首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The size distribution of the 20 aminoacyl-tRNA synthetases from wild-type Chinese hamster ovary (CHO) cells and from the mutant cell line tsH1, containing a temperature-sensitive leucyl-tRNA synthetase, was determined by gel filtration. Nine aminoacyl-tRNA synthetases, specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine and proline, which coeluted as high-Mr entities (Mr approximately 1.2 X 10(6)), were further co-purified to yield a multienzyme complex, the polypeptide composition of which was identical to that previously determined for the complex from rabbit liver. Immunoprecipitates obtained from crude extracts of wild-type and tsH1 mutant cells, using specific antibodies directed to the lysyl-tRNA or methionyl-tRNA synthetase components of the complex, displayed the same polypeptide compositions as that of the purified complex, thereby establishing the heterotypic nature of this complex. Although the activity of leucyl-tRNA synthetase from the mutant cells, grown at a permissive temperature, was low compared to that from the wild-type, the polypeptide of Mr 129 000, corresponding to this enzyme, was present in similar amounts and occurred exclusively as a component of the high-Mr complex. Finally, we report that attempts to demonstrate phosphorylation of the components of the complex from cultured CHO, HeLa and C3 cells were unsuccessful.  相似文献   

2.
Although partial or complete three-dimensional structures are known for three Class I aminoacyl-tRNA synthetases, the amino acid-binding sites in these proteins remain poorly characterized. To explore the methionine binding site of Escherichia coli methionyl-tRNA synthetase, we chose to study a specific, randomly generated methionine auxotroph that contains a mutant methionyl-tRNA synthetase whose defect is manifested in an elevated Km for methionine (Barker, D.G., Ebel, J.-P., Jakes, R.C., & Bruton, C.J., 1982, Eur. J. Biochem. 127, 449-457), and employed the polymerase chain reaction to sequence this mutant synthetase directly. We identified a Pro 14 to Ser replacement (P14S), which accounts for a greater than 300-fold elevation in Km for methionine and has little effect on either the Km for ATP or the kcat of the amino acid activation reaction. This mutation destabilizes the protein in vivo, which may partly account for the observed auxotrophy. The altered proline is found in the "signature sequence" of the Class I synthetases and is conserved. This sequence motif is 1 of 2 found in the 10 Class I aminoacyl-tRNA synthetases and, in the known structures, it is in the nucleotide-binding fold as part of a loop between the end of a beta-strand and the start of an alpha-helix. The phenotype of the mutant and the stability and affinity for methionine of the wild-type and mutant enzymes are influenced by the amino acid that is 25 residues beyond the C-terminus of the signature sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A heterotypic multienzyme complex from sheep liver containing seven aminoacyl-tRNA synthetases specific for isoleucine, leucine, methionine, glutamine, glutamic acid, lysine and arginine was subjected to kinetic analyses to examine the possibility that association of these enzymes may impart kinetic properties which differ from those of their unassociated counterparts. The evidence obtained by two different approaches leads to the conclusion that the associated enzymes are functionally independent. Firstly, the kinetic constants of the methionyl-tRNA and lysyl-tRNA synthetase components of the complex do not differ significantly from those of their unassociated counterparts obtained after controlled proteolysis of the complex. Secondly, the methionyl-tRNA synthetase component of the complex displays identical kinetic constants, whether assayed in the presence of [14C]methionine, ATP and highly enriched tRNAMet alone, or in the additional presence of the substrates required for unlabeled aminoacyl-tRNA formation by each of the other six enzymes. Similarly, the initial rates of [14C]aminoacyl-tRNA formation catalyzed by any of the six other enzymes was unaffected by the concomitant functioning of the other aminoacyl-tRNA synthetases. The sedimentation behaviour of the aminoacyl-tRNA synthetase components of the complex under conditions prevailing in the tRNA aminoacylation assay indicates that they remain associated under these conditions. The implications of these findings on the structural organization of the enzymes within the complex are discussed.  相似文献   

