首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 576 毫秒
1.
2.
A novel retroviruslike family in mouse DNA.   总被引:6,自引:3,他引:3       下载免费PDF全文
In the course of structural analysis of VL30 DNA elements, a recombinant retroviruslike element was encountered that contained non-VL30 long terminal repeats (LTRs) flanking internal VL30 sequences. With the aid of this novel LTR sequence probe, we cloned several DNA elements that were apparently members of a new retroviruslike family. A particular DNA element representative of this family (designated GLN) was characterized. It was approximately 8 kilobase pairs long and contained LTRs that are 430 base pairs long. It possessed an unusual primer-binding site sequence that corresponds to tRNAGln and a polypurine tract primer that is adjacent to the 3' LTR. The nucleotide sequences of the LTRs and their adjacent regions (which together housed all cis-acting retroviral functions) were different from those of known retroviruses and retroviruslike families. The comparison of three different GLN LTR sequences revealed a marked heterogeneity of U3 sequences relative to the homogeneity of R and U5 sequences. We estimate that approximately 20 to 50 copies of GLN elements are dispersed in all species of mice. GLN-related LTRs, however, are present in a much higher copy number (1,000 to 1,500 per genome). Nucleotide sequences that are more distantly related to GLN DNA are present in multiple copies in DNAs of other rodents but not in nonrodent genomes.  相似文献   

3.
4.
5.
Flanking regulatory long terminal repeats (LTRs) in Human endogenous retrovirus (HERV) is a kind of typical DNA repeat that is widespread in the human genome. Currently, many algorithms have been developed to detect the latent periodicity of a wide range of DNA repeats. However, no such attempt was made for HERV LTRs. The present study focused on the investigation of the possible sequence periodic patterns in the HERV LTRs and their regulatory mechanisms. We calculated the sequence periods of 5′, 3′ and combined LTRs in HERVs with our devised matrix simulation algorithm. It is interesting that 5′ and 3′ LTRs have the same period of 7, and combined LTRs have a period of 9. These results indicated that HERV LTRs have predominant periodic patterns. Based on the obtained sequence periodicity, we constructed periodic consensus sequences of 5′, 3′ and combined LTRs. As to 5′ and 3′ LTRs with the same period – 7, we manually scanned the nucleotide bases in the corresponding positions of their periodic consensus sequences, and found some positions have the nucleotide base unchanged, such as the 1st, 5th and 7th positions. These conservative nucleotide base positions represent critical binding sites of regulatory LTRs, and may be indicative of conserved regulatory mechanisms in LRT-participating regulatory networks.  相似文献   

6.
An infectious NZB xenotropic murine leukemia virus (MuLV) provirus (NZB was molecularly cloned from the Hirt supernatant of NZB-IU-6-infected mink cells, and the nucleotide sequence of its env gene and long terminal repeat (LTR) was determined. The partial nucleotide sequence previously reported for the env gene of NFS-Th-1 xenotropic proviral DNA (Repaske, et al., J. Virol. 46:204-211, 1983) is identical to that of the infectious NZB xenotropic MuLV DNA reported here. Alignment of nucleotide or deduced amino acid sequences, or both, of xenotropic, mink cell focus-forming, and ecotropic MuLV proviral DNAs in the env region identified sequence differences among the three host range classes of C-type MuLVs. Major differences were confined to the 5' half of env; a high degree of homology was found among the three classes of MuLVs in the 3' half of env. Alignment of the nucleotide sequence of the LTR of NZB xenotropic MuLV with those of the LTRs of NFS-Th-1 xenotropic, mink cell focus-forming, and ecotropic MuLVs revealed extensive homology between the LTRs of xenotropic and MCF247 MuLVs. An inserted 6-base-pair repeat 5' to the TATA box was a unique feature of both NZB and NFS-Th-1 xenotropic LTRs.  相似文献   

7.
The long terminal repeat (LTR) of retrovirus contains the nucleotide sequences that control gene expression. Although several different LTRs have been used in the context of retroviral vector, the activity of the various LTRs has not yet been systematically compared for their level of gene expression. We evaluated the effect of four different LTRs on gene expression using luciferase, stem cell factor, and enhanced green fluorescence protein as reporter genes. LTRs tested in this study were derived from Moloney murine leukemia virus, myeloproliferative sarcoma virus, murine stem cell virus, and spleen focus-forming virus. It was found that the level of gene expression is affected by not only LTRs but also the transgenes and the cell types in which gene expression occurs. Furthermore, the presence of other nucleotide sequences such as the internal ribosome entry site (IRES)-neo cassette could also significantly affect gene expression. Our results suggested that the LTR should be chosen carefully, more or less on an empirical basis.  相似文献   

