首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hormone levels and response during de-etiolation in pea   总被引:1,自引:0,他引:1  
Symons GM  Reid JB 《Planta》2003,216(3):422-431
The objective of this study was to increase our understanding of the hormonal regulation of de-etiolation by investigating endogenous hormone levels and response in etiolated pea ( Pisum sativum L.) seedlings after exposure to continuous white light. Recent reports suggest that de-etiolation may result from the down-regulation of an enzyme in the brassinosteroid (BR) biosynthesis pathway in pea. A subsequent review highlighted the need for direct measurements of BR levels to support this hypothesis. We have shown that endogenous castasterone and 6-deoxocastasterone levels are not greatly reduced after exposure to light; indeed, 6-deoxocastasterone levels were actually increased. Similarly, the elongation response to exogenous brassinolide was greater in plants grown in continuous light, or in dark-grown plants that had been transferred into the light, than in plants that were grown in continuous darkness. These results provide further evidence to suggest that BRs do not negatively regulate de-etiolation in pea. However, changes in the levels of several other hormones have also been implicated in light-regulated development. We have simultaneously quantified indole-3-acetic acid (IAA), gibberellin (GA), and abscisic acid levels in whole seedlings, which revealed a complex pattern of changes in the levels of these substances after exposure to light. The first and most dramatic of these changes was a significant reduction in GA(1) levels, which reached a minimum 8 h after exposure to light. Whilst GA(1) levels rapidly decreased, IAA levels remained unchanged in the short term after exposure to light, suggesting that GA(1) levels may be the primary factor regulating the reduction in elongation growth during de-etiolation. In the long term after exposure to light, IAA levels underwent a transitory increase, which peaked at 48 h, and had abated by 96 h. However, abscisic acid levels remained unchanged in the first 1 h after exposure to light before undergoing a steady decline over time. The relative importance of these changes in mediating light-induced changes in plant morphology is discussed.  相似文献   

2.
Gibberellin A(1) (GA(1)) levels drop significantly in wild-type pea (Pisum sativum) plants within 4 h of exposure to red, blue, or far-red light. This response is controlled by phytochrome A (phyA) (and not phyB) and a blue light receptor. GA(8) levels are increased in response to 4 h of red light, whereas the levels of GA(19), GA(20), and GA(29) do not vary substantially. Red light appears to control GA(1) levels by down-regulating the expression of Mendel's LE (PsGA3ox1) gene that controls the conversion of GA(20) to GA(1), and by up-regulating PsGA2ox2, which codes for a GA 2-oxidase that converts GA(1) to GA(8). This occurs within 0.5 to 1 h of exposure to red light. Similar responses occur in blue light. The major GA 20-oxidase gene expressed in shoots, PsGA20ox1, does not show substantial light regulation, but does show up-regulation after 4 h of red light, probably as a result of feedback regulation. Expression of PsGA3ox1 shows a similar feedback response, whereas PsGA2ox2 shows a feed-forward response. These results add to our understanding of how light reduces shoot elongation during de-etiolation.  相似文献   

3.
The level of gibberellin A(1) (GA(1)) in shoots of pea (Pisum sativum) dropped rapidly during the first 24 h of de-etiolation. The level then increased between 1 and 5 d after transfer to white light. Comparison of the metabolism of [(13)C(3)H] GA(20) suggested that the initial drop in GA(1) after transfer is mediated by a light-induced increase in the 2beta-hydroxylation of GA(1) to GA(8). A comparison of the elongation response to GA(1) at early and late stages of de-etiolation provided strong evidence for a change in GA(1) response during de-etiolation, coinciding with the return of GA(1) levels to the normal, homeostatic levels found in light- and dark-grown plants. The emerging picture of the control of shoot elongation by light involves an initial inhibition of elongation by a light-induced decrease in GA(1) levels, with continued inhibition mediated by a light-induced change in the plant's response to the endogenous level of GA(1). Hence the plant uses a change in hormone level to respond to a change in the environment, but over time, homeostasis returns the level of the hormone to normal once the ongoing change in environment is accommodated by a change in the response of the plant to the hormone.  相似文献   

