首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A cytochrome b560-d complex, a terminal oxidase in the respiratory chain of Photobacterium phosphoreum grown under aerobic conditions, was purified to near homogeneity. The purified oxidase complex is composed of equimolar amounts of two polypeptides with molecular weights of 41,000 and 54,000, as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. It contains 10.2 nmol of protoheme and 22.5 nmol of iron/mg of protein. The enzyme is a "cytochrome bd-type oxidase," showing absorption peaks at 560 and 625 nm in its reduced minus oxidized difference spectrum at 77K. This oxidase combined with CO, and its CO difference spectrum at room temperature in the Soret region showed a peak at 418 nm and a trough at 434 nm. In addition, a trough at 560 nm (cytochrome b), and a trough at 620 nm and a peak at 639 nm (cytochrome d) were observed in the CO-binding spectrum. This cytochrome b560-d complex catalyzed the oxidation of ubiquinol-1 and ascorbate in the presence of N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride or phenazine methosulfate. The oxidase activity required phospholipids and was inhibited by the respiratory inhibitors, KCN and NaN3, and the divalent cation, ZnSO4. Formation of a membrane potential by the cytochrome b560-d complex reconstituted into liposomes was observed with the fluorescent dye, 3,3'-dipropylthiodicarbocyanine iodide, on the addition of ubiquinol-1, showing that the enzyme provided a coupling site for oxidative phosphorylation.  相似文献   

2.
1. In membranes prepared from dark grown cells of Rhodopseudomonas capsulata, five cytochromes of b type (E'0 at pH 7.0 +413+/-5, +270+/-5, +148+/-5, +56+/-5 and -32+/-5 mV) can be detected by redox titrations at different pH values. The midpoint potentials of only three of these cytochromes (b148, b56, and b-32) vary as a function of pH with a slope of 30 mV per pH unit. 2. In the presence of a CO/N2 mixture, the apparent E'0 of cytochrome b270 shifts markedly towards higher potentials (+355mV); a similar but less pronounced shift is apparent also for cytochrome b150. The effect of CO on the midpoint potential of cytochrome b270 is absent in the respiration deficient mutant M6 which possesses a specific lesion in the CO-sensitive segment of the branched respiratory chain present in the wild type strain. 3. Preparations of spheroplasts with lysozyme digestion lead to the release of a large amount of cytochrome c2 and of virtually all cytochrome cc'. These preparations show a respiratory chain impaired in the electron pathway sensitive to low KCN concentration, in agreement with the proposed role of cytochrome c2 in this branch; on the contrary, the activity of the CO-sensitive branch remains unaffected, indicating that neither cytochrome c2 nor the CO-binding cytochrome cc' are involved in this pathway. 4. Membranes prepared from spheroplasts still possess a CO-binding pigment characterized by maxima at 420.5, 543 and 574 nm and minima at 431, 560 nm in C0-difference spectra and with an alpha band at 562.5 nm in reduced minus oxidized difference spectra. This membrane-bound cytochrome, which is coincident with cytochrome b270, can be classified as a typical cytochrome "0" and considered the alternative CO-sensitive oxidase.  相似文献   

3.
Cytochrome b562-o complex, a terminal oxidase in the respiratory chain of aerobically grown Escherichia coli, has been studied by resonance Raman spectroscopy in its air-oxidized, dithionite-reduced, and reduced and CO-ligated states. In the reduced state, with a 406.7-nm excitation, there appeared 1494 and 1473 cm-1 lines, indicating that low spin and high spin components are included in the cytochrome b562-o complex. For the air-oxidized protein, resonance Raman lines were observed at 1372, 1503, and 1580 cm-1 with a 413.1-nm excitation, indicating that there is a ferric low spin heme. In addition, a weak but appreciable Raman line was observed at 1480 cm-1 assignable to a ferric high spin heme. Accordingly, it was concluded that low spin and high spin components are included in the cytochrome b562-o complex in the reduced and the air-oxidized states. In the CO-ligated state, with a defocused laser beam of 413.1 nm, two Raman bands assignable to the Fe-CO stretching mode have been observed at 489 and 523 cm-1, as a major and a minor component, respectively. When the laser beam was focused upon the sample to cause a photodissociation of CO from the heme moiety, the intensity of the major band at 489 cm-1 was reduced as expected. On the other hand, the minor band at 523 cm-1 remained still obvious. It was suggested that the cytochrome b562-o complex may have an additional anomalous site for CO that is resistant to photodissociation.  相似文献   

