首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Brodsky  M H Li  C G Long  J Apigo  J Baum 《Biopolymers》1992,32(4):447-451
Triple-helix formation of the peptide (Pro-Hyp-Gly)10 was monitored by nmr and CD spectroscopy. The two-dimensional nmr spectra indicated that the Gly C alpha H and Pro C delta H proton resonances shift upfield in going from the nonhelical to helical form, while hydroxy-proline resonances are unchanged. The integrated areas of the helical and nonhelical resonances could be monitored in the one-dimensional nmr spectrum, and indicate that in the (Pro-Hyp-Gly)10 about 90% of the residues are in a defined triple-helical conformation. The introduction of a glycine to alanine substitution or the deletion of a single hydroxyproline residue in the stable triple-helical peptide (Pro-Hyp-Gly)10 still allows trimers to be formed, but the trimers show a substantial loss of triple helix and decreased thermal stability compared with (Pro-Hyp-Gly)10. Two computer models were generated for the Gly----Ala peptide, one with the Ala side chains packed inside the helix and the other with the region containing the alanines forming a beta-bend that loops out from the helix. The nmr data is more consistent with the latter model.  相似文献   

2.
3.
The effect of phospholipid structure on the interaction between small peptides and phospholipid membranes has been studied by high-sensitivity differential scanning calorimetry. The peptides used, N-Boc-beta-Ala-Trp-Met-Arg-Phe-NH2 and N-Boc-beta-Ala-Trp-Met-Lys-Phe-NH2, are basic analogs of the hormone pentagastrin. These peptides split the gel-to-liquid crystalline phase transition of synthetic phosphatidylcholines into two components. For dimyristoyl (DMPC), dipalmitoyl (DPPC) and 1-stearoyl-2-oleoyl (SOPC) phosphatidylcholines, one component remains at the temperature corresponding to that of pure lipid and the other one is shifted towards higher temperatures. With increasing peptide concentration there is a gradual increase in the enthalpy of the high-temperature component at the expense of the low-temperature one, and there is also an increase in the total enthalpy of the transition. A mixture of the peptide with distearoylphosphatidylcholine (DSPC) behaves differently, with the transition occurring at a temperature below that of the pure lipid increasing with peptide concentration. The susceptibility of various phosphatidylcholines to perturbation by the peptides increases in the order DMPC greater than SOPC greater than DPPC greater than DSPC. The effect of these peptides on the phase transitions of acidic phosphatidylglycerols is generally greater than with the corresponding phosphatidylcholines, but the dependence on the length of lipid hydrocarbon chains is similar. Perturbation of the thermotropic phase transition is strongest for dimyristoylphosphatidylglycerol, followed by the dipalmitoyl and the distearoyl analogs. The effect of the peptides on the phase transition of dimyristoylphosphatidylserine is significantly smaller compared to that observed with dimyristoylphosphatidylglycerol and it is further reduced for dimyristoylphosphatidic acid. The phase transition of this latter lipid remains virtually unchanged, even in the presence of high concentrations of the peptide. Similar resistance to the perturbation of the phase transitions by the peptides is observed for synthetic phosphatidylethanolamine. The different susceptibility of various phospholipids to perturbation by the peptides is suggested to be related to different degrees of intermolecular interaction between phospholipid molecules, and particularly to different abilities of phospholipids to form intermolecular hydrogen bonding.  相似文献   