4.
Ferguson BJ  Ross JJ  Reid JB 《Plant physiology》2005,138(4):2396-2405
The initiation and development of legume nodules induced by compatible Rhizobium species requires a complex signal exchange involving both plant and bacterial compounds. Phytohormones have been implicated in this process, although in many cases direct evidence is lacking. Here, we characterize the root and nodulation phenotypes of various mutant lines of pea (Pisum sativum) that display alterations in their phytohormone levels and/or perception. Mutants possessing root systems deficient in gibberellins (GAs) or brassinosteroids (BRs) exhibited a reduction in nodule organogenesis. The question of whether these reductions represent direct or indirect effects of the hormone deficiency is addressed. For example, the application of GA to the roots of a GA-deficient mutant completely restored its number of nodules to that of the wild type. Grafting studies revealed that a wild-type shoot or root also restored the nodule number of a GA-deficient mutant. These findings suggest that GAs are required for nodulation. In contrast, the shoot controlled the number of nodules that formed in graft combinations of a BR-deficient mutant and its wild type. The root levels of auxin and GA were similar among these latter graft combinations. These results suggest that BRs influence a shoot mechanism that controls nodulation and that the root levels of auxin and GA are not part of this process. Interestingly, a strong correlation between nodule and lateral root numbers was observed in all lines assessed, consistent with a possible overlap in the early developmental pathways of the two organs.  相似文献   

5.
Symons GM  Reid JB 《Plant physiology》2004,135(4):2196-2206
It is widely accepted that brassinosteroids (BRs) are important regulators of plant growth and development. However, in comparison to the other classical plant hormones, such as auxin, relatively little is known about BR transport and its potential role in the regulation of endogenous BR levels in plants. Here, we show that end-pathway BRs in pea (Pisum sativum) occur in a wide range of plant tissues, with the greatest accumulation of these substances generally occurring in the young, actively growing tissues, such as the apical bud and young internodes. However, despite the widespread distribution of BRs throughout the plant, we found no evidence of long-distance transport of these substances between different plant tissues. For instance, we show that the maintenance of steady-state BR levels in the stem does not depend on their transport from the apical bud or mature leaves. Similarly, reciprocal grafting between the wild type and the BR-deficient lkb mutants demonstrates that the maintenance of steady-state BR levels in whole shoots and roots does not depend on either basipetal or acropetal transport of BRs between these tissues. Together, with results from (3)H-BR feeding studies, these results demonstrate that BRs do not undergo long-distance transport in pea. The widespread distribution of end-pathway BRs and the absence of long-distance BR transport between different plant tissues provide significant insight into the mechanisms that regulate BR homeostasis in plants.  相似文献   

6.
Characterization of two brassinosteroid C-6 oxidase genes in pea   总被引:1,自引:0,他引:1       下载免费PDF全文
C-6 oxidation genes play a key role in the regulation of biologically active brassinosteroid (BR) levels in the plant. They control BR activation, which involves the C-6 oxidation of 6-deoxocastasterone (6-DeoxoCS) to castasterone (CS) and in some cases the further conversion of CS to brassinolide (BL). C-6 oxidation is controlled by the CYP85A family of cytochrome P450s, and to date, two CYP85As have been isolated in tomato (Solanum lycopersicum), two in Arabidopsis (Arabidopsis thaliana), one in rice (Oryza sativa), and one in grape (Vitis vinifera). We have now isolated two CYP85As (CYP85A1 and CYP85A6) from pea (Pisum sativum). However, unlike Arabidopsis and tomato, which both contain one BR C-6 oxidase that converts 6-DeoxoCS to CS and one BR C-6 Baeyer-Villiger oxidase that converts 6-DeoxoCS right through to BL, the two BR C-6 oxidases in pea both act principally to convert 6-DeoxoCS to CS. The isolation of these two BR C-6 oxidation genes in pea highlights the species-specific differences associated with C-6 oxidation. In addition, we have isolated a novel BR-deficient mutant, lke, which blocks the function of one of these two BR C-6 oxidases (CYP85A6). The lke mutant exhibits a phenotype intermediate between wild-type plants and previously characterized pea BR mutants (lk, lka, and lkb) and contains reduced levels of CS and increased levels of 6-DeoxoCS. To date, lke is the only mutant identified in pea that blocks the latter steps of BR biosynthesis and it will therefore provide an excellent tool to further examine the regulation of BR biosynthesis and the relative biological activities of CS and BL in pea.  相似文献   