8.
9.
Integrated retroviral genomes are flanked by direct repeats of sequences derived from the termini of the viral RNA genome. These sequences are designated long terminal repeats (LTRs). We have determined and analyzed the nucleotide sequence of the LTRs from several exogenous and endogenous avian retroviruses. These LTRs possess several structural similarities with eukaryotic and prokaryotic transposable elements: 1) inverted complementary repeats at the termini, 2) deletions of sequences adjacent to the LTR, 3) small duplications of host sequences flanking the integrated provirus, and 4) sequence homologies with transposable and other genetic elements. These observations suggest that LTRs function in the integration and perhaps transposition of retrovirus genomes. Evidence exists for the presence of a strong promoter sequence within the LTR. The retroviral LTR also contains a "Hogness box" up-stream of the capping site and a poly(A) signal. These features suggest an additional role for the LTR in the regulation of gene expression.  相似文献   

10.
11.
12.
The nucleotide sequence of the long terminal repeat (LTR) of three murine retroviral DNAs has been determined. The data indicate that the U5 region (sequences originating from the 5' end of the genome) of various LTRs is more conserved than the U3 region (sequences from the 3' end of the genome). The location and sequence of the control elements such as the 5' cap, "TATA-like" sequences, "CCAAT-box," and presumptive polyadenylic acid addition signal AATAAA in the various LTRs are nearly identical. Some murine retroviral DNAs contain a duplication of sequences within the LTR ranging in size from 58 to 100 base pairs. A variant of molecularly cloned Moloney murine sarcoma virus DNA in which one of the two LTRs integrated into the viral DNA was also analyzed. A 4-base-pair duplication was generated at the site of integration of LTR in the viral DNA. The host-viral junction of two molecularly cloned AKR-murine leukemia virus DNAs (clones 623 and 614) was determined. In the case of AKR-623 DNA, a 3- or 4-base-pair direct repeat of cellular sequences flanking the viral DNA was observed. However, AKR-614 DNA contained a 5-base-pair repeat of cellular sequences. The nucleotide sequence of the preintegration site of AKR-623 DNA revealed that the cellular sequences duplicated during integration are present only once. Finally, a striking homology between the sequences flanking the preintegration site and viral LTRs was observed.  相似文献   

13.
Sequences of 45 long terminal repeats (LTRs) of the human endogenous retroviruses HERV-K family, precisely mapped by us earlier on human chromosome 19, were determined and a nearest-neighbour dendrogram was constructed. No correlation was observed between the degree of identity of the LTR pairs and their relative positions on the chromosome. Thus, sequences of distantly located LTRs, even positioned on different chromosome arms, could be highly similar to each other, whereas those of closely located LTRs could differ significantly. We conclude that the LTRs have randomly transposed across the chromosome in the course of evolution. The alignment of the LTR sequences allowed us to assign most of the LTRs to two major subfamilies. The LTRs belonging to the first subfamily (LTR-I) are characterised by higher intrasubfamily sequence divergence than those of the second subfamily (LTR-II). The two subfamilies are easily distinguished by the presence of characteristic deletions/insertions in the LTR sequences. The higher divergence of the first subfamily members suggests that their propagation started at earlier stages of evolution, probably soon after the insertion of their ancestral sequence into the primate genome. In turn, each of the subfamilies includes several distinct branches with various degrees of intragroup divergence and with characteristic diagnostic features, suggesting that the members of the branches represent amplified copies of particular master genes which had appeared at different periods of evolution. The sequences of the LTRs demonstrate a characteristic distribution of conservative and variable regions, indicating that the LTRs might have some sequence-dependent functions in the primate genome. Received: 11 August 1997 / Accepted: 22 September 1997  相似文献   

