首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
《Gene》1996,173(1):13-17
We report fluorescent resonance energy transfer (FRET) between two linked variants of the green fluorescent protein (GFP). The C terminus of a red-shifted variant of GFP (RSGFP4) is fused to a flexible polypeptide linker containing a Factor Xa protease cleavage site. The C terminus of this linker is in turn fused to the N terminus of a blue variant of GFP (BFP5). The gene product has spectral properties that suggest energy transfer is occurring from BFP5 to RSGFP4. Upon incubation with Factor Xa, the protein is cleaved, and the two fluorescent proteins dissociate. This is accompanied by a marked decrease in energy transfer. The RSGFP4::BFP5 fusion protein demonstrates the feasibility of using FRET between two GFP derivatives as a tool to monitor protein-protein interactions; in addition, this construct may find applications as an intracellular screen for protease inhibitors.  相似文献   

2.
Detection of programmed cell death using fluorescence energy transfer.   总被引:10,自引:0,他引:10       下载免费PDF全文
Fluorescence energy transfer (FRET) can be generated when green fluorescent protein (GFP) and blue fluorescent protein (BFP) are covalently linked together by a short peptide. Cleavage of this linkage by protease completely eliminates FRET effect. Caspase-3 (CPP32) is an important cellular protease activated during programmed cell death. An 18 amino acid peptide containing CPP32 recognition sequence, DEVD, was used to link GFP and BFP together. CPP32 activation can be monitored by FRET assay during the apoptosis process.  相似文献   

3.
Divéki Z  Salánki K  Balázs E 《Biochimie》2002,84(10):997-1002
While the green fluorescent protein (GFP) is a routinely used marker gene in higher plants, there are only a few data concerning the use of blue fluorescent protein (BFP). These proteins together are used for dual colour tagging experiments in various biological systems; however, the benefits of this technique in plant virology have not been exploited yet. In this work, our aim was to determine whether the BFP is a suitable second marker in conjunction with GFP for following the progress of virus infection. Nicotiana clevelandii, N. benthamiana and N. tabacum cv. Xanthi-nc plants were infected with potato virus X vector carrying the GFP or the Y66H type BFP gene. While GFP was brightly fluorescent in all species, the fluorescence intensity of BFP varied widely, from the bright fluorescence observed in N. clevelandii to the absence of fluorescence in N. tabacum cv. Xanthi-nc. Since at even mild acidic pH BFP rapidly fades, the more acidic cytosol of N. tabacum could be responsible for impaired in vivo fluorescence. After infiltration of the infected leaves of N. clevelandii with pH 5 phosphate buffer, the fluorescence faded thus confirming this situation.  相似文献   

4.
Green fluorescent protein (GFP) is an unusually stable fluorescent protein that belongs to a family of related auto-fluorescent proteins (AFPs). These AFPs have been generated from jellyfish GFP by mutating the amino acids in the chromophore or its vicinity. Variants that emit light in the blue region (Blue Fluorescent Protein, BFP), red region, or yellow region are readily available and are widely used in diverse applications. Previously, we had used fluorescence spectroscopy to study the effect of pH on the denaturation of GFP with SDS, urea, and heat. Surprisingly, we found that SDS, urea or heat, did not have any significant effect on the fluorescence of GFP at pH 7.5 or 8.5, however, at pH 6.5, the protein lost all fluorescence within a very short period of time. These results suggested that GFP undergoes a structural/stability shift between pH 6.5 and 7.5, with the GFP structure at pH 6.5 being very sensitive to denaturation by SDS, urea, and heat. In the present study, we wanted to explore whether the stability or structure of the closely related BFP is also pH dependent. As expected, we found heat-induced denaturation and renaturation of BFP to be pH dependent, very much like GFP. However, when exposed to other denaturants like urea/heat or SDS we found BFP to behave very differently than GFP. Unlike GFP, which at pH 8.5 and 7.5 is very resistant to SDS-induced denaturation, BFP readily lost about 20% of its fluorescence at pH 8.5 and about 60% fluorescence at pH 7.5. Also, our denaturation and renaturation studies show that under certain conditions, BFP is more stable than GFP, such that under conditions where GFP is completely denatured, BFP still retained significant fluorescence. Taken together, our preliminary results show that despite being very similar in both amino acid sequences and overall structures, there may be subtle and important structural/conformational differences between BFP and GFP.  相似文献   