7.
The interactions of phytochrome A (phyA) and phytochrome B (phyB) in the photocontrol of vegetative and reproductive development in pea have been investigated using null mutants for each phytochrome. White-light-grown phyA phyB double mutant plants show severely impaired de-etiolation both at the seedling stage and later in development, with a reduced rate of leaf production and swollen, twisted internodes, and enlarged cells in all stem tissues. PhyA and phyB act in a highly redundant manner to control de-etiolation under continuous, high-irradiance red light. The phyA phyB double mutant shows no significant residual phytochrome responses for either de-etiolation or shade-avoidance, but undergoes partial de-etiolation in blue light. PhyB is shown to inhibit flowering under both long and short photoperiods and this inhibition is required for expression of the promotive effect of phyA. PhyA is solely responsible for the promotion of flowering by night-breaks with white light, whereas phyB appears to play a major role in detection of light quality in end-of-day light treatments, night breaks and day extensions. Finally, the inhibitory effect of phyB is not graft-transmissible, suggesting that phyB acts in a different manner and after phyA in the control of flower induction.  相似文献   

8.
The abundance of plant nucleolin mRNA is regulated during de-etiolation by phytochrome. A close correlation between the mRNA abundance of nucleolin and mitosis has also been previously reported. These results raised the question of whether the effects of light on nucleolin mRNA expression were a consequence of light effects on mitosis. To test this we compared the kinetics of light-mediated increases in cell proliferation with that of light-mediated changes in the abundance of nucleolin mRNA using plumules of dark-grown pea (Pisum sativum) seedlings. These experiments show that S-phase increases 9 h after a red light pulse, followed by M-phase increases in the plumule leaves at 12 h post-irradiation, a time course consistent with separately measured kinetics of red light-induced increases in the expression of cell cycle-regulated genes. These increases in cell cycle-regulated genes are photoreversible, implying that the light-induced increases in cell proliferation are, like nucleolin mRNA expression, regulated via phytochrome. Red light stimulates increases in the mRNA for nucleolin at 6 h post-irradiation, prior to any cell proliferation changes and concurrent with the reported timing of phytochrome-mediated increases of rRNA abundance. After a green light pulse, nucleolin mRNA levels increase without increasing S-phase or M-phase. Studies in animals and yeast indicate that nucleolin plays a significant role in ribosome biosynthesis. Consistent with this function, pea nucleolin can rescue nucleolin deletion mutants of yeast that are defective in rRNA synthesis. Our data show that during de-etiolation, the increased expression of nucleolin mRNA is more directly regulated by light than by mitosis.  相似文献   

