1) or 73 (N2) kg N ha-1 year-1 annually for 22 years (average doses of N). Remaining green needles and needles that were shed were compared and removal of N from total, protein and arginine pools was calculated. Earlier investigations had shown that high arginine concentrations are found in needles of trees that have an excessive N supply (Näsholm and Ericsson 1990). This study aimed to elucidate the fate of the accumulated arginine during needle senescence. It was speculated that a low removal of arginine during senescence would implicate that the primary function of arginine is in N detoxification and not in N storage. Moreover, litter quality would be altered if needles are shed with high concentrations of arginine and this might affect the turnover of N in forest ecosystems. In remaining green needles, the concentration of total N increased with increasing N supply. Protein N concentrations were higher in fertilized trees, but did not differ between the two N treatments. Arginine N was low in C and N1 trees but high in N2 trees. Senescent needles from C and N1 trees had about equal total N concentrations while in N2 trees this concentration was significantly higher. Protein N in senescent needles did not differ between treatments. Arginine N, however, was less than 0.1 mg g–1 dw in C and N1 trees but was higher than 1.5 mg g–1 dw in N2 trees. Removal of N was highest in N1 trees followed by C trees while N2 trees removed least N from senescing needles. The high concentration of total N in senescent needles from N2 trees was to a great extent explained by a high arginine concentration.The 15N value of remaining, green needles was higher (less negative) in N2 trees than in C and N1 trees. The same pattern was found for senescent needles. Comparisons of 15N values between remaining, green and senescent needles within each treatment showed a significant increase in 15N for all treatments during senescence possibly indicating losses of N as NH3 (g) from needles during senescence. It is concluded that arginine, accumulated in response to high N supply, is retranslocated only to a small extent during needle senescence. The ecological and physiological implications of this finding are discussed.  相似文献   

3.
Nitrogen metabolism of the needles of 40-year-old Douglas fir and Scots pine trees, growing in two forest stands on cation-poor and acidic sandy soil with a relatively high atmospheric nitrogen deposition was studied. The composition of the free amino acid (FAA) pool, the concentrations of total nitrogen and soluble protein and the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were determined in the needles. An excessive nitrogen supply by a high atmospheric nitrogen deposition in both forest stands was indicated by the high concentrations of total nitrogen and the amino acids arginine, glutamic acid, glutamine and aspartic acid in control trees. In addition the effect of optimal nutrition and water supply (fertigation) on the needle nitrogen metabolism was evaluated. The total concentration of the FAA pool in needles of both tree species was lower in the fertigated than in the non-fertigated (control) trees, except for 1-year-old needles of Scots pine, in which the concentration after fertigation did not differ from the control. The lower total FAA concentration in the fertigated trees could be attributed to arginine, the concentration of which was on average 60% lower than in the control. Neither the concentration of soluble protein nor the activity of GS were influenced by fertigation. The activity of GDH in fertigated trees only differed significantly from the control in October. Scots pine needles had higher concentrations of protein (50%) and higher activities of GS (44%) and GDH (25%) than Douglas fir needles. Possible explanations for the lower vitality of Douglas fir compared to Scots pine are given.  相似文献   

4.
Extensive investigations on the fine root status of declining and healthy spruce were conducted in several stands at higher elevations of the Bavarian Forest heavily affected by needle yellowing. In most of the root parameters recorded, yellowing trees had significantly lower values than neighbouring green trees. Tight correlations were found between decreasing fine root density and crown transparency, degree of yellowing (increasing) and needle Mg (Ca) contents (decreasing), respectively. Although growing on the same substrate, green trees showed much better Mg (Ca) nutrition than yellow trees, indicating that poor fine root status contributes to Mg (Ca) deficiency in yellowing spruce. Experiments with spruce seedlings growing in soil samples from yellowing stands proved that needle symptoms can easily be reproduced on the seedlings under controlled conditions (i.e. in the absence of adverse atmospheric factors). Furthermore, reduced fine root systems and severe root damage were observed on seedlings grown in soils from yellowing stands, but not on those in soils from green stands. Adding a layer of soil from a yellow stand to a soil from a green stand caused a decrease of root parameters. Needle as well as root symptoms in these experiments were largely ameliorated after soils had been heat (autoclaving, sterilisation) or fungicide treated. Plants from treated soils had significantly longer roots and more root tips. The results of our study indicate that Mg deficiency leading to severe needle yellowing in stands at higher elevations of the Bavarian Forest is at least partially mediated by fine root disorders. Also, strong evidence is presented that fine root damage on trees in the affected stands is caused by soilborne micro-organisms, most likely fungi. Their exact identity, however, still remains to be unravelled.  相似文献   