14.
The nucleotide sequence of the intracisternal A-particle genome IAP-IL3 is presented. This IAP element was found to have inserted upstream of the promoter of the interleukin-3 gene of the leukemia cell line WEHI-3B. IAP-IL3 is 5095 bp in length, with identical long terminal repeats (LTRs) of 337 bp. The LTRs show many of the conserved sequence elements identified in other retroviruses. Comparison with other available sequences of IAP genomes indicates that IAP-IL3 is a deleted type I element. It carries a deletion covering the 3' end of the putative IAP gag gene and extending into the 5' end of the putative IAP pol gene. IAP-IL3 has extensive sequence homology with an IgE-binding factor cDNA and evidence is presented indicating that it was derived from a member of the mouse IAP sequence family. Comparison between the pol region of IAP-IL3 and other retroviruses suggests that IAP-IL3 is most closely related to type B and type D retroviruses.  相似文献   

15.
In primates, the tandemly repeated genes encoding U2 small nuclear RNA evolve concertedly, i.e. the sequence of the U2 repeat unit is essentially homogeneous within each species but differs somewhat between species. Using chromosome painting and the NGFR gene as an outside marker, we show that the U2 tandem array (RNU2) has remained at the same chromosomal locus (equivalent to human 17q21) through multiple speciation events over > 35 million years leading to the Old World monkey and hominoid lineages. The data suggest that the U2 tandem repeat, once established in the primate lineage, contained sequence elements favoring perpetuation and concerted evolution of the array in situ, despite a pericentric inversion in chimpanzee, a reciprocal translocation in gorilla and a paracentric inversion in orang utan. Comparison of the 11 kb U2 repeat unit found in baboon and other Old World monkeys with the 6 kb U2 repeat unit in humans and other hominids revealed that an ancestral U2 repeat unit was expanded by insertion of a 5 kb retrovirus bearing 1 kb long terminal repeats (LTRs). Subsequent excision of the provirus by homologous recombination between the LTRs generated a 6 kb U2 repeat unit containing a solo LTR. Remarkably, both junctions between the human U2 tandem array and flanking chromosomal DNA at 17q21 fall within the solo LTR sequence, suggesting a role for the LTR in the origin or maintenance of the primate U2 array.  相似文献   

16.
17.
18.
19.
A strong enhancer element is located within the long terminal repeats (LTRs) of exogenous, oncogenic avian retroviruses, such as Rous sarcoma virus (RSV) and the avian leukosis viruses. The LTRs of a second class of avian retroviruses, the endogenous viruses (evs), lack detectable enhancer function, a property that correlates with major sequence differences between the LTRs of these two virus groups. Despite this lack of independent enhancer activity, we previously identified sequences in ev LTRs that were able to functionally replace essential enhancer domains from the RSV enhancer with which they share limited sequence similarity. To identify candidate enhancer domains in ev LTRs that are functionally equivalent to those in RSV LTRs, we analyzed and compared ev and RSV LTR-specific DNA-protein interactions. Using this approach, we identified two candidate enhancer domains and one deficiency in ev LTRs. One of the proposed ev enhancer domains was identified as a CArG box, a motif also found upstream of several muscle-specific genes, and as the core sequence of the c-fos serum response element. The RSV LTR contains two CArG motifs, one at a previously identified site and one identified in this report at the same relative location as the ev CArG motif. A second factor binding site that interacts with a heat-stable protein was also identified in ev LTRs and, contrary to previous suggestions, appears to be different from previously described exogenous virus enhancer binding proteins. Finally, a deficiency in factor binding was found within the one inverted CCAAT box in ev LTRs, affirming the importance of sequences that flank CCAAT motifs in factor binding and providing a candidate defect in the ev enhancer.  相似文献   

20.
We sequenced two maize bacterial artificial chromosome (BAC) clones anchored by the centromere-specific satellite repeat CentC. The two BACs, consisting of approximately 200 kb of cytologically defined centromeric DNA, are composed exclusively of satellite sequences and retrotransposons that can be classified as centromere specific or noncentromere specific on the basis of their distribution in the maize genome. Sequence analysis suggests that the original maize sequences were composed of CentC arrays that were expanded by retrotransposon invasions. Seven centromere-specific retrotransposons of maize (CRM) were found in BAC 16H10. The CRM elements inserted randomly into either CentC monomers or other retrotransposons. Sequence comparisons of the long terminal repeats (LTRs) of individual CRM elements indicated that these elements transposed within the last 1.22 million years. We observed that all of the previously reported centromere-specific retrotransposons in rice and barley, which belong to the same family as the CRM elements, also recently transposed with the oldest element having transposed approximately 3.8 million years ago. Highly conserved sequence motifs were found in the LTRs of the centromere-specific retrotransposons in the grass species, suggesting that the LTRs may be important for the centromere specificity of this retrotransposon family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号