4.
The cell membrane-associated respiratory electron transport chain of Neisseria gonorrhoeae was examined using electron paramagnetic spectroscopy (EPR) at liquid helium temperatures and optical spectroscopy at liquid nitrogen and room temperatures. EPR spectra of dithionite-reduced particles indicated the presence of centers N-1 and N-3 in the site I region of the respiratory chain, whereas reduction with succinate revealed the existence of center S-1 from the succinate cytochrome c reductase segment. Free radical(s) resembling that due to falvin semiquinone were observed with both reductants. Low temperature (77 K) optical difference spectra indicated the presence of cytochromes with alpha band maxima at 549, 557, and 562. Bands at 567, 535, and 417 nm, characteristic of the CO compound of cytochrome o, were also identified. Cytochromes a1 and a3 were not detected; however, a broad but weak absorbance with an alpha band maximun at 600 nm and a Soret shoulder at 440 nm was observed. Hence the respiratory chain of N. gonorrhoeae appears to contain several nonheme iron centers, cytochrome c, two b cytochromes, with cytochrome o which probably serves as the terminal oxidase.  相似文献   

5.
C D Georgiou  D A Webster 《Biochemistry》1987,26(20):6521-6526
Cytochrome o(561,564) terminal oxidase was solubilized from the membrane fraction of the bacterium Vitreoscilla sp., strain C1, and purified by differential pH dialysis, gel filtration chromatography, and ion-exchange chromatography. Subunit molecular weights, determined on sodium dodecyl sulfate-polyacrylamide gels by the Ferguson plot method, were 49,500 and 23,500. There were two protohemes IX, two coppers, and 45 mol of phosphorus per mole of protomer (73,000). The molecular weight of the cytochrome o complex estimated by chromatography on Sephacryl-400 in deoxycholate was 265,000, which is consistent with the enzyme complex under these conditions being a dimer (146,000) with the remaining molecular weight contribution arising from bound phospholipid, deoxycholate, and possibly other, smaller subunits. Difference spectra of the dithionite-reduced enzyme have split alpha absorption maxima at 561 and 564 nm at room temperature and 558 and 561 nm at 77 K. The CO difference spectrum at room temperature has absorption maxima at 570, 534, and 416 nm. Dissociation constants for CO and cyanide binding to the reduced and oxidized forms of the oxidase are 5.2 microM and 3.5 mM, respectively. The hemes in the cytochrome are one electron accepting centers, both with midpoint potentials around +165 mV at pH 7.0. The enzyme is highly autoxidizable, and its menadiol oxidizing activity is stimulated by phospholipids.  相似文献   

6.
Ubiquinol-oxidizing activity was detected in an acidophilic chemolithotrophic iron-oxidizing bacterium, T. ferrooxidans. The ubiquinol oxidase was purified 79-fold from plasma membranes of T. ferrooxidans NASF-1 cells. The purified oxidase is composed of two polypeptides with apparent molecular masses of 32,600 and 50,100 Da, as measured by gel electrophoresis in the presence of sodium dodecyl sulfate. The absorption spectrum of the reduced enzyme at room temperature showed big peaks at 530 and 563, and a small broad peak at 635 nm, indicating the involvement of cytochromes b and d. Characteristic peaks of cytochromes a and c were not observed in the spectrum at around 600 and 550 nm, respectively. This enzyme combined with CO, and its CO-reduced minus reduced difference spectrum showed peaks at 409 nm and 563 nm and a trough at 431 nm. These results indicated that the oxidase contained cytochrome b, but the involvement of cytochrome d was not clear. The enzyme catalyzed the oxidations of ubiquinol-2 and reduced N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. The ubiquinol oxidase activity was activated by the addition of albumin and lecithin to the reaction mixture and inhibited by the respiratory inhibitors KCN, HQNO, NaN3, and antimycin A1, although the enzyme was relatively resistant to KCN, and the divalent cation, Zn2+, compared with ubiquinol oxidases of E. coli.  相似文献   