5.
Fluorescent proteins related to and derived from green fluorescent protein (GFP) are widely used as tools for investigating a wide range of biological processes. In particular, GFP and its relatives have been used extensively as qualitative reporters of gene expression in many different organisms, but relatively few studies have investigated fluorescent proteins as quantitative reporters of gene expression. GFP has some limitations as a reporter gene, including possible toxicity when expressed at high levels. Therefore, it would be useful if other fluorescent proteins could be identified for use as quantitative reporters. Toward this end, we investigated BFP as a quantitative reporter of promoter activity in E. coli and directly compared it with GFPuv using a set of well-characterized synthetic constitutive promoters. The fluorescence produced in E. coli strains expressing GFPuv or BFP grown on solid medium was quantified using a CCD camera and fluorimetry. GFPuv consistently gave more reliable and statistically significant results than did BFP in all assays. Correspondingly, we found that the signal-to-noise ratio for GFPuv fluorescence is substantially higher than for BFP. We conclude that, under the conditions assessed in this study, GFPuv is superior to BFP as a quantitative reporter of promoter activity in E. coli. J. Bayes, M. Calvey, L. Reineke, A. Colagiavanni, and M. Tscheiner made equivalent contributions to this work.  相似文献   

6.
Green fluorescent protein (GFP) is autofluorescent. This property has made GFP useful in monitoring in vivo activities such as gene expression and protein localization. We find that GFP can be used in vitro to reveal and characterize protein-protein interactions. The interaction between the S-peptide and S-protein fragments of ribonuclease A was chosen as a model system. GFP-tagged S-peptide was produced, and the interaction of this fusion protein with S-protein was analyzed by two distinct methods: fluorescence gel retardation and fluorescence polarization. The fluorescence gel retardation assay is a rapid method to demonstrate the existence of a protein-protein interaction and to estimate the dissociation constant (Kd) of the resulting complex. The fluorescence polarization assay is an accurate method to evaluate Kd in a specified homogeneous solution and can be adapted for the high-throughput screening of protein or peptide libraries. These two methods are powerful new tools to probe protein-protein interactions.  相似文献   

7.
8.
An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP2)-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2Apro) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2Apro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research.  相似文献   

9.
The "lever-arm" model of a myosin motor predicts that the lever-arm domain in the myosin head tilts and swings against the catalytic domain during ATP hydrolysis, resulting in force generation. To investigate if this "swing" of the lever arm really occurs during the hydrolysis of ATP, we employed fluorescence resonance energy transfer (FRET) between two fluorescent proteins [green (GFP) and blue (BFP)] fused to the N and C termini of the Dictyostelium myosin-motor domain. FRET measurements showed that the C-terminal BFP in the fusion protein first swings against the N-terminal GFP at the isomerization step of the ATP hydrolysis cycle and then swings back at the phosphate-release step. Because the C-terminal BFP mimics the motion of the lever arm, the result indicates that the lever arm swings at the specific steps of the ATP hydrolysis cycle, i.e., at the isomerization and phosphate-release steps. The latter swing may correspond to the power stroke of myosin, while the former may be related to the recovery stroke.  相似文献   

10.
Using a yeast two-hybrid library screen, we have identified that the heart specific FHL2 protein, four-and-a-half LIM protein 2, interacted with human DNA-binding nuclear protein, hNP220. Domain studies by the yeast two-hybrid interaction assay revealed that the second LIM domain together with the third and the fourth LIM domains of FHL2 were responsible to the binding with hNP220. Using green fluorescent protein (GFP)-FHL2 and blue fluorescent protein (BFP)-hNP220 fusion proteins co-expressed in the same cell, we demonstrated a direct interaction between FHL2 and hNP220 in individual nucleus by two-fusion Fluorescence Resonance Energy Transfer (FRET) assay. Besides, Western blot analysis using affinity-purified anti-FHL2 antipeptide antibodies confirmed a 32-kDa protein of FHL2 in heart only. Virtually no expression of FHL2 protein was detected in brain, liver, lung, kidney, testis, skeletal muscle, and spleen. Moreover, the expression of FHL2 protein was also detectable in the human diseased heart tissues. Our results imply that FHL2 protein can shuttle between cytoplasm and nucleus and may act as a molecular adapter to form a multicomplex with hNP220 in the nucleus, thus we speculate that FHL2 may be particularly important for heart muscle differentiation and the maintenance of the heart phenotype.  相似文献   