5.
Mehne-Jakobs  Beate 《Plant and Soil》1995,168(1):255-261
In order to investigate the influence of different magnesium nutrition on photosynthesis, one hundred 6-year-old spruce trees derived from one clone were planted in October 1990 into a special out-door experimental construction, where they were cultivated in sand culture with an optimal supply of nutrients, except magnesium, via circulating nutrient solutions. Magnesium was added to the nutrient solutions in three different concentrations, varying from optimal to severe deficient supplies. During the first vegetative period in 1991, photosynthetic performance and carboxylation efficiency were measured under saturating light, controlled CO2 conditions, optimal temperature and humidity, using a minicuvette system.During summer, the trees under moderate magnesium deficiency developed tip yellowing symptoms on older needles, while the youngest needles remained green with unchanged chlorophyll contents. Trees under severe magnesium deficiency showed yellowing symptoms on all needle age classes combined with decreased chlorophyll contents in the youngest needles as well. In comparison with the controls, the photosynthetic performance of the 1-year-old needles was significantly lower in both deficiency treatments. The same was observed in the youngest needles of the trees under severe deficiency. Trees under moderate deficiency treatment decreased in photosynthetic performance during the summer without reduction of chlorophyll contents. The reduction of photosynthetic rates corresponded to a decrease in carboxylation efficiency, which is taken as a measure of the activity of the enzyme ribulose-1,5-bisphosphate carboxylase. This reduction, together with the observed increase of carbohydrate contents in needles of trees growing under magnesium deficiency, led to the assumption that the photosynthetic carbonfixation is reduced as a consequence of the accumulation of carbohydrates.  相似文献   

6.
During two vegetation periods, young clonal spruce trees (Picea abies (L.) Karst.) with sufficient and poor magnesium (Mg) supply were exposed in the environmental chambers of the GSF phytotron to three levels of ozone (daily means: 18-22, 88-130, and 135-190 microg m(-3); 10% reduction at night). Previous year's needles were examined at 4-week intervals with respect to their contents of Mg, Ca, K, Mn, N, P, and chlorophyll (Chl), various parameters of Chl fluorescence, and the stability of the isolated light-harvesting Chl-a/b-protein complex LHC II. The needles of the two nutrition variants contained more than 0.53 or less than 0.27mg Mg g(-1) needle dry matter, respectively. The ratio of variable to maximal Chl-a fluorescence of the dark-adapted needles, Fv/Fm, and the photoinhibitory quenching of Fv after light treatment, SVi.v, were affected by the Mg content of the needles rather than the ozone levels. Changes of the Chl content and the behavior of the LHC II allowed differentiating between a slow process of needle yellowing occurring under Mg deficiency only, and a rapid process of needle yellowing occurring under the combined action of Mg deficiency and ozone pollution. Only the rapid yellowing process was accompanied by destabilization of the LHC II, and the degree of destabilization was correlated with the ozone concentration present in the days before sampling. The results are consistent with observations obtained at a research site in the Central Black Forest (J Plant Physiol 161 (2004) 423).  相似文献   

7.
Terpenes were analyzed in needles of pollution injured Picea abies (L.) Karst. of the Southern Black Forest (SW Germany) showing symptoms of montane yellowing. Compared to a set of healthy trees, a set of injured trees showed increased terpene hydrocarbon concentrations relative to needle fresh weight. This difference was even more pronounced when the terpene concentrations of green, healthy and yellowing, injured needles from the same internode of individual injured trees were compared. Increased terpene concentrations were observed in the basal parts of injured needles, while their distal parts exhibited a loss of terpenes. In addition, an alteration in the pattern of terpene occurrence was observable. Most striking was the changed ratio of α-pinene to β -pinene. with marked increase of the latter, in injured needles. As indicated by ultratrace analysis of isolated mesophyll. vascular tissue and resin ducts of the needles, mono- and sesquiterpenes were found exclusively in resin ducts. The other tissues were virtually free of terpenes. Isolated resin from a single resin duct contained all terpenes (monoterpene hydrocarbons, alcohols and ketones, and sesquiterpene hydrocarbons) that are typical for the needle. An individual response to air pollution of each separate short resin duct in the needle may be deduced.  相似文献   