4.
Proline- and threonine-restricted growth caused a three- to fourfold derepression of the differential rate of synthesis of the prolyl- and threonyl-transfer ribonucleic acid (tRNA) synthetases, respectively. Similarly, there was approximately a 24-fold derepression in the rate of synthesis of methionyl-tRNA synthetase during methionine restriction. Addition of the respective amino acids to such derepressed cultures resulted in a repression of synthesis of their cognate synthetases. These results support previous findings and further strengthen the idea that the formation of aminoacyl-tRNA synthetases is regulated by some mechanism which is mediated by the cognate amino acids.  相似文献   

5.
The size distribution of lysyl- and arginyl-tRNA synthetases in crude extracts from rat liver was re-examined by gel filtration. It is shown that irrespective of the addition or not of several proteinase inhibitors, lysyl-tRNA synthetase was present exclusively as a high-Mr entity, while arginyl-tRNA synthetase occurred as high- and low-Mr forms, in the constant proportions of 2:1, respectively. The polypeptide molecular weights of the arginyl-tRNA synthetase in these two forms were 74000 and 60000, respectively. The high-Mr forms of lysyl- and arginyl-tRNA synthetases were co-purified to yield a multienzyme complex, the polypeptide composition of which was virtually identical to that of the complexes from rabbit liver and from cultured Chinese hamster ovary cells. Of the nine aminoacyl-tRNA synthetases, specific for lysine, arginine, methionine, leucine, isoleucine, glutamine, glutamic and aspartic acids and proline, which characterize the purified complex, each, except prolyl-tRNA synthetase, was assigned to the constituent polypeptides by the protein-blotting procedure, using the previously characterized antibodies to the aminoacyl-tRNA synthetase components of the corresponding complex from sheep liver.  相似文献   

6.
The human glutaminyl-tRNA synthetase is three times larger than the corresponding bacterial and twice as large as the yeast enzyme. It is possible that the additional sequences of the human glutaminyl-tRNA synthetase are required for the formation of the multienzyme complex which is known to include several of aminoacyl-tRNA synthetases in mammalian cells. To address this point we prepared antibodies against three regions of the human glutaminyl-tRNA synthetase, namely against its enzymatically important core region, and against two sections in its large C-terminal extension. In intact multienzyme complexes the core region was accessible to specific antibody binding. However, the C-terminal sections became available to specific antibody binding only when certain components of the multienzyme complex were either absent or degraded. These findings allow first conclusions as to the relative position of some components in the mammalian aminoacyl-tRNA synthetase complex.  相似文献   

7.
Activation of methionine by Escherichia coli methionyl-tRNA synthetase   总被引:3,自引:0,他引:3  
G Ghosh  H Pelka  L H Schulman  S Brunie 《Biochemistry》1991,30(40):9569-9575
In the present work, we have examined the function of three amino acid residues in the active site of Escherichia coli methionyl-tRNA synthetase (MetRS) in substrate binding and catalysis using site-directed mutagenesis. Conversion of Asp52 to Ala resulted in a 10,000-fold decrease in the rate of ATP-PPi exchange catalyzed by MetRS with little or no effect on the Km's for methionine or ATP or on the Km for the cognate tRNA in the aminoacylation reaction. Substitution of the side chain of Arg233 with that of Gln resulted in a 25-fold increase in the Km for methionine and a 2000-fold decrease in kcat for ATP-PPi exchange, with no change in the Km for ATP or tRNA. These results indicate that Asp52 and Arg233 play important roles in stabilization of the transition state for methionyl adenylate formation, possibly directly interacting with complementary charged groups (ammonium and carboxyl) on the bound amino acid. Primary sequence comparisons of class I aminoacyl-tRNA synthetases show that all but one member of this group of enzymes has an aspartic acid residue at the site corresponding to Asp52 in MetRS. The synthetases most closely related to MetRS (including those specific for Ile, Leu, and Val) also have a conserved arginine residue at the position corresponding to Arg233, suggesting that these conserved amino acids may play analogous roles in the activation reaction catalyzed by each of these enzymes. Trp305 is located in a pocket deep within the active site of MetRS that has been postulated to form the binding cleft for the methionine side chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Eukaryotic aminoacyl-tRNA synthetases are usually organized into high-molecular-weight complexes, the structure and function of which are poorly understood. We have previously described a yeast complex containing two aminoacyl-tRNA synthetases, methionyl-tRNA synthetase and glutamyl-tRNA synthetase, and one noncatalytic protein, Arc1p, which can stimulate the catalytic efficiency of the two synthetases. To understand the complex assembly mechanism and its relevance to the function of its components, we have generated specific mutations in residues predicted by a recent structural model to be located at the interaction interfaces of the N-terminal domains of all three proteins. Recombinant wild-type or mutant forms of the proteins, as well as the isolated N-terminal domains of the two synthetases, were overexpressed in bacteria, purified and used for complex formation in vitro and for determination of binding affinities using surface plasmon resonance. Moreover, mutant proteins were expressed as PtA or green fluorescent protein fusion polypeptides in yeast strains lacking the endogenous proteins in order to monitor in vivo complex assembly and their subcellular localization. Our results show that the assembly of the Arc1p-synthetase complex is mediated exclusively by the N-terminal domains of the synthetases and that the two enzymes bind to largely independent sites on Arc1p. Analysis of single-amino-acid substitutions identified residues that are directly involved in the formation of the complex in yeast cells and suggested that complex assembly is mediated predominantly by van der Waals and hydrophobic interactions, rather than by electrostatic forces. Furthermore, mutations that abolish the interaction of methionyl-tRNA synthetase with Arc1p cause entry of the enzyme into the nucleus, proving that complex association regulates its subcellular distribution. The relevance of these findings to the evolution and function of the multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases is discussed.  相似文献   