4.
C F Bucci  E Bucci 《Biochemistry》1975,14(20):4451-4458
The beta subunits of hemoglobin upon alkylation of the cysteinyl residues with iodoacetamide showed a sedimentation velocity with an S20w, near 1.8 as for monomeric subunits. They reacted with alpha chains to give a tetrameric hemoglobin with a sedimentation constant near 4.4. Their CD spectrum was indistinguishable from that of untreated beta chains below 270 nm, otherwise they showed some deviation that became pronounced in the Soret region, where the optical activity of the alkylated subunits was definitely lower than that of the native subunits. Upon removal of the heme the apo-beta subunits showed a decreased optical activity in the far-uv region of the spectrum indicating a substantial loss of helical content. Their sedimentation behavior was consistent with the presence of large aggregates, which dissociates into monomers upon reconstitution with cyanoheme. The apo-beta subunits could be renatured from 6 M guanidine hydrochloride. They showed a stoichiometric reaction with heme in the molar ratio 1:1. Upon reconstitution with the heme their optical activity became similar to that of the native beta chains in the far-uv region of the spectrum, but remained lower in the near-uv and Soret regions. After acylation of the lysyl residues with citraconic anhydride the apo-beta subunits were digested with trypsin and the arginyl-COOH peptides beta(1-30), beta(31-40), beta(41-104), and beta(105-146) were separated by gel chromatography. With the exception of the peptide beta/105-146), which was insoluble at neutral pH, the sedimentation behavior of the other peptides showed the presence of small polymers. The sedimentation behavior of the peptide beta(31-40) was not tested. The percentage of alpha helix, beta conformation, and of random coil (or unordered structure) of the various proteins and peptides was measured fitting their CD spectra in the far-uv region with the parameter published by Y.H. Chen et al. ((1974), Biochemistry 13, 3350) and by N. Greenfield and G.D. Fasman ((1969), Biochemistry 8, 4108). In this way the helical content of the native and reconstituted alkylated beta subunits appeared to be near 76%, a value very near to that present in the same subunits in the hemoglobin crystal. The helical content of the apo-beta subunits in 0.04 M borate buffer at pH 9.6 decreased to a value near 45%. The helical content of the isolated peptides in electrolyte solutions was in any case near 10% indicating an almost complete loss of the structure that they have in the hemoglobin crystal. Cyanoheme reacted with the peptide beta(41-104), however, the reaction was not stoichiometric indicating a low affinity of the heme for the peptide. With the exception of the peptide beta(31-104), all of the other peptides recovered some of their helical structure when dissolved in 50% methanol. Notably also the apo-beta subunits did so suggesting that the loss of structure upon the removal of the heme could be in part due to the exposure of the heme pocket to water.  相似文献   

5.
6.
The proton nuclear magnetic resonance (1H-NMR) spectra of glycophorin and its tryptic sialoglycopeptides were investigated. From the intensities of the assigned resonances it was concluded that all of the residues in the sialoglycopeptides are sufficiently mobile in conformation to give sharp resonances, while in glycophorin this is true for only approximately 80% of the peptide backbone. The resonances of the central sequence of some 20 of the hydrophobic residues are strongly broadened. This region is probably that of alpha-helical structure which is known to aggregate. The linewidths and intensities of the resonances are not, or only slightly, affected by changing the ionic strength, temperature or by carboxymethylation of the Met-81 residue in glycophorin. Glycophorin was found to bind about 100 mol sodium dodecylsulphate/mol protein as derived from studies on linebroadening of the latter's C-3 to C-11 methylene resonances. The bound dodecyl-sulphate probably increases the mobilities of the hydrophobic residues in the protein as these resonance intensities are increased by the binding. The carbohydrate chains in glycophorin were conformationally mobile; no evidence was found for tight carbohydrate-protein interactions. The relevance of flexible carbohydrate chains in membrane glycoproteins is discussed in relation to cell surface chemistry.  相似文献   

7.
8.
The average globular protein contains 30% alpha-helix, the most common type of secondary structure. Some amino acids occur more frequently in alpha-helices than others; this tendency is known as helix propensity. Here we derive a helix propensity scale for solvent-exposed residues in the middle positions of alpha-helices. The scale is based on measurements of helix propensity in 11 systems, including both proteins and peptides. Alanine has the highest helix propensity, and, excluding proline, glycine has the lowest, approximately 1 kcal/mol less favorable than alanine. Based on our analysis, the helix propensities of the amino acids are as follows (kcal/mol): Ala = 0, Leu = 0.21, Arg = 0.21, Met = 0.24, Lys = 0.26, Gln = 0.39, Glu = 0.40, Ile = 0.41, Trp = 0.49, Ser = 0.50, Tyr = 0. 53, Phe = 0.54, Val = 0.61, His = 0.61, Asn = 0.65, Thr = 0.66, Cys = 0.68, Asp = 0.69, and Gly = 1.  相似文献   