7.
A soluble cytochrome b was purified from Acinetobacter calcoaceticus L.M.D. 79.41. On the basis of the alpha-band maximum of a reduced preparation, measured at 25 degrees C, it is designated as cytochrome b-562. This cytochrome is a basic monomeric protein (pI 10.2; Mr 18,000), containing one protohaem group per molecule. The reduced form, at 25 degrees C, showed absorption bands at 428, 532 and 562 nm. At 77 K the alpha-band shifted to 560 nm (with a shoulder at 558 nm). The reduced cytochrome did not react with CO. Cytochrome b-562 is most probably (loosely) attached to the outside of the cytoplasmic membrane, since substantial amounts of it, equimolar to quinoprotein glucose dehydrogenase (GDH), were present in the culture medium when cells were grown in the presence of low concentrations of Triton X-100. The midpoint potential at pH 7.0 was found to be +170 mV, a value that was lowered to +145 mV by the presence of GDH. Since the GDH was shown to have a midpoint potential of +50 mV, cytochrome b-562 could function as the natural primary electron acceptor. Arguments to substantiate this view and to propose a role of ubiquinone-9 as electron acceptor for cytochrome b-562 are presented.  相似文献   

8.
A combination of potentiometric analysis and electrochemically poised low-temperature difference spectroscopy was used to examine a mutant strain of Escherichia coli that was previously shown by immunological criteria to be lacking the cytochrome d terminal oxidase. It was shown that this strain is missing cytochromes d, a1, and b558 and that the cytochrome composition of the mutant is similar to that of the wild-type strain grown under conditions of high aeration. The data indicate that the high-aeration branch of the respiratory chain contains two cytochrome components, b556 (midpoint potential [Em] = +35 mV) and cytochrome o (Em = +165 mV). The latter component binds to CO and apparently has a reduced-minus-oxidized split-alpha band with peaks at 555 and 562 nm. When the wild-type strain was grown under conditions of low aeration, the components of the cytochrome d terminal oxidase complex were observed: cytochrome d (Em = +260 mV), cytochrome a1 (Em = +150 mV) and cytochrome b558 (Em = +180 mV). All cytochromes appeared to undergo simple one-electron oxidation-reduction reactions. In the absence of CO, cytochromes b558 and o have nearly the same Em values. In the presence of CO, the Em of cytochrome o is raised, thus allowing cytochromes b558 and o to be individually quantitated by potentiometric analysis when they are both present.  相似文献   

9.
The redox reaction between cytochrome c-551 and its oxidase from the respiratory chain of pseudomonas aeruginosa was studied by rapid-mixing techniques at both pH7 and 9.1. The electron transfer in the direction of cytochrome c-551 reduction, starting with the oxidase in the reduced and CO-bound form, is monophasic, and the governing bimolecular rate constants are 1.3(+/- 0.2) x 10(7) M-1 . s-1 at pH 9.1 and 4 (+/- 1) x 10(6) M-1 . s-1 at pH 7.0. In the opposite direction, i.e. mixing the oxidized oxidase with the reduced cytochrome c-551 in the absence of O2, both a lower absorbance change and a more complex kinetic pattern were observed. With oxidized azurin instead of oxidized cytochrome c-551 the oxidation of the c haem in the CO-bound oxidase is also monophasic, and the second-order rate constant is 2 (+/- 0.7) x 10(6) M-1 . s-1 at pH 9.1. The redox potential of the c haem in the oxidase, as obtained from kinetic titrations of the completely oxidized enzyme with reduced azurin as the variable substrate, is 288 mV at pH 7.0 and 255 mV at pH 9.1. This is in contrast with the very high affinity observed in similar titrations performed with both oxidized azurin and oxidized cytochrome c-551 starting from the CO derivative of the reduced oxidase. It is concluded that: (i) azurin and cytochrome c-551 are not equally efficient in vitro as reducing substrates of the oxidase in the respiratory chain of Pseudomonas aeruginosa; (ii) CO ligation to the d1 haem in the oxidase induces a large decrease (at least 80 mV) in the redox potential of the c-haem moiety.  相似文献   