11.
In the era of proteomics, high-throughput screening of posttranslational modification states of proteins, especially protein phosphorylation, is considered of utmost importance. However, current protein phosphorylation detection methods depend on either the combination of proteolysis and mass spectrometry, or time-consuming immunoassay that requires inevitable washing processes. As a way to rapidly assay protein phosphorylation events, here we propose the use of Open Sandwich immunoassay that detects antigen-dependent stabilization of antibody variable region (Fv). As a model system, the heavy and light chain variable regions (V(H)/V(L)) of anti-phosphotyrosine antibody PY20 were used to evaluate its performance. When V(H)/V(L) interaction was first estimated by phage ELISA, wild-type Fv showed a modest phosphotyrosine (PY)-dependent increase in signal. However, after screening of mutants at an interface residue, one with weak V(H)/V(L) interaction (HQ39R) showed markedly improved (>200%) antigen-dependent signals. Using this mutant, two fusion proteins in which each variable region fragment was tethered to a GFP color variant were made (V(H)-eYFP/V(L)-eCFP) to monitor PY-induced fluorescence resonance energy transfer (FRET) between them. The results showed significant PY- or tyrosine phosphorylated peptide-induced enhancement in FRET in homogeneous solutions, indicating applicability of the method for rapid screening of tyrosine phosphorylation in vitro or in situ and possibly in vivo.  相似文献   

12.
The precise regulation of epidermal growth factor receptor (EGFR) signaling is crucial to its function in cellular growth control. Various studies have suggested that the C-terminal phosphorylation domain, itself a substrate for the EGFR kinase activity, exerts a regulatory influence upon it, although the molecular mechanism for this regulation is unknown. The fluorescence resonance energy transfer (FRET) technique was employed to examine how C-terminal domain conformational changes in the context of receptor activation and autophosphorylation might regulate EGFR enzymatic activity. A novel FRET reporter system was devised in which recombinant purified EGFR intracellular domain (ICD) proteins of varying C-terminal lengths were site-specifically labeled at their extreme C termini with blue fluorescent protein (BFP) and a fluorescent nucleotide analog, 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP), binding at their active sites. This novel BFP/TNP-ATP FRET pair demonstrated efficient energy transfer as evidenced by appreciable BFP-donor quenching by bound TNP-ATP. In particular, a marked reduction in energy transfer was observed for the full-length BFP-labeled EGFR-ICD protein upon phosphorylation, likely reflecting its movement away from the active site. The estimated distances from the BFP module to the TNP-ATP-occupied active site for the full-length and C-terminally truncated proteins also reveal the possible folding geometry of this domain with respect to the kinase core. The present studies demonstrate the first use of BFP/TNP-ATP as a FRET reporter system. Furthermore, the results described here provide biophysical evidence for phosphorylation-dependent conformational changes in the C-terminal phosphorylation domain and its likely interaction with the kinase core.  相似文献   

13.
Eukaryotic genomes encode a considerably higher fraction of multi-domain proteins than their prokaryotic counterparts. It has been postulated that efficient co-translational and sequential domain folding has facilitated the explosive evolution of multi-domain proteins in eukaryotes by the recombination of pre-existent domains. Here, we tested whether eukaryotes and bacteria differ generally in the folding efficiency of multi-domain proteins generated by domain recombination. To this end, we compared the folding behavior of a series of recombinant proteins comprised of green fluorescent protein (GFP) fused to four different robustly folding proteins through six different linkers upon expression in Escherichia coli and the yeast Saccharomyces cerevisiae. We found that, unlike yeast, bacteria are remarkably inefficient at folding these fusion proteins, even at comparable levels of expression. In vitro and in vivo folding experiments demonstrate that the GFP domain imposes significant constraints on de novo folding of its fusion partners in bacteria, consistent with a largely post-translational folding mechanism. This behavior may result from an interference of GFP with adjacent domains during folding due to the particular topology of the beta-barrel GFP structure. By following the accumulation of enzymatic activity, we found that the rate of appearance of correctly folded fusion protein per ribosome is indeed considerably higher in yeast than in bacteria.  相似文献   