9.
M Lazard  M Mirande  J P Waller 《Biochemistry》1985,24(19):5099-5106
Native isoleucyl-tRNA synthetase and a structurally modified form of methionyl-tRNA synthetase were purified to homogeneity following trypsinolysis of the high molecular weight complex from sheep liver containing eight aminoacyl-tRNA synthetases. The correspondence between purified isoleucyl-tRNA synthetase and the previously unassigned polypeptide component of Mr 139 000 was established. It is shown that dissociation of this enzyme from the complex has no discernible effect on its kinetic parameters. Both isoleucyl- and methionyl-tRNA synthetases contain one zinc ion per polypeptide chain. In both cases, removal of the metal ion by chelating agents leads to an inactive apoenzyme. As the trypsin-modified methionyl-tRNA synthetase has lost the ability to associate with other components of the complex [Mirande, M., Kellermann, O., & Waller, J. P. (1982) J. Biol. Chem. 257, 11049-11055], the zinc ion is unlikely to be involved in complex formation. While native purified isoleucyl-tRNA synthetase displays hydrophobic properties, trypsin-modified methionyl-tRNA synthetase does not. It is suggested that the assembly of the amino-acyl-tRNA synthetase complex is mediated by hydrophobic domains present in these enzymes.  相似文献   

10.
Yeast-mitochondrial methionyl-tRNA synthetase was purified 1060-fold from mitochondrial matrix proteins of Saccharomyces cerevisiae using a four-step procedure based on affinity chromatography (heparin-Ultrogel, tRNA(Met)-Sepharose, Agarose-hexyl-AMP) to yield to a single polypeptide of high specific activity (1800 U/mg). Like the cytoplasmic methionyl-tRNA synthetase (Mr 85,000), the mitochondrial isoenzyme is a monomer, but of significantly smaller polypeptide size (Mr 65,000). In contrast, the corresponding enzyme of Escherichia coli is a dimer (Mr 152,000) made up of identical subunits. The measured affinity constants of the purified mitochondrial enzyme for methionine and tRNA(Met) are similar to those of the cytoplasmic isoenzyme. However, the two yeast enzymes exhibit clearly different patterns of aminoacylation of heterologous yeast and E. coli tRNA(Met). Furthermore, polyclonal antibodies raised against the two proteins did not show any cross-reactivity by inhibition of enzymatic activity and by the highly sensitive immunoblotting technique, indicating that the two enzymes share little, if any, common antigenic determinants. Taken together, our results further support the belief that the yeast mitochondrial and cytoplasmic methionyl-tRNA synthetases are different proteins coded for by two distinct nuclear genes. Like the yeast cytoplasmic aminoacyl-tRNA synthetases, the mitochondrial enzymes displayed affinity for immobilized heparin. This distinguishes them from the corresponding enzymes of E. coli. Such an unexpected property of the mitochondrial enzymes suggests that they have acquired during evolution a domain for binding to negatively charged cellular components.  相似文献   

