首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scarcity of C4 plants in cool climates is usually attributed to their lower photosynthetic efficiency than C3 species at low temperatures. However, a lower freezing resistance may also decrease the competitive advantage of C4 plants by reducing canopy duration, especially in continental steppe grasslands, where a short, hot growing season is bracketed by frost events. This paper reports an experimental test of the hypothesis that cold acclimation is negligible in C4 grasses, leading to greater frost damage than in C3 species. The experiments exposed six C3 and three C4 Mongolian steppe grasses to 20 d chilling or control pre-treatments, followed by a high-light freezing event. Leaf resistance to freezing injury was independent of photosynthetic type. Three C3 species showed constitutive freezing resistance characterized by <20% leaf mortality, associated with high photosynthetic carbon fixation and electron transport rates and low leaf osmotic potential. One freezing-sensitive C4 species showed the expected pattern of chilling-induced damage to photosynthesis and >95% leaf mortality after the freezing event. However, three C3 and two C4 species displayed a cold acclimation response, showing significant decreases in osmotic potential and photosynthesis after exposure to chilling, and a 30-72% reduction of leaf freezing injury. This result suggested that down-regulation of osmotic potential may be involved in the cold acclimation process, and demonstrated that there is no inherent barrier to the development of cold acclimation in C4 species from this ecosystem. Cold acclimation via osmoregulation represents a previously undescribed mechanism to explain the persistence of C4 plants in cool climates.  相似文献   

2.
The regional abundance of C4 grasses is strongly controlled by temperature, however, the role of precipitation is less clear. Progress in elucidating the direct effects of photosynthetic pathway on these climate relationships is hindered by the significant genetic divergence between major C3 and C4 grass lineages. We addressed this problem by examining seasonal climate responses of photosynthesis in Alloteropsis semialata , a unique grass species with both C3 and C4 subspecies. Experimental manipulation of rainfall in a common garden in South Africa tested the hypotheses that: (1) photosynthesis is greater in the C4 than C3 subspecies under high summer temperatures, but this pattern is reversed at low winter temperatures; and (2) the photosynthetic advantage of C4 plants is enhanced during drought events. Measurements of leaf gas exchange over 2 years showed a significant photosynthetic advantage for the C4 subspecies under irrigated conditions from spring through autumn. However, the C4 leaves were killed by winter frost, while photosynthesis continued in the C3 plants. Unexpectedly, the C4 subspecies also lost its photosynthetic advantage during natural drought events, despite greater water-use efficiency under irrigated conditions. This study highlights previously unrecognized roles for climatic extremes in determining the ecological success of C3 and C4 grasses.  相似文献   

3.
Many studies have shown that membrane lipids of chilling-sensitive plants begin lateral phase separation (i.e. a minor component begins freezing) at chilling temperatures and that chilling-sensitive plants are often of tropical origin. We tested the hypothesis that membranes of tropical plants begin lateral phase separation at chilling temperatures, and that plants lower the temperature of lateral phase separation as they invade cooler habitats. To do so we studied plant species in one family confined to the tropics (Piperaceae) and in three families with both tropical and temperate representatives (Fabaceae [Leguminosae], Malvaceae, and Solanaceae). We determined lateral phase separation temperatures by measuring the temperature dependence of fluorescence from trans-parinaric acid inserted into liposomes prepared from isolated membrane phospholipids. In all families we detected lateral phase separations at significantly higher temperatures, on average, in species of tropical origin. To test for associated physiological effects we measured the temperature dependence of delayed light emission (DLE) by discs cut from the same leaves used for lipid analysis. We found that the temperature of maximum DLE upon chilling was strongly correlated with lateral phase separation temperatures, but was on average approximately 4°C lower. We also tested the hypothesis that photosystem II (PSII) (the most thermolabile component of photosynthesis) of tropical plants tolerates higher temperatures than PSII of temperate plants, using DLE and Fo chlorophyll fluorescence upon heating to measure the temperature at which PSII thermally denatured. We found little difference between the two groups in PSII denaturation temperature. We also found that the temperature of maximum DLA upon heating was not significantly different from the critical temperature for Fo fluorescence. Our results indicate that plants lowered their membrane freezing temperatures as they radiated from their tropical origins. One interpretation is that the tendency for membranes to begin freezing at chilling temperatures is the primitive condition, which plants corrected as they invaded colder habitats. An alternative is that membranes which freeze at temperatures only slightly lower than the minimum growth temperature confer an advantage.  相似文献   

