首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
2.
J Eldridge  Z Zehner  B M Paterson 《Gene》1985,36(1-2):55-63
The entire nucleotide sequence of the chicken cardiac alpha-actin (CC alpha A) gene has been determined. This is the first complete sequence of a cardiac actin gene that includes the promoter region, cap site, all the introns, and the polyadenylation site. The gene contains six introns, five of which interrupt the coding region at amino acids (aa) 41, 150, 204, 267, and 327. The first intron is in the 5'-noncoding region and is 438 bp in length. The CC alpha A gene encodes an mRNA of approx. 1400 bp with 5'- and 3'-untranslated region of 59 and 184 nucleotides (nt), respectively. Like the chicken skeletal alpha-actin gene, the CC alpha A gene has the codon for the aa cysteine between the initiator ATG and the codon for the N-terminal aspartic acid residue of the mature protein. There are no strong homologies (less than 13 consecutive nt) in the promoter or 3'-untranslated regions between the CC alpha A and chicken skeletal alpha-actin genes even though both are expressed in skeletal muscle during development. However, the 3'-untranslated region of the CC alpha A gene demonstrates significant sequence homology (76% over a 200-nt region) with the same region in the partial sequence of the human cardiac gene. The conservation of these sequence homologies between identical isoforms rather than the different alpha actin genes suggests these conserved regions may have a role in regulation rather than tissue-specific expression, as previously proposed.  相似文献   

3.
We have identified and functionally characterized DNA sequences that regulate the expression of the human ventricular/slow twitch isoform of myosin alkali light chain (VLC1) gene. By using primer extension and S1 nuclease mapping techniques, we have shown that the VLC1 gene is transcribed from the identical site in the ventricular and slow twitch skeletal muscles. Comparison of the VLC1 sequences from +1 to -1296 in the genes for human and mouse showed that the 5'-proximal flanking region, up to about 220 nucleotides, was highly conserved (83% homology). To determine the location of sites that may be important for the function of the VLC1 promoter, a series of transient expression vectors containing progressive deletions of the VLC1 gene 5'-flanking sequence fused to the bacterial chloramphenicol acetyltransferase (CAT) gene was introduced into myogenic and nonmyogenic cells. Deletion mutagenesis of sequences between -357 and +40 revealed the presence of positive and negative activity in all the cells tested. We demonstrated that the minimal promoter sequence required to generate muscle cell-specific expression is the region between -94 to -64 upstream from the cap site and a sequence element located between -107 and -94 was found to have a positive effect in both myogenic cells and nonmyogenic cells. These two proximal regions located between -107 and -64 appear to act together to determine the cell type-specific high level expression of the VLC1 gene in muscle cells. Competition gel retardation assays revealed that the CArG sequence located between -96 and -87 interacts specifically with nuclear extracts from myogenic and nonmyogenic cells and compete for binding with the CArG sequence present in the human cardiac alpha-actin gene and with the serum response element of the c-fos gene. These results strongly suggested that similar, if not identical, the CArG box binding proteins interact with the functionally different promoter element in the VLC1, cardiac alpha-actin, and c-fos genes.  相似文献   

4.
The cis-acting regions that appear to be involved in negative regulation of the chicken alpha-cardiac actin promoter both in vivo and in vitro have been identified. A nuclear factor(s) binding to the proximal region mapped over the TATA element between nucleotides -50 and -25. In the distal region, binding spanned nucleotides -136 to -112, a region that included a second CArG box (CArG2) 5' to the more familiar CCAAT-box (CArG1) consensus sequence. Nuclear factors binding to these different domains were found in both muscle and nonmuscle preparations but were detectable at considerably lower levels in tissues expressing the alpha-cardiac actin gene. In contrast, concentrations of the beta-actin CCAAT-box binding activity were similar in all extracts tested. The role of these factor-binding domains on the activity of the cardiac actin promoter in vivo and in vitro and the prevalence of the binding factors in nonmuscle extracts are consistent with the idea that these binding domains and their associated factors are involved in the tissue-restricted expression of cardiac actin through both positive and negative regulatory mechanisms. In the absence of negative regulatory factors, these same binding domains act synergistically, via other factors, to activate the cardiac actin promoter during myogenesis.  相似文献   

5.
Regulation of the human beta-actin promoter by upstream and intron domains.   总被引:9,自引:3,他引:6  
We have identified three regulatory domains of the complex human beta-actin gene promoter. They span a region of about 3000 bases, from not more than -2011 bases upstream of the mRNA cap site to within the 5' intron (832 bases long). A distal upstream domain contains at least one enhancer-like element. A proximal upstream domain, with a CArG [for CC(A + T rich)6GG] motif found in all known mammalian actin genes, seems to confer serum, but not growth factor, inducibility. The third domain is within the evolutionarily conserved 3' region of the first intron and contains a 13 base-pair sequence, identical to the upstream sequence with the CArG motif. This domain also contains sequences that are both serum and fibroblast growth factor inducible.  相似文献   