10.
Components I and II of cytochrome cd1 which had different spectral features were purified from the aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114. Component I showed an absorption maxima at 700 and 406 nm in the oxidized form, and at 621, 552.5, 548 and 416 nm in the reduced form. Component II showed an absorption maxima at 635 and 410 nm in the oxidized form and at 628, 552.5, 548 and 417 nm in the reduced form. The relative molecular mass, Mr, of both cytochromes was determined to be 135,000 with two identical subunits. Components I and II showed pI values of 7.6 and 6.8, respectively. The redox potential of hemes ranged from +234 mV to +242 mV, except for the heme d1 of component I (Em7 = +134 mV). Components I and II showed both cytochrome c oxidase and nitrite reductase activities. Cytochrome c oxidase activity was strongly inhibited by a low concentration of nitrite and cyanide. Erythrobacter cytochromes c-551 and c-552 were utilized as electron donors for the cytochrome c oxidase reaction. The high affinity of cytochrome c-552 to component II (Km = 1.27 microM) suggested a physiological significance for this cytochrome. Erythrobacter cytochromes cd1 are unique in their presence in cells grown under aerobic conditions as compared to other bacterial cytochromes cd1 which are formed only under denitrifying conditions.  相似文献   

11.
A new b-type cytochrome, cytochrome b561 (Murakami, H., Kita, K., Oya, H., and Anraku, Y. (1984) Mol. Gen. Genet. 196, 1-5) was purified to near homogeneity from the cytochrome b561-amplified Escherichia coli K12 strain HM204/pAM5029. The purified cytochrome b561 was a single polypeptide with a molecular weight of 18,000, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its isoelectric point was determined to be 9.6. The difference spectrum of the cytochrome at 77 K shows a major alpha-absorption peak at 561 nm and a minor peak at 555 nm. The absolute spectrum at room temperature of the oxidized form of the cytochrome had an absorption peak at 414 nm, and that of the reduced form had peaks at 562, 530, and 428 nm. The oxidation-reduction potential of the cytochrome was estimated to be +20 mV. The cytochrome contained 91.2 nmol of heme/mg of protein, showing that it was a cytoplasmic membrane-bound, b-type diheme cytochrome.  相似文献   

12.
The aerobic respiratory system of the hydrocarbonoclastic marine bacterium Pseudomonas nautica 617 ends with a single terminal oxidase. It is a heme-containing membranous protein which has been demonstrated only to reduce molecular oxygen to hydrogen peroxide [Denis, M., Arnaud S. & Malatesta, F. (1989) FEBS Lett. 247, 475-479]. The purification of this oxidase was achieved in a single step through by DEAE-Trisacryl chromatography. SDS/PAGE showed the presence of four subunits. The pI was found to be 4.45 and a Mr of 130,000 was determined by gel filtration. The amino acid composition of the purified terminal oxidase has been determined. About 52% of the residues are hydrophobic, strengthening the membranous nature of this bacterial oxidase. Room temperature optical spectra are typical of heme b with a 560-nm band for the reduced form in the alpha range. The prosthetic group is made of two hemes b, one high-spin (S = 5/2, gl = 5.9, g parallel approximately 2.0), the other low-spin (S = 1/2, gz = 2.94, gy = 2.27). No other metal centre was detected by EPR. The two hemes remained unresolved in optical spectra, even at low temperature, and throughout redox titration. They behaved potentiometrically like a one-electron, single redox couple, with Em = 87 +/- 10 mV at pH 7.2 and 293 K. The purified oxidase did not oxidize ferrocytochrome c, but displayed quinol oxidase activity both with the native quinone (2419 nmol O2.min-1.mg protein-1 and commercially available coenzyme (101.74 nmol O2.min-1.mg protein-1). Exposure of the reduced enzyme to CO induced the collapse of alpha and beta bands as occurred during reoxidation. In contrast, NaCN and NaN3 fully inhibited the oxidase activity. Results are discussed with respect to other purified quinol oxidases.  相似文献   