14.
The translocation of proteins to cyanobacterial cell envelope is made complex by the presence of a highly differentiated membrane system. To investigate the protein translocation in cyanobacterium Synechococcus PCC 7942 using the truncated ice nucleation protein (InpNC) from Pseudomonas syringae KCTC 1832, the green fluorescent protein (GFP) was fused in frame to the carboxyl-terminus of InpNC. The fluorescence of GFP was found almost entirely as a halo in the outer regions of cells which appeared to correspond to the periplasm as demonstrated by confocal laser scanning microscopy, however, GFP was not displayed on the outermost cell surface. Western blotting analysis revealed that InpNC-GFP fusion protein was partially degraded. The N-terminal domain of InpNC may be susceptible to protease attack; the remaining C-terminal domain conjugated with GFP lost the ability to direct translocation across outer membrane and to act as a surface display motif. The fluorescence intensity of cells with periplasmic GFP was approximately 6-fold lower than that of cells with cytoplasmic GFP. The successful translocation of the active GFP to the periplasm may provide a potential means to study the property of cyanobacterial periplasmic substances in response to environmental changes in a non-invasive manner.  相似文献   

15.
The human I-mfa domain-containing protein (HIC) mRNA produces two protein isoforms, HIC p32 and p40, synthesized from alternative translational initiations. p32 translation is initiated from a standard AUG codon and p40 is an N-terminal extension of p32 generated from an upstream GUG codon. The two isoforms show different subcellular localization: p32 is distributed throughout the cytoplasm whereas p40 can be found both in the cytoplasm and the nucleolus. To investigate the possibility that p40 contains a nucleolus targeting sequence in its N-terminal region, COS cells were transfected with an eukaryotic expression vector coding for green fluorescent protein (GFP) fused to the p40 N terminus. The localization of this fusion protein in the nucleolus indicated that the N-terminal amino acids of p40 probably contain a nucleolar localization signal (NoLS). To find the structural motifs required for nucleolar localization of p40, deletion mutants were expressed in COS cells as fusion polypeptides with GFP. We defined a domain of 19 amino acids near the N terminus that contains an arginine-rich subdomain that conforms to other known NoLS. To demonstrate that this sequence is an authentic NoLS, the sequence was fused to GFP. This fusion protein was observed to migrate into the nucleolus. Taken together, our studies demonstrate that p40 contains a NoLS.  相似文献   

16.
Protein phosphatase type I (PP1), encoded by the single essential gene GLC7 in Saccharomyces cerevisiae, functions in diverse cellular processes. To identify in vivo subcellular location(s) where these processes take place, we used a functional green fluorescent protein (GFP)-Glc7p fusion protein. Time-lapse fluorescence microscopy revealed GFP-Glc7p localizes predominantly in the nucleus throughout the mitotic cell cycle, with the highest concentrations in the nucleolus. GFP-Glc7p was also observed in a ring at the bud neck, which was dependent upon functional septins. Supporting a role for Glc7p in bud site selection, a glc7-129 mutant displayed a random budding pattern. In alpha-factor treated cells, GFP-Glc7p was located at the base of mating projections, again in a septin-dependent manner. At the start of anaphase, GFP-Glc7p accumulated at the spindle pole bodies and remained there until cytokinesis. After anaphase, GFP-Glc7p became concentrated in a ring that colocalized with the actomyosin ring. A GFP-Glc7-129 fusion was defective in localizing to the bud neck and SPBs. Together, these results identify sites of Glc7p function and suggest Glc7p activity is regulated through dynamic changes in its location.  相似文献   