9.
Jager CE  Symons GM  Ross JJ  Smith JJ  Reid JB 《Planta》2005,221(1):141-148
The objective of this study was to increase our understanding of the relationship between brassinosteroids (BRs) and gibberellins (GAs) by examining the effects of BR deficiency on the GA biosynthesis pathway in several tissue types of pea (Pisum sativum L.). It was suggested recently that, in Arabidopsis, BRs act as positive regulators of GA 20-oxidation, a key step in GA biosynthesis [Bouquin et al. (2001) Plant Physiol 127:450–458]. However, this may not be the case in pea as GA20 levels were consistently higher in all shoot tissues of BR-deficient (lk and lkb) and BR-response (lka) mutants. The application of brassinolide (BL) to lkb plants reduced GA20 levels, and metabolism studies revealed a reduced conversion of GA19 to GA20 in epi-BL-treated lkb plants. These results indicate that BRs actually negatively regulate GA20 levels in pea. Although GA20 levels are affected by BR levels, this does not result in consistent changes in the level of the bioactive GA, GA1. Therefore, even though a clear interaction exists between endogenous BR levels and the level of GA20, this interaction may not be biologically significant. In addition to the effect of BRs on GA levels, the effect of altered GA1 levels on endogenous BR levels was examined. There was no significant difference in BR levels between the GA mutants and the wild type (wt), indicating that altered GA1 levels have no effect on BR levels in pea. It appears that the BR growth response is not mediated by changes in bioactive GA levels, thus providing further evidence that BRs are important regulators of stem elongation.  相似文献   

10.
11.
Developing and germinating pea seeds contain high levels of ubiquitin conjugated to proteins as detected on western blots. In contrast, the level of dry seed protein-ubiquitin conjugates in vivo appears low, with mainly free ubiquitin present. The ubiquitination of endogenous dry pea seed proteins is observed in vitro, relying only on already present endogenous ubiquitin, suggesting the enzymatic machinery for ubiquitination is present in the dry seed. Energy source in the form of ATP increased the formation of large molecular mass conjugates, although some conjugation took place without added ATP. The usefulness of dry seeds, having low levels of ATP which can then be manipulated in the in vitro reaction is discussed. ATP and ubiquitin degrading activities are detected in the crude in vitro system, pointing to the need to purify the individual components, or to seek specific inhibitors of the undesirable secondary reactions.  相似文献   

12.
Law DM  Davies PJ 《Plant physiology》1990,93(4):1539-1543
Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation.  相似文献   

13.
Brassinosteroids (BRs) are essential for various aspects of plant development. Cellular BR homeostasis is critical for proper growth and development of plants; however, its regulatory mechanism remains largely unknown. BAT1 (BR‐related acyltransferase 1), a gene encoding a putative acyltransferase, was found to be involved in vascular bundle development in a full‐length cDNA over‐expressor (FOX) screen. Over‐expression of BAT1 resulted in typical BR‐deficient phenotypes, which were rescued by exogenously applied castasterone and brassinolide. Analyses of BR profiles demonstrated that BAT1 alters levels of several brassinolide biosynthetic intermediates, including 6‐deoxotyphasterol, typhasterol and 6‐deoxocastasterone. BAT1 is mainly localized in the endoplasmic reticulum. BAT1 is highly expressed in young tissues and vascular bundles, and its expression is induced by auxin. These data suggest that BAT1 is involved in BR homeostasis, probably by conversion of brassinolide intermediates into acylated BR conjugates.  相似文献   

14.
CCC-Induced increase of gibberellin levels in pea seedlings   总被引:1,自引:1,他引:0  
D. M. Reid  A. Crozier 《Planta》1970,94(2):95-106
Summary Pea seedlings (cv. Alaska), were treated with two concentrations of (2-chloroethyl)trimethylammonium chloride (CCC) and choline chloride. Treatment with 1 mg/l CCC resulted in as much as a 150fold increase in endogenous gibberellin (GA) levels without there being any parallel stimulation of growth. Plants grown in 1,000 mg/l CCC were severely dwarfed but contained GA levels not significantly different from control plants grown in distilled water. CCC also retarded GA3-induced growth of pea seedlings. These effects appear to be CCC specific as the CCC analogue choline chloride affected neither the GA content of pea seedlings nor their response to GA3. The lack of correlation between endogenous GA levels and stem height suggests that in peas the predominant factor in CCC-induced inhibition of stem growth is not related to an effect of CCC on GA biosynthesis.Supported by National Research Council (Canada) grant A-5727.Supported by a Postdoctoral Fellowship from NRC Grant A-2585 to R.P. Pharis.  相似文献   