11.
The major high molecular weight complex of aminoacyl-tRNA synthetases is purified about 1000-fold with 30% yield from rat liver. The synthetase complex sediments at 24 S with a molecular weight of 900,000 +/- 75,000 and contains aminoacylation activities for lysine, arginine, isoleucine, leucine, methionine, glutamine, glutamate, and proline. The 24 S synthetase complex dissociates into 21 S, 18 S, 13 S, 12 S, and 10 S complexes with specific enzymatic activities. Dissociation of the 24 S complex into active free synthetases is achieved by hydrophobic interaction chromatography. The disassembly of the synthetase complex is consistent with the structural model of a heterotypic multienzyme complex and suggests that the complex formation is due to the specific intermolecular interactions among the synthetases.  相似文献   

12.
The DNA nucleotide sequence of the valS gene encoding valyl-tRNA synthetase of Escherichia coli has been determined. The deduced primary structure of valyl-tRNA synthetase was compared to the primary sequences of the known aminoacyl-tRNA synthetases of yeast and bacteria. Significant homology was detected between valyl-tRNA synthetase of E. coli and other known branched-chain aminoacyl-tRNA synthetases. In pairwise comparisons the highest level of homology was detected between the homologous valyl-tRNA synthetases of yeast and E. coli, with an observed 41% direct identity overall. Comparisons between the valyl- and isoleucyl-tRNA synthetases of E. coli yielded the highest level of homology detected between heterologous enzymes (19.2% direct identity overall). An alignment is presented between the three branched-chain aminoacyl-tRNA synthetases (valyl- and isoleucyl-tRNA synthetases of E. coli and yeast mitochondrial leucyl-tRNA synthetase) illustrating the close relatedness of these enzymes. These results give credence to the supposition that the branched-chain aminoacyl-tRNA synthetases along with methionyl-tRNA synthetase form a family of genes within the aminoacyl-tRNA synthetases that evolved from a common ancestral progenitor gene.  相似文献   

13.
P R Rosevear 《Biochemistry》1988,27(20):7931-7939
A procedure for the rapid purification of a truncated form of the Escherichia coli methionyl-tRNA synthetase has been developed. With this procedure, final yields of approximately 3 mg of truncated methionyl-tRNA synthetase per gram of cells, carrying the plasmid encoding the gene for the truncated synthetase [Barker, D.G., Ebel, J.-P., Jakes, R., & Bruton, C.J. (1982) Eur. J. Biochem. 127, 449], can be obtained. The catalytic properties of the purified truncated synthetase were found to be identical with those of the native dimeric and trypsin-modified methionyl-tRNA synthetases. A rapid procedure for obtaining milligram quantities of the enzyme is necessary before the efficient incorporation of stable isotopes into the synthetase becomes practical for physical studies. With this procedure, truncated methionyl-tRNA synthetase labeled with [methyl-13C]methionine was purified from an Escherichia coli strain auxotrophic for methionine and containing the plasmid encoding the gene for the truncated methionyl-tRNA synthetase. Both carbon-13 and proton observe-heteronuclear detect NMR experiments were used to observe the 13C-enriched methyl resonances of the 17 methionine residues in the truncated synthetase. In the absence of ligands, 13 of the 17 methionine residues could be resolved by carbon-13 NMR. Titration of the synthetase, monitoring the chemical shifts of resonances B and M (Figure 3), with a number of amino acid ligands and ATP yielded dissociation constants consistent with those derived from binding and kinetic data, indicating active site binding of the ligands under the conditions of the NMR experiment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Methionine adenosyltransferase, one of the two major enzymes utilizing methionine, is regulated by the levels of methionine in the growth medium (Jacobsen, S.J., Hoffman, R.M. and Erbe, R.W. (1980) J. Natl. Cancer Inst. 65, 1237–1244, and Caboche, M. and Mulsant, P. (1978) Somatic Cell Genet. 4, 407–421). We report here that methionyl-tRNA synthetase, unlike methionine adenosyltransferase, behaves in a constitutive manner with respect to the concentration of methionine in the culture medium. This behavior is seen in Chinese hamster ovary cells and in normal diploid and SV 40-transformed human fibroblasts. Although the kinetics of regulation of methionine adenosyltransferase and methionyl-tRNA synthetase by exogenous methionine are clearly different, the levels of the two enzymes in the human cell lines are similar.  相似文献   