9.
Conformational analyses of cyclic tetrapeptides consisting of alternating cis and trans peptide units have been made using contact criteria and energy calculations. This study has been restricted to those structures having a symmetry element in the backbone ring, such as a twofold axis (d) or a center of inversion (i). There are five main results. (1) There are two distinct types of conformations, which are stereochemically favorable corresponding to each of twofold and inversion-symmetrical structures, designated as d1, d2 (for twofold symmetrical) and i1, i2 (for inversion-symmetrical). Among these, the i1 type has the lowest energy when glycyl residues occur at all four α-carbon atoms. (2) With the glycyl residue at all four α-carbon atoms, methyl substitution at the cis peptide nitrogen atoms is possible in all the four types, whereas the substitution at trans peptide nitrogen atoms is possible only for the i1 type. Thus only in the i1 type can all the nitrogen atoms be methylated simultaneously. The conformation of the molecule in the crystal structure of cyclotetrasarcosyl belongs to the i1 type. (3) When alanyl residues occur at all four α-carbon atoms, the possible symmetrical type is dependent on the enantiomorphic form and the actual sequence of the alanyl residues. (4) The methyl substitution at peptide nitrogen atoms for cyclic tetrapeptides having alanyl residues causes more stereochemical restriction in the allowed conformations than with glycyl residues. (5) The prolyl residue can be incorporated favorably at the cis-trans junction of both d and i types of structures. The results of the present study are compared with the data on cyclic tetrapeptides available from the crystal structure and nmr studies. The results show an overall agreement both regarding the type of symmetry and the conformational parameters.  相似文献   

10.
The solution conformations of three trispeptides--L,L,L-1,3,5-C6H3[CH2NHCOCH(X)-NHBoc++ +]3, X = CH3 (Ala) or CH2CH(CH3)2 (Leu), and L,L,L-N(CH2CH2NHCOCH[CH2-CH(CH3)2]NHBoc)3--have been determined from their ir and vibrational CD (VCD) spectra in the NH stretching and carbonyl stretching regions in apolar solution. The compounds containing L-Leu are shown to occur primarily in a propeller conformation with C3 symmetry that is stabilized by interchain hydrogen bonds. Through application of the coupled oscillator model of VCD, a right-handed sense for the hydrogen-bonded chains in the propeller is deduced, in agreement with previous empirical force field calculations. The spectra also provide evidence for interchain association between two chains, resulting in a C10-ring. For chains not involved in interchain association, the spectra reveal the presence of C7-rings within a chain. The trispeptide containing L-Ala is found to occur primarily in a random form.  相似文献   

11.
A Gupta  V S Chauhan 《Biopolymers》1990,30(3-4):395-403
Three model dipeptides containing a dehydroalanine residue (delta Ala) at the C-terminal, Boc-X-delta Ala-NHCH3 [X = Ala, Val, and Phe,] have been synthesized and their solution conformations investigated by 1H-NMR, IR, and CD spectroscopy. NMR studies on these peptides in CDCl3 clearly indicate that the NH group of dehydroalanine is involved in an intramolecular hydrogen bond. This conclusion is supported by IR studies also. Nuclear Overhauser effect (NOE) studies are also accommodative of an inverse gamma-turn-type of conformation that is characterized by conformational angles of phi approximately -70 degrees and psi approximately +70 degrees around the X residue, and a C alpha i + 1 H-Ni + 2H interproton distance of 2.5 A. It appears that unlike dehydrophenylalanine or dehydroleucine, which tend to stabilize beta-turn type of structures occupying the i + 2 position of the turn, dehydroalanine favors the formation of an inverse gamma-turn, centered at the preceding L-residue in such solvents as CDCl3 and (CD3)2SO. A comparison of solution conformation of Boc Val-delta Ala-NHCH3 with the corresponding saturated analogue, Boc-Val-Ala-NHCH3, is also presented and shows that dehydroalanine is responsible for inducing the turn structure. It may be possible to design peptides with different preferred conformations using the suitable dehydroamino acid.  相似文献   