8.
Nutrient conservation in plants and soil fertility may be intricately linked. We studied nitrogen conservation in small Scots pine (Pinus sylvestrisL.) trees growing in stands on organogenic Dystric Histosols and on mineral Podzols. Nitrogen-resorption efficiency (NRE) and proficiency (NRP) of senescent needles, and mean residence time of nitrogen (MRT) were studied in relation to needle surface area, needle longevity, and leaf mass per area (LMA). Trees on Podzols had higher nitrogen concentration in green needles than the trees on Dystric Histosols, but the nitrogen concentration of yellowing needles was similar for trees on both soil types. NRE averaged 65±3.5% (mean±SD) and 56±7.2% for the trees on Podzols and Dystric Histosols, respectively. Neither NRP (0.44±0.05% and 0.35±0.07%, respectively) nor MRT (8.4±2.3 and 6.1±1.2 years) differed significantly between the stands on the two soil types. Mean needle surface area was significantly smaller in trees on Dystric Histosols (76±29 mm2) than on Podzols (131±38 mm2), whereas needle longevity varied between 2 and 4 years independently of the soil type. Trees invested, on average, the same amount of dry matter per unit of needle area on both soil types. Growth of trees, measured as increment of shoot length, was more restricted on Dystric Histosols (55±18 mm yr–1) than on Podzols (184±44 mm yr–1). The results of the correlation analysis applied to pooled data were inconsistent with the relations between traits of stress resistance syndrome observed in inter-specific comparisons. The study indicated that Scots pine trees relocated nitrogen from senescent foliage more efficiently on mineral Podzols than on organogenic Dystric Histosols, but the minimum nitrogen concentration of needles appeared to be similar on both soil types.  相似文献   

9.
Tree decline and deaths have been observed among 15 to 20-year-old Scots pines (Pinus sylvestris L.) in a dry heath forest in southwestern Finland. The sudden decline in height growth, the dieback of leading shoots and the yellowing of needles in young shoots in the upper part of the tree are typical symptoms of the decline of these young pines. Needle ultrastructure and chemical composition of Scots pines with or without decline and fluctuations of them in different seasons were studied. Afflicted trees were found to suffer from a deficiency in calcium and magnesium with low concentration of foliar nitrogen and phosphorus observed in all the trees studied. Ultrastructural study revealed changes characteristic of different seasons and measured nutrient status of needles. A clear reduction of membrane system in chloroplasts, especially related to Mg deficiency, was observed in most samples. The symptoms related to N deficiency, the translucent appearance of the cytoplasm and chloroplast stroma, and the elongated chloroplasts, as well as swelling of mitochondria, indicating P deficiency, were also found in the needles sampled from this forest decline area. The present study showed that it is possible to detect specific nutrient deficiency symptoms in needle ultrastructure in field samples and for use as sensitive indicators of unbalanced nutrient status.  相似文献   

10.
In numerous locations in Europe spruce trees are exposed to high loads of nitrogen. The present study was performed to characterize the distribution of nitrogen compounds under these conditions. For this purpose Norway spruce ( Picea abies [L.] Karst.) trees were cultivated under close-to-natural conditions of a forest understory in soil from an apparently nitrogen-limited field site in the Black Forest either with, or without supplementation of nitrogen as ammonium nitrate. After 11 and 20 months, growth, total nitrogen contents of the biomass, and total soluble non-proteinogenic nitrogen compounds (TSNN, i.e. nitrate, ammonium, soluble proteinogenic and non-proteinogenic amino compounds) in needles, xylem sap and phloem exudate were analysed. After 20 months of growth, N-fertilization had slightly enhanced the biomass of current-, but not of 1-year-old shoots. At both harvests, total N-content of 1-year-old needles was increased by N-fertilization, whereas current-year needles were not significantly affected. By contrast, TSNN was elevated by N-fertilization in both current-year and 1-year-old needles. The increase in TSNN was mainly attributed to an accumulation of arginine. Xylem sap analysis showed that the increase in TSNN of the needles was a consequence of enhanced nitrogen assimilation of the roots rather than the shoot. Since also TSNN in phloem exudates was enhanced, it appears that N-fertilization elevates the cycling pool of amino compounds in young Norway spruce trees. However, this pool seems to be subject to metabolic interconversion, since mainly glutamine and aspartate are transported in the xylem from the roots to the shoot, but arginine accumulated in the needles and the phloem.  相似文献   