13.
The highly thermophilic, hydrogen-oxidizing aerobic bacteria related to Hydrogenobacter possess a respiratory chain comprising a quinone and b-type (alpha band at 556 nm and 562 nm) and c-type (alpha band at 552 nm) cytochromes. They have no aa3-type cytochromes and their terminal oxidase is an o-type cytochrome. A polarographic method with an oxygen electrode was used for the measurement of the hydrogen-oxidizing activity. This activity was strongly inhibited by HQNO (2-N-heptyl-4-hydroxyquinoline N-oxide), an inhibitor of the respiratory chain in the quinone-cytochrome b region, and by KCN, an inhibitor of the terminal cytochrome oxidase. This study shows that the electrons released from hydrogen oxidation by the membrane-bound hydrogenase probably enter the respiratory chain at the level of the quinone-cytochrome b region.Abbreviations HQNO 2-N-heptyl-4-hydroxyquinoline N-oxide - TMPD N,N,N',N'-tetramethyl-p-phenylenediamine - DW dry weight  相似文献   

14.
1. In the presence of both CO and O2, ox heart cytochrome c oxidase forms a 607 nm-peak intermediate distinct from both the cytochrome a2+a3 2+CO and the cytochrome a3+a3 2+CO ('mixed-valence') CO complexes. 2. This aerobic CO compound is stable towards ferricyanide addition, but decomposed on treatment with ferric cytochrome a2 ligands such as formate, cyanide and azide. 3. Addition of formate or cyanves rise to a complex with alpha-peak at 598 nm, not identical with any azide complex of the free enzyme, but possibly a cytochrome a3 2+NO complex produced by oxidative attack of partially reduced O2 on the azide. 4. The results support the idea that although the initial reaction of oxygen is with cytochrome a3 2+, the next step is not an oxidation of the ferrous cytochrome a3, but a transfer of O2 to a neighbouring group, such as Cu+, to give Cu2+O2- or similar complexes. 5. The aerobic CO complex is then identified as a3+a3 2+COCu2+O2-; a similar compound ('Compound C') is formed by photolysis of a3+a3 2+CO (the 'mixed-valence' CO complex) in the presence of oxygen at low temperatures.  相似文献   

15.
1. The absorption coefficient of human neutrophil plasma-membrane reduced-minus-oxidized cytochrome b-245 was determined [delta epsilon (mM; 559-540 nm) = 21.6 cm-1]. 2. Neutrophil polymorphonuclear leucocytes (neutrophils) were prepared from human, ox, horse and pig blood. In each case plasma-membrane fractions were found to contain low-potential cytochrome b. When membranes from horse neutrophils were incubated anaerobically with either NADH or NADPH the cytochrome b became reduced. Prior stimulation of the cells with phorbol myristate acetate did not increase the rate or extent of cytochrome b reduction in isolated membranes, but did increase both the rate and extent of reduction by NADPH in Triton-treated cells. 3. A cytochrome b was present also in the specific granule fraction of human neutrophils. Its Em (pH 7.0) was found to be -248 mV, very similar to that of the plasma-membrane cytochrome b. 4. The rate of oxidation of reduce cytochrome b-245 by air-saturated buffer, was determined by using stopped-flow techniques. In intact membranes t 1/2 for oxidation was 4.7 ms. This rate is sufficiently rapid to support the view that cytochrome b-245 is the oxidase in the respiratory burst of neutrophils. 5. Plasma-membrane cytochrome b of human neutrophils formed a complex with CO. At room temperature and 1 atm of CO approx. 40% of the cytochrome formed a complex; approx. 60% binding was measured at the increased concentration of dissolved CO achieved at 5 degrees C. The concentration of CO giving 50% binding was 1.18 mM.  相似文献   