12.
13.
The spectroscopic properties (uv, CD, nmr) of histidine, glycylhistidine, histidylglycine, glycylhistidylglycine have been investigated in water and methanol in the temperature range 200–320 K in order to obtain information about their conformational equilibria. This analysis has been carried out for the different ionic forms of the compounds, in order to evaluate the influence of the ionization state of the carboxyl, histidyl, and amino groups on the rotamer distribution of the histidyl side chain (as evaluated from proton nmr analysis) and on the overall molecule (as judged from CD spectra). On the basis of certain approximations and from the temperature dependence of the proton nmr resonance, the thermodynamic parameters (ΔH° and ΔS°) characterizing the conformational equilibrium of the hystidyl side chain have been evaluated for the different structures and ionization states. Relatively large entropy differences between the rotamers are obtained in some cases. The data of the sidechain rotamer population, as determined by nmr, have been analytically correlated with the CD data, and in the case of hystidine and histidylglycine in basic solution, first-approximation values for the ellipticity of the single conformers have been evaluated. Finally, in the example of glycylhistidine and histidylglycine in basic solution, it is shown how the data obtained from the different experimental approaches (nmr and CD), as well as from theoretical energy calculations, converge to characterize the most stable conformation in solution.  相似文献   

14.
The phosphorylation of a synthetic peptide, corresponding to the C-terminal 11 amino acids of bovine rhodopsin (VII, residues 338-348), was studied under different conditions. The peptide was only phosphorylated in the presence of photoactivated rhodopsin. Using the same protocol, 12 other peptides, mapping in the rhodopsin C-terminal, were screened for their effectiveness as substrates for rhodopsin kinase. It was found that the peptides became poorer substrates with increasing length, and the best substrates comprised the most C-terminal 9-12 amino acids as opposed to other parts of the C-terminus. It was noted that the absence of the two-terminal residues Pro347 and Ala348 impaired peptide phosphorylation. The effect of the decay of metarhodopsin II on the phosphorylation of rhodopsin and the peptides was determined, and it was found that the rhodopsin and peptide phosphorylations decayed with half times of approximately 33 min and 28 min, respectively. The sites of phosphorylation on the peptides were determined and in all cases the phosphorylation was found to be predominantly on serine residues. Only the 11-residue peptide (VII, residues 338-348) contained significant threonine phosphorylation, which was about 25% that on serine residues. Cumulatively, the results suggest that Ser343 is the preferred site of phosphorylation in vitro. The reason for the poor substrate effectiveness of the larger peptides was examined by competitive experiments in which it was shown that a poorly phosphorylated larger peptide successfully inhibited the phosphorylation of a 'good' peptide substrate. The studies above support a mechanism for rhodopsin kinase that we have termed the 'kinase-activation hypothesis'. This requires that the kinase exists in an inactive form and is activated only after binding to photoactivated rhodopsin.  相似文献   

15.
The effect of neurophysin-hormone interaction on the environment of the single tyrosine of bovine neurophysin (Tyr-49) and on that of the tyrosine of oxytocin and vasopressin was studied by fluorescence; tyrosine-free peptides were used to determine effects on Tyr-49, and acetylated neurophysin was used to determine effects on the hormone tyrosine. Binding increases the fluorescence intensity of Tyr-49 by 130% while the fluorescence of the hormone tyrosine is almost completely quenched. Correlation of these results with those obtained on binding oxytocin or vasopressin to native neurophysin indicates that in the hormone complexes less than half of the fluorescence of Tyr-49 is lost by F?rster energy transfer to the quenched hormone tyrosine. These results support spin-label studies in indicating that the distance between Tyr-49 and the tyrosine of hormone bound to the strong hormone binding site is greater than 5 A. In the absence of peptides, the fluorescence of Tyr-49 increases by 40% on lowering the pH from 6.2 to 2. Titration of the acid fluorescence transition in bovine neurophysins-I and -II, and in bovine neurophysin-II treated with carboxypeptidase B to remove the Arg-Arg-Val sequence at the carboxyl terminus, indicates that this transition is due to titration of a side-chain carboxyl with an intrinsic pK of 4.6. The effects of guanidine, glycerol, and disulfide cleavage on the magnitude of the acid transition indicate that the conformational information necessary for the transition resides within the amino acid sequence adjacent to Tyr-49. Accordingly, the fluorescence acid transition is attributed to decreased quenching by Glu-46 or Glu-47 upon protonation. Glycerol is shown to perturb the glutamate-tyrosine interaction in the absence of general conformational effects. Comparison of the fluorescence low-pH transition with that of the low-pH circular dichroism transition of nitrated neurophysins suggests that the fluorescence and CD transitions reflect related, but not necessarily identical, phenomena. In an appendix, evidence is presented which suggests that the products of carboxy-peptidase digestion of bovine neurophysin-II are the same as two minor bovine neurophysin components, one of which is neurophysin-C.  相似文献   