6.
7.
The desmin gene encodes an intermediate filament protein that is present in skeletal, cardiac, and smooth muscle cells. This study shows that the 4-kb upstream region of the murine desmin promoter directs expression of a lacZ reporter gene throughout the heart from E7.5 and in skeletal muscle and vascular smooth muscle cells from E9. 5. The distal fragment (-4005/-2495) is active in arterial smooth muscle cells but not in venous smooth muscle cells or in the heart in vivo. It contains a CArG/octamer overlapping element (designated CArG4) that can bind the serum response factor (SRF) and an Oct-like factor. The desmin distal fragment can replace a SM22alpha regulatory region (-445/-126) that contains two CArG boxes, to cis-activate a minimal (-125/+65) SM22alpha promoter fragment in arterial smooth muscle cells of transgenic embryos. lacZ expression was abolished when mutations were introduced into the desmin CArG4 element that abolished the binding of SRF and/or Oct-like factor. These data suggest that a new type of combined CArG/octamer element plays a prominent role in the regulation of the desmin gene in arterial smooth muscle cells, and SRF and Oct-like factor could cooperate to drive specific expression in these cells.  相似文献   

8.
9.
Deletion analysis of the mouse alpha 1(III) collagen promoter.   总被引:3,自引:2,他引:1       下载免费PDF全文
A chimeric gene was constructed by fusing the DNA sequences containing the 5' flanking region of the mouse alpha 1(III) collagen gene to the coding sequence of the bacterial chloramphenicol acetyltransferase (CAT) gene. Transient transfection experiments indicated that the alpha 1(III) promoter is active in NIH 3T3 fibroblasts and BC3H1 smooth muscle cells. The activity of the alpha 1(III) collagen promoter-CAT plasmid is stimulated approximately ten fold by the presence of the SV40 enhancer element. Removing sequences upstream of -200 stimulates the activity of the chimeric gene eight fold. Further deletion analysis identified sequences located between -350 and -300 that were instrumental in repressing the activity of the promoter. This 50 bp region contains a direct repeat sequence that may be involved in the regulation of the mouse alpha 1(III) collagen gene. Truncating the alpha 1(III) promoter to -80 further stimulated expression. We propose that the positive regulatory elements of this gene appear to be located within the first 80 bp of the promoter, whereas elements located further upstream exert a negative effect on the expression of the gene. Regulation of the alpha 1(III) gene contrasts with that of the alpha 2(I) collagen gene, which appears to be regulated by several positive elements located in various regions of the promoter.  相似文献   

10.
11.
12.
13.
14.
The murine alpha B-crystallin/small heat shock protein gene is expressed at high levels in the lens and at lower levels in the heart, skeletal muscle, and numerous other tissues. Previously we have found a skeletal-muscle-preferred enhancer at positions -427 to -259 of the alpha B-crystallin gene containing at least four cis-acting regulatory elements (alpha BE-1, alpha BE-2, alpha BE-3, and MRF, which has an E box). Here we show that in transgenic mice, the alpha B-crystallin enhancer directs the chloramphenicol acetyltransferase reporter gene driven by the alpha B-crystallin promoter specifically to myocardiocytes of the heart. The alpha B-crystallin enhancer was active in conjugation with the herpes simplex virus thymidine kinase promoter/human growth hormone reporter gene in transfected rat myocardiocytes. DNase I footprinting and site-specific mutagenesis experiments showed that alpha BE-1, alpha BE-2, alpha BE-3, MRF, and a novel, heart-specific element called alpha BE-4 are required for alpha B-crystallin enhancer activity in transfected myocardiocytes. By contrast, alpha BE-4 is not utilized for enhancer activity in transfected lens or skeletal muscle cell lines. Alpha BE-4 contains an overlapping heat shock sequence and a reverse CArG box [5'-GG(A/T)6CC-3']. Electrophoretic mobility shift assays with an antibody to serum response factor and a CArG-box-competing sequence from the c-fos promoter indicated that a cardiac-specific protein with DNA-binding and antigenic similarities to serum response factor binds to alpha BE-4 via the reverse CArG box; electrophoretic mobility shift assays and antibody experiments with anti-USF antiserum and heart nuclear extract also raised the possibility that the MRF E box utilizes USF or an antigenically related protein. We conclude that the activity of the alpha B-crystallin enhancer in the heart utilizes a reverse CArG box and an E-box-dependent pathway.  相似文献   