15.
In higher eukaryotes, nine aminoacyl-tRNA synthetases are associated within a multienzyme complex which is composed of 11 polypeptides with molecular masses ranging from 18 to 150 kDa. We have cloned and sequenced a cDNA from Drosophila encoding the largest polypeptide of this complex. We demonstrate here that the corresponding protein is a multifunctional aminoacyl-tRNA synthetase. It is composed of three major domains, two of them specifying distinct synthetase activities. The amino and carboxy-terminal domains were expressed separately in Escherichia coli, and were found to catalyse the aminoacylation of glutamic acid and proline tRNA species, respectively. The central domain is made of six 46 amino acid repeats. In prokaryotes, these two aminoacyl-tRNA synthetases are encoded by distinct genes. The emergence of a multifunctional synthetase by a gene fusion event seems to be a specific, but general attribute of all higher eukaryotic cells. This type of structural organization, in relation to the occurrence of multisynthetase complexes, could be a mechanism to integrate several catalytic domains within the same particle. The involvement of the internal repeats in mediating complex assembly is discussed.  相似文献   

16.
Cloning of the yeast methionyl-tRNA synthetase gene   总被引:9,自引:0,他引:9  
A pool of random wild type yeast DNA fragments obtained by partial Sau IIIA restriction enzyme digestion and inserted in the Bam HI site of the hybrid yeast Escherichia coli plasmid ((pFL1) has been used to transform to prototrophy a methionyl-tRNA synthetase-impaired mutant requiring methionine. In the numerous prototroph strains recovered at least two independent clones have been obtained which show nonchromosomic inheritance character and an approximately 30-fold increase in methionyl-tRNA synthetase activity as compared to the wild type. Measurement of the Km for methionine in the transformed yeast cells indicates that the activity has been restored by decreasing the Km for methionine to the same level as found for the wild type methionyl-tRNA synthetase. Southern blotting experiments show that the yeast DNA's fragments inserted in the two independent plasmids share a common sequence which must correspond at least partly to the structural gene for methionyl-tRNA synthetase. They also suggest that the methionyl-tRNA synthetase gene is differently orientated in the two plasmids  相似文献   

17.
A cDNA clone encoding rat liver aspartyl-tRNA synthetase was isolated by probing a lambda gt11 recombinant cDNA expression library with antibodies directed against the corresponding polypeptide from sheep liver. The 1930-base pairs-long cDNA insert allowed the expression in Escherichia coli of an active enzyme of mammalian origin. The nucleotide sequence of that cDNA, corresponding to the DRS1 gene, was determined. The open reading frame of DRS1 corresponds to a protein of Mr = 57,061, in good agreement with the previously determined molecular weight of the purified enzyme. The deduced amino acid sequence shows extensive homologies with that of yeast cytoplasmic aspartyl-tRNA synthetase, more than 50% of the residues being identical. In rat liver, aspartyl-tRNA synthetase occurs in two distinct forms: a dimeric enzyme and a component of a multienzyme complex comprising the nine aminoacyl-tRNA synthetases specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine, and proline. The primary structure of the DRS1 gene product is discussed in relation to the occurrence of two distinct forms of that enzyme.  相似文献   