4.
The acclimation of C(4) photosynthesis to low temperature was studied in the montane grass Muhlenbergia montana in order to evaluate inherent limitations in the C(4) photosynthetic pathway following chilling. Plants were grown in growth cabinets at 26 degrees C days, but at night temperatures of either 16 degrees C (the control treatment), 4 degrees C for at least 28 nights (the cold-acclimated treatment), or 1 night (the cold-stress treatment). Below a measurement temperature of 25 degrees C, little difference in the thermal response of the net CO(2) assimilation rate (A) was observed between the control and cold-acclimated treatment. By contrast, above 30 degrees C, A in the cold-acclimated treatment was 10% greater than in the control treatment. The temperature responses of Rubisco activity and net CO(2) assimilation rate were similar below 22 degrees C, indicating high metabolic control of Rubisco over the rate of photosynthesis at cool temperatures. Analysis of the response of A to intercellular CO(2) level further supported a major limiting role for Rubisco below 20 degrees C. As temperature declined, the CO(2) saturated plateau of A exhibited large reductions, while the initial slope of the CO(2) response was little affected. This type of response is consistent with a Rubisco limitation, rather than limitations in PEP carboxylase capacity. Stomatal limitations at low temperature were not apparent because photosynthesis was CO(2) saturated below 23 degrees C at air levels of CO(2). In contrast to the response of photosynthesis to temperature and CO(2) in plants acclimated for 4 weeks to low night temperature, plants exposed to 4 degrees C for one night showed substantial reduction in photosynthetic capacity at temperatures above 20 degrees C. Because these reductions were at both high and low CO(2), enzymes associated with the C(4) carbon cycle were implicated as the major mechanisms for the chilling inhibition. These results demonstrate that C(4) plants from climates with low temperature during the growing season can fully acclimate to cold stress given sufficient time. This acclimation appears to involve reversal of injury to the C(4) cycle following initial exposure to low temperature. By contrast, carbon gain at low temperatures generally appears to be constrained by the carboxylation capacity of Rubisco, regardless of acclimation time. The inability to overcome the Rubisco limitation at low temperature may be an inherent limitation restricting C(4) photosynthetic performance in cooler climates.  相似文献   

5.

FBPase, fructose-1,6-bisphosphatase
NADP-MDH, NADP-malate dehydrogenase
NADP-ME, NADP-malic enzyme
OAA, oxaloacetic acid
PEP, phosphoenolpyruvate
PEPcase, phosphoenolpyruvate carboxylase
PPDK, pyruvate orthophosphate dikinase
Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase

The aim of this study was to investigate the mechanism of photosynthetic changes in sugarcane leaves in response to chilling temperature by using three species ( Saccharum sinense R. cv. Yomitanzan, Saccharum sp. cv. NiF4 and Saccharum officinarum L. cv. Badira) differing in origin and cold sensitivity. Yomitanzan is native to subtropical areas, Badira is native to tropical areas and NiF4 is a hybrid species containing genes of both tropical and subtropical species. At exposure to chilling temperature (10 °C), the photosynthetic rate in the leaves at either 10 °C or 30 °C showed a greater decrease in Badira than in NiF4 and Yomitanzan. After 28 h exposure of plants to the chilling temperature, the extractable activities of pyruvate, orthophosphate dikinase (PPDK) and NADP-malate dehydrogenase (NADP-MDH) increased or were relatively stable in the leaves of NiF4 and Yomitanzan, but decreased substantially in Badira. Correspondingly, there was a substantial accumulation of aspartate, and the level of alanine increased in Badira leaves during the chilling treatment. It is suggested that NADP-MDH and PPDK are key enzymes which may determine the cold sensitivity in photosynthesis of sugarcane.  相似文献   