16.
Assignment of ESR signals of Escherichia coli terminal oxidase complexes   总被引:1,自引:0,他引:1  
The ESR signals of all the major components of the aerobic respiratory chain of Escherichia coli were measured and assigned at liquid helium temperature. Cytochrome b-556 gives a weak high-spin signal at g = 6.0. The terminal oxidase cytochrome b-562 . o complex gives signals at g = 6.0, 3.0 and 2.26, and the terminal oxidase cytochrome b-558 . d complex gives signals at g = 6.0, 2.5 and 2.3. A signal derived from cupric ions in the purified cytochrome b-562 . o complex was observed near g = 2.0. It was shown by the effects of KCN or NaN3 on cytochromes under the air-oxidized conditions that cytochrome o has a high-spin heme and cytochrome d has a low-spin heme. The E'm values for cytochromes b-558 and d, respectively, determined by potentiometric titration of the ESR signals were 140 and 240 mV in the membrane preparation, and 30 and 240 mV in the purified preparation. The oxidized cytochrome d gave intense low-spin signals at g = 2.5 and 2.3, while cytochrome d under the air-oxidized conditions gave corresponding signals of only very low intensity. These results suggested that most of the cytochrome d under the air-oxidized conditions contains a diamagnetic iron atom with a bound dioxygen.  相似文献   

17.
Abstract The role of cytochrome b 562, a fragile constituent of the respiratory terminal oxidase supercomplex of the thermoacidophilic archaeon, Sulfolobus sp. strain 7, was investigated spectroscopically in the membrane-bound state. Cytochrome b 562 did not react with CO or cyanide in the membrane-bound state, while it was irreversibly modified to a CO-reactive form ( b 562) upon solubilization in the presence of cholate and LiCl. Cyanide titration analyses with the succinate-reduced membrane suggested that cytochrome b 562 was upstream of both the ' g y= 1.89' Rieske FeS cluster and the a -type cytochromes. These results show that the b -type cytochrome functions as an intermediate electron transmitter in the terminal oxidase supercomplex.  相似文献   

18.
A ubiquinone-cytochrome b-c1 complex was removed from chromatophoremembranes of a Rhodopseudomonas sphaeroides green mutant bydeoxycholate-cholate treatment of the chromatophores. The complexwas purified by ammonium sulfate fractionation and gel filtration. The molecular weight of the purified complex was 240,000 (240kD) and it was composed of seven subunits with molecular weightsof 47 kD, 42 kD, 38 kD, 32 kD, 30 kD, 24 kD and 16 kD. The complexcontained 1.54 and 3.42 nmol of cytochrome c1 and two differentcytochrome b species per mg protein, respectively. It also contained7.07 nmol of ubiquinone, 6.37 nmol of non-heme iron and about3 nmol of carotenoids per mg protein. No flavins were detected.Heme staining indicated that the 32 kD-and 24 kD-subunits werecytochromes. The midpoint potential of cytochrome c1 was 245 mV, and thevalues for the cytochromes b were 60 mV and –75 mV atpH 7.2. The peak of the -band of the reduced-minus-oxidizeddifference spectrum of cytochrome c1 was located at 552.5 nm,arid peaks of the b-type cytochromes with higher and lower midpointpotentials were located at 562 nm and 563 nm. The chemical and the subunit compositions of the purified complexreported here were similar to those obtained for the inner membranesof mitochondria of various organisms. (Received April 5, 1982; Accepted June 14, 1982)  相似文献   