11.
Kölling  C.  Pauli  B.  Häberle  K.-H.  Rehfuess  K.E. 《Plant and Soil》1997,195(2):283-291
Young Norway spruce trees were grown in 94 pots (2 per pot) on soil substrate derived from granite with low Mg saturation and were fertilized with different amounts of NH4NO3 (in total 25, 61, and 97 kmol N ha-1) over a period of four years, partly at an experimental station, partly at a high-elevation site in the Bavarian Forest. A fourth set of trees received 9.4 kmol Mg ha-1 in addition to 25 kmol N. Depending on the treatment, needle chlorosis developed in the course of the experiment. Improved light conditions after three years accelerated the yellowing process. The chlorotic Norway spruce trees showed a severe Mg deficiency and an imbalanced N:Mg ratio. The shoot length increment, the stem diameter, and the needle weights however were not influenced by the fertilization. Excessive applications of NH4NO3caused the substrate to become depleted of Mg. The successful experimental induction of the characteristic tip yellowing of older needles of Norway spruce growing on acidic soils at higher altitudes allowed hypotheses on the causes and processes of this type of forest decline to be tested.  相似文献   

12.
Summary Monoterpenes in needles of Picea abies (L.) Karst. were studied to reveal whether or not the symptoms of forest decline observed in three mountain regions of South Germany (Bavaria) — needle loss and needle yellowing — are related to changes in the amounts of all or individual terpenes. The nutrient supply of the needles was examined in addition to the terpene concentrations, since the disease symptom montane yellowing is often associated with mineral deficiency. At two of the eight locations, trees exhibited Mg-deficiency, at one location K-deficiency was observed, and at another location the S-content of the needles indicated SO2-pollution. Using various statistical methods of analysis, no correlation was observed between the mineral element content of the needles, the percentage of needle loss and either the absolute or percentile terpene amounts stored within the needles. This finding is independent of needle age, date of sampling and terpene pattern. Concerning needle yellowing, the data show a tendency towards a reduction of the terpene concentrations in needles originating from branches with partly yellow needles compared to needles from exclusively green-needled branches. In spite of the fact that only 2-year-old and older needles show the disease symptom of yellowing, the terpene level is reduced even in still green, juvenile and 1-year-old needles. No terpene was found to be an indicator for early recognition of injury.  相似文献   

13.
 Three-year-old Norway spruce trees were planted into a low-nitrogen mineral forest soil and supplied either with two different levels of mineral nitrogen (NH4NO3) or with a slow-release form of organic nitrogen (keratin). Supply of mineral nitrogen increased the concentrations of ammonium and nitrate in the soil solution and in CaCl2-extracts of the rhizosphere and bulk soil. In the soil solution, in all treatments nitrate concentrations were higher than ammonium concentrations, while in the soil extracts ammonium concentrations were often higher than nitrate concentrations. After 7 months of growth, 15N labelled ammonium or nitrate was added to the soil. Plants were harvested 2 weeks later. Keratin supply to the soil did not affect growth and nitrogen accumulation of the trees. In contrast, supply of mineral nitrogen increased shoot growth and increased the ratio of above-ground to below-ground growth. The proportion of needle biomass to total above-ground biomass was not increased by mineral N supply. The atom-% 15N was higher in younger needles than in older needles, and in younger needles higher in plants supplied with 15N-nitrate than in plants supplied with 15N-ammonium. The present data show that young Norway spruce plants take up nitrate even under conditions of high plant internal N levels. Received: 1 April 1998 / Accepted: 9 October 1998  相似文献   