6.
'C4 photosynthesis' refers to a suite of traits that increase photosynthesis in high light and high temperature environments. Most C4 plants are grasses, which dominate tropical and subtropical grasslands and savannas but are conspicuously absent from cold growing season climates. Physiological attributes of C4 photosynthesis have been invoked to explain C4 grass biogeography; however, the pathway evolved exclusively in grass lineages of tropical origin, suggesting that the prevalence of C4 grasses in warm climates could be due to other traits inherited from their non-C4 ancestors. Here we investigate the relative influences of phylogeny and photosynthetic pathway in determining the ecological distributions of C4 grasses in Hawaii. We find that the restriction of C4 grasses to warmer areas is due largely to their evolutionary history as members of a warm-climate grass clade, but that the pathway does appear to confer a competitive advantage to grasses in more arid environments.  相似文献   

7.
8.
Photosynthetic rates of both C4- and C3-pathway plants grown at 25 C were measured before and during a period of chilling stress at 10 C, and then again at 25 C following various periods at 10 C. When temperatures are first lowered photosynthetic rates drop immediately, then undergo a further reduction which is quite rapid in species such as Sorghum, maize, and Pennisetum; slower in soybean; and very slow in Paspalum and ryegrass. Visible light causes progressive permanent damage to the photosynthetic capacity of leaves during this period of lowered photosynthesis. The extent of damage increases with light intensity and the length of time leaves are held at 10 C but varies greatly between species, being roughly correlated with the extent to which chilling initially and subsequently lowers photosynthesis. Three days of chilling (10 C) at 170 w·m−2 reduces the photosynthetic capacity of youngest-mature Paspalum leaves only 30 to 40% while Sorghum leaves are essentially inoperative when returned to 25 C after the same stress. Root temperature has a substantial rapid effect on photosynthesis of soybean and little immediate effect on Sorghum. Photosynthesis of stress-intolerant species (Sorghum) is reduced only slightly more than that of semitolerant species (Paspalum) when temperatures are lowered at mid-photo-period, but to a far greater extent if temperatures are reduced at the commencement of a photoperiod.  相似文献   

9.
Frost tolerance has been reported in the shoots of wild, tuberiferous potato species such as Solanum commersonii when the plants are grown in either field or controlled conditions. However, these plants can survive as underground tubers and avoid unfavorable environmental conditions altogether. As such, leaf growth and photosynthesis at low temperature may not be required for survival of the plants. In order to determine the temperature sensitivity of S. commersonii shoots, we examined leaf growth, development and photosynthesis in plants raised at 20/16°C (day/night). 12/9°C and 5/2°C. S. commersonii leaves grown at 5°C exhibited a marked decrease in leaf area and in total chlorophyll (Chl) content per leaf area when compared with leaves grown at 20°C. Furthermore, leaves grown at 5°C did not exhibit the expected decrease in either water content or susceptibility to low-temperature-induced photoinhibition that normally characterizes cold acclimation in frost-tolerant plants. Measurements of CO2-saturated O2 evolution showed that the photosynthetic apparatus of 5°C plants was functional, even though the efficiency of photosystem II photochemistry was reduced by growth at 5°C. A decrease in the resolution of the M-peak in the slow transients for Chl a fluorescence in leaves grown at 12 and 5°C and in all leaves exposed to high light at 5°C indicated that low temperature significantly affected processes on the reducing side of QA, the primary quinone electron acceptor in photosystem II. Thus S. commarsonii exhibits the characteristics of a plant that is limited by chilling temperatures. Although S. commersonii can tolerate light frosts, its sensitivity to chilling temperatures may result in shoot dieback in winter in its native habitat. The plants may avoid both chilling and freezing temperatures by overwintering as underground tubers.  相似文献   

10.
Temperature dependencies of stem dark respiration (R(d)) and light-driven bark photosynthesis (A(max)) of two temperate tree species (Fagus sylvatica and Betula pendula) were investigated to estimate their probable influence on stem carbon balance. Stem R(d) was found to increase exponentially with increasing temperatures, whereas A(max) levelled off or decreased at the highest temperatures chosen (35-40 degrees C). Accordingly, a linear relationship between respiratory and assimilatory metabolism was only found at moderate temperatures (10-30 degrees C) and the relationship between stem R(d) and A(max) clearly departed from linearity at chilling (5 degrees C) and at high temperatures (35-40 degrees C). As a result, the proportional internal C-refixation rate also decreased non-linearly with increasing temperature. Temperature response of photosystem II (PSII) photochemistry was also assessed. Bark photochemical yield (Delta F/F(m)') followed the same temperature pattern as bark CO(2) assimilation. Maximum quantum yield of PSII (F(v)/F(m)) decreased drastically at freezing temperatures (-5 degrees C), while from 30 to 40 degrees C only a marginal decrease in F(v)/F(m) was found. In in situ measurements during winter months, bark photosynthesis was found to be strongly reduced. Low temperature stress induced an active down-regulation of PSII efficiency as well as damage to PSII due to photoinhibition. All in all, the benefit of bark photosynthesis was negatively affected by low (<5 degrees C) as well as high temperatures (>30 degrees C). As the carbon balance of tree stems is defined by the difference between photosynthetic carbon gain and respiratory carbon loss, this might have important implications for accurate modelling of stem carbon balance.  相似文献   