18.
Aspartyl-tRNA synthetase from higher eukaryotes is a component of a multienzyme complex comprising nine aminoacyl-tRNA synthetases. The cDNA encoding cytoplasmic rat liver aspartyl-tRNA synthetase was previously cloned and sequenced. This work reports the identification of structural features responsible for its association within the multisynthetase complex. Mutant and chimeric proteins have been expressed in mammalian cells and their structural behavior analyzed. A wild-type rat liver aspartyl-tRNA synthetase, expressed in Chinese hamster ovary (CHO) cells, associates within the complex from CHO cells, whereas a mutant enzyme with a deletion of 34 amino acids from its amino-terminal extremity does not. A chimeric enzyme, made of the amino-terminal moiety of rat liver aspartyl-tRNA synthetase fused to the catalytic domain of yeast lysyl-tRNA synthetase, has been expressed in Lys-101 cells, a CHO cell line with a temperature-sensitive lysyl-tRNA synthetase. The fusion protein is stable in vivo, does not associate within the multisynthetase complex and cannot restore normal growth of the mutant cells. These results establish that the 3.7-kDa amino-terminal moiety of mammalian aspartyl-tRNA synthetase mediates its association with the other components of the complex. In addition, the finding that yeast lysyl-tRNA synthetase cannot replace the aspartyl-tRNA synthetase component of the mammalian complex, indicates that interactions between neighbouring enzymes also play a prominent role in stabilization of this multienzyme structure and strengthened the view that the multisynthetase complex is a discrete entity with a well-defined structural organization.  相似文献   

19.
The mode of recognition of tRNAs by aminoacyl-tRNA synthetases and translation factors is largely unknown in archaebacteria. To study this process, we have cloned the wild type initiator tRNA gene from the moderate halophilic archaebacterium Haloferax volcanii and mutants derived from it into a plasmid capable of expressing the tRNA in these cells. Analysis of tRNAs in vivo show that the initiator tRNA is aminoacylated but is not formylated in H. volcanii. This result provides direct support for the notion that protein synthesis in archaebacteria is initiated with methionine and not with formylmethionine. We have analyzed the effect of two different mutations (CAU-->CUA and CAU-->GAC) in the anticodon sequence of the initiator tRNA on its recognition by the aminoacyl-tRNA synthetases in vivo. The CAU-->CUA mutant was not aminoacylated to any significant extent in vivo, suggesting the importance of the anticodon in aminoacylation of tRNA by methionyl-tRNA synthetase. This mutant initiator tRNA can, however, be aminoacylated in vitro by the Escherichia coli glutaminyl-tRNA synthetase, suggesting that the lack of aminoacylation is due to the absence in H. volcanii of a synthetase, which recognizes the mutant tRNA. Archaebacteria lack glutaminyl-tRNA synthetase and utilize a two-step pathway involving glutamyl-tRNA synthetase and glutamine amidotransferase to generate glutaminyl-tRNA. The lack of aminoacylation of the mutant tRNA indicates that this mutant tRNA is not a substrate for the H. volcanii glutamyl-tRNA synthetase. The CAU-->GAC anticodon mutant is most likely aminoacylated with valine in vivo. Thus, the anticodon plays an important role in the recognition of tRNA by at least two of the halobacterial aminoacyl-tRNA synthetases.  相似文献   

20.
Cysteinyl- and methionyl-tRNA synthetases (EC 6.11.-) were purified 1200- and 1000-fold, respectively, from sonic extracts of Paracoccus denitrificans strain 8944, and kinetics, substrate specificity and regulatory properties were determined using the ATP-PPi exchange reaction. Both enzymes had pH optima of approx. 8 and were inhibited by sulphydryl-group reagents. Cysteinyl-tRNA synthetase catalysed L-selenocysteine- and alpha-aminobutyric acid-dependent ATP-PPi exchange and methionyl-tRNA synthetase catalysed L-homocysteine-, L-selenomethionine- and norleucine-dependent ATP-PPi exchange. Both enzymes were inhibited by O-acetylserine. Cysteinyl-tRNA synthetase activity was stimulated by methionine and methionyl-tRNA synthetase activity was stimulated by sulphide, cysteine, and cysteic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号