15.
We sought to determine the cis-acting elements responsible for the pattern of tissue specific expression of the mouse alpha 2(I) collagen gene. Using an RNase protection assay we first verified that expression of the alpha 2(I) collagen gene is mainly confined to tendons, bone, and skin in mice. Both transgenic mice and DNA transfection of tissue culture cells were used as experimental approaches. Transgenic mice lines were generated harboring chloramphenicol acetyltransferase (CAT) chimeric genes that contained either (a) 2000 base pairs (bp) of 5'-flanking sequences of the mouse alpha 2(I) collagen gene plus additional sequences between +418 and +1524 of the first intron of this gene or (b) the same promoter sequences without intron sequences or (c) the 350-bp proximal promoter sequences. Transgenic mice containing both types of 2000-bp promoters showed a pattern of CAT expression that was tissue specific. The presence of sequences of the first intron in the transgene did not increase the level of promoter activity. Transgenic mice harboring the 350-bp alpha 2(I) collagen promoter also showed a pattern that was tissue-specific except that high level expression also occurred in the brain. This suggests that negative regulation is an important component of tissue-specific expression. In order to analyze the first 350 bases in detail, we performed transient expression experiments, using promoter fragments attached to the luciferase reporter gene. Fibroblasts, which show a high level expression of the endogenous alpha 2(I) collagen gene, and B cells, in which the gene is silent, were transfected with a series of deletions and substitution mutations within the proximal 350-bp promoter. These experiments were unable to define unique cell-specific cis-acting elements. However, when the sequence between -315 and -284 was tandemly repeated upstream of a minimal alpha 2(I) collagen promoter (-41 to +54), the activity of this construction was considerably higher in fibroblasts than in B cells when compared with the minimal promoter itself. In gel retardation assays, the levels of complexes that bind to this sequence were higher in fibroblast nuclear extracts than in myeloma nuclear extracts. Our results are consistent with the hypothesis that the -315 to -284 DNA sequence participates in the cell-specific control of the alpha 2(I) collagen gene in fibroblasts.  相似文献   

16.
17.
Vascular smooth muscle (SM) cells (VSMC) undergo phenotypic modulation in vivo and in vitro. This process involves coordinated changes in expression of multiple SM-specific genes. In cultured VSMC, arginine vasopressin (AVP) increases and PDGF decreases expression of SM alpha-actin (SMA), the earliest marker of SM cells (SMC). However, it is unknown whether these agents regulate other SM genes in a similar fashion. SM22 alpha appears secondary to SMA during development and is also a marker for SMC. This study examined the regulation of SM22 alpha expression by AVP and PDGF in cultured VSMC. Levels of SM22 alpha mRNA and protein were increased by AVP and suppressed by PDGF. Consistent with these changes, AVP increased SM22 alpha promoter activity, whereas PDGF inhibited basal promoter activity and blocked AVP-induced increase. Activation of both JNK and p38 MAPK pathways was necessary for AVP-mediated induction of SM22 alpha promoter. Expression of constitutively active Ras produced similar suppressions on SM22 alpha promoter activity as PDGF. Signaling relayed from PDGF/Ras activation involved Raf, or a protein that competes for this site, Ral-GDS, and phosphatidylinositol 3-kinase activation. Truncational analysis showed that the proximal location of three CArG boxes in the promoter was sufficient for AVP stimulation. Mutations in this CArG box reduced basal and AVP-stimulated promoter activity without effecting PDGF suppression. Overexpression of serum response factor enhanced basal and AVP-stimulated promoter activity but had no effect on PDGF-BB-induced suppression. These data indicate that AVP and PDGF initiate specific signaling pathways that control expression of multiple SM genes leading to phenotypic modulation.  相似文献   

18.
19.
20.
Various heterologous reporter genes have been widely used for the functional characterization of gene promoters. Many such studies often found weak to very strong silencer activities to be associated with specific parts of the basal promoter or further upstream regions. In this study, we carried out a systematic study on human blood coagulation factor IX (hFIX) and anti-coagulant protein C (hPC) genes, previously shown to have silencer activities associated with their 5'-flanking regions containing promoter sequences. With newly constructed chloramphenicol acetyltransferase (CAT) reporter vectors carrying hFIX or hPC gene promoter sequences, we confirmed the strong silencer activities associated with the regions nt -1895 through nt -416 of the hFIX gene or with the region nt -802 through nt -82 of the hPC gene. However, no such silencer activities associated with the specific regions were found when autologous hFIX cDNA, hFIX minigenes, or hPC minigenes were used as reporters in the expression vector system. Relative levels of CAT, hFIX, and hPC proteins produced in the transient assays correlated well with their mRNA levels. Human FIX minigene constructs containing a simian virus 40 (SV40) 3'-untranslated region (UTR) taken from the CAT reporter gene showed no silencer activity, indicating that SV40 3'-UTR sequence of the CAT reporter gene does not contribute to the silencer activity. Expression vectors constructed with the beta-galactosidase gene under the control of hFIX gene promoter sequences also showed no silencer activity associated with the region nt -1895 through nt -416. These findings indicate that silencer activities associated with specific regions of promoter sequences as analyzed with CAT reporter genes may represent artifacts specific to the CAT reporter genes. Our findings strongly suggest a need for re-examination of promoter characterizations of many eukaryotic genes, which have been studied to date with CAT reporter genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号