14.
Proanthocyanidins and their potential precursors have been analyzed by paper chromatography and C18 reversed phase columns with high performance liquid chromatography. Total proanthocyanidins on a dry weight basis in cell suspension cultures derived from seedlings of Douglas fir (Pseudotsuga menziesii) were equal to or greater than those found in mature needles of randomly selected outdoor-grown trees. The major monomer and dimer were catechin and epicatechin-catechin, respectively. Although only procyanidins were detectable in cell suspension cultures, mature needles of outdoor-grown trees contained prodelphinidins as well. Immature needles (flush growth) of the same trees contained only trace amounts of prodelphinidins. Eriodictyol-7-glucoside and dihydroquercetin-3′-glucoside were present in all tissues examined. The amount of eriodictyol-7-glucoside was strongly correlated with total proanthocyanidins in immature needles of flush growth (r = 0.89, p = 0.001). The most complex pattern of flavonoids was found in flush growth needles, which contained in addition to the above, naringenin-7-glucoside and five to six flavone glycosides. Chlorogenic acid was detected only in seedlings and in flush growth needles.  相似文献   

15.
Photoacoustic spectra were measured at chopping frequencies of the excitation light at 22 and 515 Hz in order to detect differences between needles from healthy and damaged conifers ( Abies alba Mill, and Picea abies Karst.) with respect to pigment distribution and possibly also to photosynthetic activity. Fully green needles of healthy trees exhibit photoacoustic spectra at 22 Hz with a maximum in the red absorption region of the chlorophyll. This maximum is lost with increasing damage to needles and chlorophyll breakdown. The photoacoustic spectra at 22 Hz of the damaged needles therefore are characterized by a higher signal in the blue-light region as compared to that in the red-light region. This can be quantified by forming the ratio of the photoacoustic signals at 675 and 475 nm (ratio PA 675/475). The needles of the damaged trees possess a lower photosynthetic activity, as seen from the CO2 fixation rate and the variable fluorescence (Rfd-values). It is assumed that the changes in the PA-spectra of the needles from damaged trees are the result of this decline of the photosynthetic apparatus and its function. In contrast to the PA-spectrum at 22 Hz the PA-spectra at 515 Hz, where the PA-signals primarily emanate from the epidermal layer, exhibit a different shape with a maximum near 550 nm. In the needles from the damaged trees the PA-signals are higher, particularly in this maximum range of the spectrum, than those of fully green needles from healthy trees.  相似文献   

16.
Differences in volatile terpene content of Pinus caribaea needles and soil qualities between two pine plantations (Uverito and Sartenejas) in Venezuela were analyzed. Soils in the Uverito pine plantation were sandy, low in nutritional quality, and deficient in available nitrogen and phosphorus content. Pines grown on these soils presented in their needles higher concentrations of -pinene, camphene, sabinene, myrcene+-phellandrene mixture, β-phellandrene, β-caryophyllene, -humulene, and a higher total monoterpene content than pines of the Sartenejas plantation, where soils were nutritionally richer and higher in nitrogen and phosphorus content. The hypothesis of the carbon/nutrient balance could explain these results. Alternatively, continuous stress on the pines of the Uverito plantation due to herbivory by the leafcutter ant Atta laevigata may induce, in part, the differences observed between these pines and those of the Sartenejas plantation.  相似文献   

17.
Summary In a forest decline area (Fichtelgebirge, N.E. Bavaria, FRG), annual time courses of chloroplast pigments in both healthy and chlorotic Norway spruce were studied. The seasonal time courses of green and apparently healthy trees did not generally differ from those reported in the literature for spruce trees of other regions. Chlorophyll content increased from May to October, remained relatively constant or declined slightly during the fall and early winter, and finally decreased markedly from March to early May when pigment is at its minimum before bud break. The annual maximal chlorophyll content increased with needle age from the current year's needles to 4-yearold needles. While carotene content reached its highest concentration in August, the xanthophylls did not peak until February or March. Pigment dynamics of chlorotic trees with lower concentrations, corresponded to those of undamaged trees. Chlorophyll deficits resulted from less pigment formation as well as pigment loss during the growing period. Even when the content of total chlorophyll was low, the ratio of chlorophyll a/chlorophyll b remained almost unchanged. In conjunction with the chlorophyll reductions, a decrease in the chlorophyll/carotenoid ratio and an increase in the xanthophyll/carotene ratio occurred. The periods of needle-chlorophyll reduction did not correlate with those periods of highest concentrations of atmospheric sulphur dioxide, the main air pollutant at the stand. However, chlorophyll formation ceased in the older needle age classes of chlorotic trees when the new flush was sprouting, indicating that nutritional deficiencies affect needle yellowing more than possible direct needle damage by air pollutants.  相似文献   