17.
The blue and green fluorescent proteins (BFP and GFP) have been fused at the N- and C-terminal ends, respectively, of the plasma membrane Ca(2+) pump (PMCA) isoform 4xb (hPMCA4xb). The fusion protein was successfully expressed in yeast and purified by calmodulin affinity chromatography. Despite the presence of the fused autofluorescent proteins BFP-PMCA-GFP performed similarly to the wild-type enzyme with respect to Ca(2+)-ATPase activity and sensitivity to calmodulin activation. In the autoinhibited state BFP-PMCA-GFP exhibited a significant intramolecular fluorescence resonance energy transfer (FRET) consistent with the location of the fluorophores at an average distance of 45A. The FRET intensity in BFP-PMCA-GFP decreased when the enzyme was activated either by Ca(2+)-calmodulin, partial proteolysis, or acidic lipids. Moreover, FRET decreased and became insensitive to calmodulin when hPMCA4xb was activated by mutation D170N in BFP-PMCA(D170N)-GFP. The results suggest that the ends of the PMCA are in close proximity in the autoinhibited conformation, and they separate or reorient when the PMCA achieves its final activated conformation.  相似文献   

18.
The DARET (depolarization after resonance energy transfer) assay is a coupled Förster resonance energy transfer (FRET)–fluorescence polarization assay for botulinum neurotoxin type A or E (BoNT/A or BoNT/E) proteolytic activity that relies on a fully recombinant substrate. The substrate consists of blue fluorescent protein (BFP) and green fluorescent protein (GFP) flanking SNAP-25 (synaptosome-associated protein of 25 kDa) residues 134–206. In this assay, the substrate is excited with polarized light at 387 nm, which primarily excites the BFP, whereas emission from the GFP is monitored at 509 nm. Energy transfer from the BFP to the GFP in the intact substrate results in a substantial depolarization of the GFP emission. The energy transfer is eliminated when the fluorescent domains separate on cleavage by the endopeptidase, and emission from the directly excited GFP product fragment is then highly polarized, resulting in an overall increase in polarization. This increase in polarization can be monitored to assay the proteolytic activity of BoNT/A and BoNT/E in real time. It allows determination of the turnover rate of the substrate and the kinetic constants (Vmax and kcat) based on the concentration of cleaved substrate determined directly from the measurements using the additivity properties of polarization. The assay is amenable to high-throughput applications.  相似文献   

19.
基于GFP的FRET应用   总被引:1,自引:0,他引:1  
绿色荧光蛋白(GFP)是一种活性荧光标记,已被用来研究基因表达、分子定位,蛋白质折叠和转运;荧光共振能量转移(FRET)是一种无损伤的光学检测方法,能检测到小于纳米的距离变化。将GFP的活性定位标记功能与FRET的高分辨率相结合。为活体研究生物分子的功能和命运开创了新的篇章。作者在介绍GFP和FRET原理的基础上,综述了基于GFP的FRET在蛋白酶活性,蛋白质间相互作用 构象改变研究中的应用。  相似文献   

20.
The rapid assessment of protein solubility is essential for evaluating expressed proteins and protein variants for use as reagents for downstream studies. Solubility screens based on antibody blots are complex and have limited screening capacity. Protein solubility screens using split beta-galactosidase in vivo and in vitro can perturb protein folding. Split GFP used for monitoring protein interactions folds poorly, and to overcome this limitation, we recently developed a protein-tagging system based on self-complementing split GFP derived from an exceptionally well folded variant of GFP termed 'superfolder GFP'. Here we present the step-by-step procedure of the solubility assay using split GFP. A 15-amino-acid GFP fragment, GFP 11, is fused to a test protein. The GFP 1-10 detector fragment is expressed separately. These fragments associate spontaneously to form fluorescent GFP. The fragments are soluble, and the GFP 11 tag has minimal effect on protein solubility and folding. We describe high-throughput protein solubility screens amenable both for in vivo and in vitro formats. The split-GFP system is composed of two vectors used in the same strain: pTET GFP 11 and pET GFP 1-10 (Fig. 1 and Supplementary Note online). The gene encoding the protein of interest is cloned into the pTET GFP 11 vector (resulting in an N-terminal fusion) and transformed into Escherichia coli BL21 (DE3) cells containing the pET GFP 1-10 plasmid. We also describe how this system can be used for selecting soluble proteins from a library of variants (Box 1). The large screening power of the in vivo assay combined with the high accuracy of the in vitro assay point to the efficiency of this two-step split-GFP tool for identifying soluble clones suitable for purification and downstream applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号