15.
Phytochrome in Pharbitis nil during and after de-etiolation   总被引:1,自引:0,他引:1  
Phytochrome (P) was measured by in vivo spectrophotometry in the cotyledons of Pharbitis nil Choisy cv. Violet. In etiolated plants exposure to red light (R) results in a rapid fall in P content by destruction of the far-red absorbing form of phytochrome (Pfr). In continuous R or white light the P content falls as a result of destruction to a stable 3% of that originally present. In Norflurazon-treated white light de-etiolated plants, Pfr undergoes reversion in darkness to the red absorbing form of phytochrome (Pr) with a half life of 4 h at 19°C, while total P remains constant. Synthesis of Pr after de-etiolation occurs at a slow rate and is enhanced by terminating the de-etiolation light treatment with far-red light. The results are discussed in relation to the P control of flowering.  相似文献   

16.
There are two stages in photomorphogenesis. First, seedlings detect light and open their cotyledons. Second, seedlings optimize their light environment by controlled elongation of the seedling stem or hypocotyl. In this study, we used time‐lapse imaging to investigate the relationship between the brassinosteroid (BR) and gibberellin (GA) hormones across both stages of photomorphogenesis. During the transition between one stage and the other, growth promotion by BRs and GAs switched from an additive to a synergistic relationship. Molecular genetic analysis revealed unexpected roles for known participants in the GA pathway during this period. Members of the DELLA family could either repress or enhance BR growth responses, depending on developmental stage. At the transition point for seedling growth dynamics, the BR and GA pathways had opposite effects on DELLA protein levels. In contrast to GA‐induced DELLA degradation, BR treatments increased the levels of REPRESSOR of ga1‐3 (RGA) and mimicked the molecular effects of stabilizing DELLAs. In addition, DELLAs showed complex regulation of genes involved in BR biosynthesis, implicating them in BR homeostasis. Growth promotion by GA alone depended on the PHYTOCHROME INTERACTING FACTOR (PIF) family of master growth regulators. The effects of BR, including the synergistic effects with GA, were largely independent of PIFs. These results point to a multi‐level, dynamic relationship between the BR and GA pathways.  相似文献   

17.
To gain a better understanding of brassinosteroid biosynthesis, the levels of brassinosteroids and sterols related to brassinolide biosynthesis in Arabidopsis, pea, and tomato plants were quantified by gas chromatography-selected ion monitoring. In these plants, the late C-6 oxidation pathway was found to be the predominant pathway in the synthesis of castasterone. Furthermore, all these plant species had similar BR profiles, suggesting the presence of common biosynthetic control mechanisms. The especially high levels of 6-deoxocathasterone and 6-deoxocastasterone may indicate that their respective conversions to 6-deoxoteasterone and castasterone are regulated in planta and hence are important rate-limiting steps in brassinosteroid biosynthesis. Other possible rate-limiting reactions, including the conversion of campestanol to 6-deoxocathasteonre. are also discussed. Tomato differs from Arabidopsis and pea in that tomato contains 28-norcastasterone as a biologically active brassinosteroid, and that its putative precursors, cholesterol and its relatives are the major sterols.  相似文献   

18.
19.
20.
Enzyme levels in pea seedlings grown on highly salinized media   总被引:6,自引:6,他引:0       下载免费PDF全文
The levels of 18 enzymes were determined in leaves, stems, and roots of 11-day-old pea seedlings grown in a liquid medium or in the same medium containing, in addition, 5 atmospheres of either NaCl, KCl, Na2SO4, or K2SO4. Though the plants grown in saline media were stunted, the specific activities of the enzymes were the same in the given tissues of all plants. Also, the electrophoretic pattern of isozymes of malate dehydrogenase was not altered by growth of the plants in a saline medium. However, the isozyme pattern of peroxidase from roots of salt-grown plants was altered in that two of the five detectable isozymes migrated a little more slowly than those in extracts from nonsaline plant tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号