16.
Conformational energy calculations were carried out on the enkephalin releasing peptides, Tyr-Arg and Try-D-Arg. The conformations of low energy were found to result in two configurations in which the side-chains were either on opposite sides of the backbone (R1) or parallel to one another (R2). A comparison of the two molecules suggests that configuration R2 is most probably the active structure. A method for testing this hypothesis is presented.  相似文献   

17.
Gel filtration studies on the binding of peptides to pepsin   总被引:3,自引:0,他引:3  
  相似文献   

18.
The interactions of lysine oligopeptides with dimyristoyl phosphatidylglycerol (DMPG) bilayer membranes were studied using spin-labeled lipids and electron spin resonance spectroscopy. Tetralysine and pentalysine were chosen as models for the basic amino acid clusters found in a variety of cytoplasmic membrane-associating proteins, and polylysine was chosen as representative of highly basic peripherally bound proteins. A greater motional restriction of the lipid chains was found with increasing length of the peptide, while the saturation ratio of lipids per peptide was lower for the shorter peptides. In DMPG and dimyristoylphosphatidylserine host membranes, the perturbation of the lipid chain mobility by polylysine was greater for negatively charged spin-labeled lipids than for zwitterionic lipids, but for the shorter lysine peptides these differences were smaller. In mixed bilayers composed of DMPG and dimyristoylphosphatidylcholine, little difference was found in selectivity between spin-labeled phospholipid species on binding pentalysine. Surface binding of the basic lysine peptides strongly reduced the interfacial pK of spin-labeled fatty acid incorporated into the DMPG bilayers, to a greater extent for polylysine than for tetralysine or pentalysine at saturation. The results are consistent with a predominantly electrostatic interaction with the shorter lysine peptides, but with a closer surface association with the longer polylysine peptide.  相似文献   

19.
To probe the interaction between transducin (G(t)) and photoactivated rhodopsin (R*), 14 analog peptides were designed and synthesized restricting the backbone of the R*-bound structure of the C-terminal 11 residues of G(t)alpha derived by transferred nuclear Overhauser effect (TrNOE) NMR. Most of the analogs were able to bind R*, supporting the TrNOE structure. Improved affinities of constrained peptides indicated that preorganization of the bound conformation is beneficial. Cys347 was found to be a recognition site; particularly, the free sulfhydryl of the side chain seems to be critical for R* binding. Leu349 was another invariable residue. Both Ile and tert-leucine (Tle) mutations for Leu349 significantly reduced the activity, indicating that the Leu side chain is in intimate contact with R*. The structure of R* was computer generated by moving helix 6 from its position in the crystal structure of ground-state rhodopsin (R) based on various experimental data. Seven feasible complexes were found when docking the TrNOE structure with R* and none with R. The analog peptides were modeled into the complexes, and their binding affinities were calculated. The predicted affinities were compared with the measured affinities to evaluate the modeled structures. Three models of the R*/G(t)alpha complex showed strong correlation to the experimental data.  相似文献   

20.
The interaction between alpha-bungarotoxin and linear synthetic peptides, mimotope of the nicotinic acetylcholine receptor binding site, has been characterised extensively by several methods and a wealth of functional, kinetic and structural data are available. Hence, this system represents a suitable model to explore in detail the dynamics of a peptide-protein interaction. Here, the solution structure of a new complex of the protein toxin with a tridecapeptide ligand exhibiting high affinity has been determined by NMR. As observed for three other previously reported mimotope-alpha-bungarotoxin complexes, also in this case correlations between biological activity and kinetic data are not fully consistent with a static discussion of structural data. Molecular dynamics simulations of the four mimotope-toxin complexes indicate that a relevant contribution to the complex stability is given by the extent of the residual flexibility that the protein maintains upon peptide binding. This feature, limiting the entropy loss caused by protein folding and binding, ought to be generally considered in a rational design of specific protein ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号