19.
Cytochrome o, solubilized from the membrane of Azotobacter vinelandii, has been purified to homogeneity as judged by ultracentrifugation and polyacrylamide gel electrophoresis. The detergent-containing cytochrome o is composed of one polypeptide chain with a molecular weight of 28 000-29 000, associated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme exists as a dimer by gel filtration analysis. The amino analysis which reveals the majority of residues are of hydrophobic nature. The cytochrome o oxidase contains protoheme as its prosthetic group and about 20-40% of phospholipids. The phospholipids are identified as phosphatidylethanolamine and phosphatidylglycerol by radioautographic analysis using 2-dimensional thin-layer chromatography. No copper or nonheme iron can be detected in the purified oxidase preparation by atomic absorption and chemical analyses. Oxidation-reduction titration shows this membrane-bound cytochrome o to be a low-potential component, and Em was determined to be -18 mV in the purified form and -30 mV in the membrane-bound form. Both forms bind CO with a reduced absorption peak at 559 and 557-558 nm in the native and solubilized forms, respectively. A high-spin (g = 6.0) form is assigned to the oxidized cytochrome o by electron paramagnetic resonance analysis, and KCN abolishes this high-spin signal. CO titration of purified cytochrome o in the anaerobic conditions shows the enzyme binds one CO per four protohemes and a dissociation constant is estimated to be 3.2 microM for CO. Cyanide reacts with purified cytochrome o in both oxidized and CO-bound forms, identified by specific spectral compounds absorbed at the Soret region. Cytochrome c, often co-purified with cytochrome c from the membrane, cannot serve as a reductant for cytochrome o in vitro, due to the apparent potential difference of about 300 mV. Upon separation, both cytochrome o and cytochrome c4 show a great tendency of aggregation. Furthermore, the oxidase activity (measured by tetramethyl-p-phenylenediamine oxidation rate) decreases as the cytochrome c concentration is decreased by ammonium sulfate fractionation. All these suggest the structural and functional complex nature of cytochrome c4 and cytochrome o in the membrane of A. vinelandii.  相似文献   

20.
1. In membranes prepared from dark grown cells of Rhodopseudomonas capsulata, five cytochromes of b type (E0 at pH 7.0 +413±5, +270±5, +148±5, +56±5 and −32±5 mV) can be detected by redox titrations at different pH values. The midpoint potentials of only three of these cytochromes (b148, b56, and b−32) vary as a function of pH with a slope of 30 mV per pH unit.

2. In the presence of a Co/N2 mixture, the apparent E0 of cytochrome b270 shifts markedly towards higher potentials (+355 mV); a similar but less pronounced shift is apparent also for cytochrome b150. The effect of CO on the midpoint potential of cytochrome b270 is absent in the respiration deficient mutant M6 which possesses a specific lesion in the CO-sensitive segment of the branched respiratory chain present in the wild type strain.

3. Preparations of spheroplasts with lysozyme digestion lead to the release of a large amount of cytochrome c2 and of virtually all cytochrome cc′. These preparations show a respiratory chain impaired in the electron pathway sensitive to low KCN concentration, in agreement with the proposed role of cytochrome c2 in this branch; on the contrary, the activity of the CO-sensitive branch remains unaffected, indicating that neither cytochrome c2 nor the CO-binding cytochrome cc′ are involved in this pathway.

4. Membranes prepared from spheroplasts still possess a CO-binding pigment characterized by maxima at 420.5, 543 and 574 nm and minima at 431, 560 nm in CO-difference spectra and with an band at 562.5 nm in reduced minus oxidized difference spectra. This membrane-bound cytochrome, which is coincident with cytochrome b270, can be classified as a typical cytochrome “o” and considered the alternative CO-sensitive oxidase.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号