18.
1 During outbreaks of the pine looper, Bupalus piniarius, its host, Pinus sylvestris, is severely defoliated. The larvae of this geometrid normally feed on mature needles. However, because trees are totally defoliated during outbreaks, the next generation is forced to feed on current-year needles. 2 Bupalus piniarius larvae feeding on previously defoliated trees may show lower performance either because of induced resistance or because larvae have to feed on needles not normally fed upon (current instead of mature). 3 These hypotheses were tested in an experiment where larvae were reared on (i) shoots naturally defoliated the previous year, and thus, bearing only current-year needles, (ii) non-defoliated shoots where larvae had access only to current-year needles, and (iii) control shoots with access to both current and mature needles. 4 There was no support for the induction hypothesis. Survival was lower on naturally defoliated shoots than on control shoots (81.3 vs. 90.9%), but survival was lower also on non-defoliated shoots where larvae had access only to current-year needles (78.8%). Data on larval feeding distribution showed a strong preference for mature needles. 5 Needle nitrogen concentration of current-year needles was 38% higher on defoliated trees than on non-defoliated trees. 6 It is concluded that defoliation affected larval performance primarily through the removal of the preferred type of needles and not because of an induced resistance. Effects of increased concentrations of allelochemicals in defoliated shoots, if present, were probably cancelled out by increased nitrogen concentrations.  相似文献   

19.
Masson pine (Pinus massoniana L.) trees in the Pearl River Delta have shown growth decline since late 1980s, particularly those around industrially polluted regions. As nitrogen is an important nutritional element composing functional proteins, structural proteins and photosynthetic machinery, investigation on nitrogen allocation is helpful to understand nutrient alteration and its regulation mechanism in response to pollution stress. Current year (C) and 1-year old needles (C + 1) of five mature trees were sampled in industrially polluted site and unpolluted natural reserve for bioassay. Needles of declining trees had significantly higher leaf nitrogen per unit area (NL) but lower photosynthetic capacity (P max), which resulted in lower photosynthetic nitrogen use efficiency (PNUE) than those of healthy trees. Nitrogen fraction to the photosynthetic apparatus in the C and C + 1 needles at polluted site was 27 and 22%, significantly lower than the corresponding healthy needles (48 and 32%). The content of structural proteins was positively correlated with NL in C and C + 1 needles. Moreover, the C and C + 1 needles of declining trees had about 1.8 times structural protein as those of healthy trees, suggesting that more nitrogen allocation to structural protein are needed for stronger structural defenses under polluted stress. Decreases in PNUE of declining pine trees could be partially explained by increases in structural protein nitrogen.  相似文献   

20.
In order to investigate effects of magnesium deficiency on Norway spruce [Picea abies (L.) Karst.] photosynthesis, 100 well-nourished 5-year-old spruce trees were grown in sand culture, individually supplied with circulating nutrient solutions. Mineral nutrients were added to the nutrient solutions in optimal quantities and optimal relations to nitrogen. Magnesium was supplied at 0.203, 0.041 and 0.005 mM in order to simulate optimal nutrition, moderate deficiency and severe deficiency. Parameters of photosynthetic gas exchange, chlorophyll, magnesium and starch concentrations were determined in current-year and 1-year-old needles during one growing season. By mid May — 6 months after onset of the Mg deficiency treatments in late autumn — CO2-assimilation rates of 1-year-old needles were significantly decreased independent of the severity of the deficiency treatment, whereas the chlorophyll concentrations did not differ from the controls. The occurrence of yellowing symptoms during July did not further influence the Mg deficiency effect on photosynthesis. In contrast to 1-year-old needles, significant reductions of photosynthesis and chlorophyll in current-year needles were only caused by severely deficient Mg supply. Mg deficiency affected carboxylation efficiency but not light use efficiency. From the accumulation of starch in the needles, up to 30-fold of the controls, the conclusion has been drawn that reactions of CO2-fixation were affected by reduced carbohydrate export. The light-dependent pigment reduction, leading to the typical tipyellowing of needles, clearly reflects a secondary effect of Mg deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号