11.
The previous investigations show that the amount and activity of Rubisco appears the major limitation to effective C(4) photosynthesis at low temperatures. The chilling-tolerant and bioenergy feedstock species Miscanthus x giganteus (M. x giganteus) is exceptionally productive among C(4) grasses in cold climates. It is able to develop photosynthetically active leaves at temperatures 6 degrees C below the minimum for maize, and achieves a productivity even at 52 degrees N that exceeds that of the most productive C(3) crops at this latitude. This study investigates whether this unusual low temperature tolerance can be attributed to differences in the amount or kinetic properties of Rubisco relative to maize. An efficient protocol was developed to purify large amounts of functional Rubisco from C(4) leaves. The maximum carboxylation activities (V(max)), activation states, catalytic rates per active site (K(cat)) and activation energies (E(a)) of purified Rubisco and Rubisco in crude leaf extracts were determined for M. x giganteus grown at 14 degrees C and 25 degrees C, and maize grown at 25 degrees C. The sequences of M. x giganteus Rubisco small subunit mRNA are highly conserved, and 91% identical to those of maize. Although there were a few differences between the species in the translated protein sequences, there were no significant differences in the catalytic properties (V(max), K(cat), and E(a)) for purified Rubisco, nor was there any effect of growth temperature in M. x giganteus on these kinetic properties. Extracted activities were close to the observed rates of CO(2) assimilation by the leaves in vivo. On a leaf area basis the extracted activities and activation state of Rubisco did not differ significantly, either between the two species or between growth temperatures. The activation state of Rubisco in leaf extracts showed no significant difference between warm and cold-grown M. x giganteus. In total, these results suggest that the ability of M. x giganteus to be productive and maintain photosynthetically competent leaves at low temperature does not result from low temperature acclimation or adaptation of the catalytic properties of Rubisco.  相似文献   

12.
Yucca glauca is a C(3) evergreen rosette species locally common in the C(4)-dominated grasslands of the central Great Plains. Most congeners of Y. glauca are found in deserts, and Y. glauca's morphological similarities to desert species (steeply angled leaves, evergreen habit) may be critical to its success in grasslands. We hypothesized that the evergreen habit of Y. glauca, coupled with its ability to remain physiologically active at cool temperatures, would allow this species to gain a substantial portion of its annual carbon budget when the C(4) grasses are dormant. Leaf-level gas exchange was measured over an 18-mo period at Konza Prairie in northeast Kansas to assess the annual pattern of potential C gain. Two short-term experiments also were conducted in which nighttime temperatures were manipulated to assess the cold tolerance of this species. The annual pattern of C gain in Y. glauca was bimodal, with a spring productive period (maximum monthly photosynthetic rate = 21.1 ± 1.97 μmol·m·s) in March through June, a period of midseason photosynthetic depression, and a fall productive period in October (15.6 ± 1.25 μmol·m·s). The steeply angled leaves resulted in interception of photon flux density at levels above photosynthetic saturation throughout the year. Reduced photosynthetic rates in the summer may have been caused by low soil moisture, but temperature was strongly related (r = 0.37) to annual variations in photosynthesis, with nocturnal air temperatures below -5°C in the late fall and early spring, and high air temperatures (>32°C) in the summer, limiting gas exchange. Overall, 31% of the potential annual carbon gain in Y. glauca occurred outside the "frost-free" period (April-October) at Konza Prairie and 43% occurred when the dominant C(4) grasses were dormant. Future climates that include warmer minimum temperatures in the spring and fall may enhance the success of Y. glauca relative to the C(4) dominants in these grasslands.  相似文献   

13.
Carbon dioxide and water vapour exchanges for single attachedleaves of the temperate C4 grass Spartina townsendii were measuredunder controlled environment conditions in an open gas-exchangesystem. The responses of net photosynthesis, stomatal resistance,and residual resistance to leaf temperature and photon fluxdensity are described. The light and temperature responses ofnet photosynthesis in S. townsendii are compared to informationon these responses in both temperate C3 grasses and sub-tropicalC4 grasses. Adaptation of photosynthesis in this C4 speciesto a cool temperate climate is indicated both by the light andtemperature responses of net photo-synthesis. Unlike the C4grasses examined previously, significant rates of net photosynthesiscan be detected at leaf temperatures below 10?C. Rates of netphotosynthesis equal or exceed those reported for temperateC3 grasses at all of the temperature (5–40?C) and photonflax density (13–2500µmol m–2 s–1) conditionsexamined. Maximum rates of net photosynthesis in S. townsendiiare almost double those reported for C3 herbage grasses. Unliketemperate C3 grasses, the major limitation to net photosynthesisat low leaf temperatures (10?C and below) is the stomatal resistance,showing that the low residual resistance characteristic of C4species is maintained in S. townsendii even at low leaf temperatures.  相似文献   

14.
The behavioral responses to instant freezing or chilling temperatures and survivorship of the Formosan subterranean termite, Coptotermes formosanus Shiraki, and the Eastern subterranean termite, Reticulitermes flavipes (Kollar), were studied using a novel experimental design that closely simulated subterranean termites' natural in-ground environment. Both termite species responded to changes in temperature by exhibiting a downward mass movement from the cold to warmer area of constant temperature. However, the degrees of response were specific to the species and temperature regimen. Approximately 88 and 96% of R. flavipes escaped from instant 0 degrees C and chilling regimens (from 24 to 0 degrees C at a rate of 1 degrees C/h or 1 degrees C/12 h), respectively, compared with approximately 77 and 91% of C. formosanus. No significant difference was detected between the two cooling regimens in either termite species. Controls resulted in a relatively even distribution within test tubes in both termite species. The small portion of the termites that did not escape endured a cold coma at a 24-h 0 degrees C and had low mortality of 2.2 and <1% in R. flavipes and <5.2 and <3% in C. formosanus at instant and chilling regimens, respectively. This result may have implications for understanding group intelligence and decision making evolved by subterranean termites to survive temporary freezing cold.  相似文献   

15.
The temperature response of C(3) and C(4) photosynthesis   总被引:1,自引:0,他引:1  
We review the current understanding of the temperature responses of C(3) and C(4) photosynthesis across thermal ranges that do not harm the photosynthetic apparatus. In C(3) species, photosynthesis is classically considered to be limited by the capacities of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose bisphosphate (RuBP) regeneration or P(i) regeneration. Using both theoretical and empirical evidence, we describe the temperature response of instantaneous net CO(2) assimilation rate (A) in terms of these limitations, and evaluate possible limitations on A at elevated temperatures arising from heat-induced lability of Rubisco activase. In C(3) plants, Rubisco capacity is the predominant limitation on A across a wide range of temperatures at low CO(2) (<300 microbar), while at elevated CO(2), the limitation shifts to P(i) regeneration capacity at suboptimal temperatures, and either electron transport capacity or Rubisco activase capacity at supraoptimal temperatures. In C(4) plants, Rubisco capacity limits A below 20 degrees C in chilling-tolerant species, but the control over A at elevated temperature remains uncertain. Acclimation of C(3) photosynthesis to suboptimal growth temperature is commonly associated with a disproportional enhancement of the P(i) regeneration capacity. Above the thermal optimum, acclimation of A to increasing growth temperature is associated with increased electron transport capacity and/or greater heat stability of Rubisco activase. In many C(4) species from warm habitats, acclimation to cooler growth conditions increases levels of Rubisco and C(4) cycle enzymes which then enhance A below the thermal optimum. By contrast, few C(4) species adapted to cooler habitats increase Rubisco content during acclimation to reduced growth temperature; as a result, A changes little at suboptimal temperatures. Global change is likely to cause a widespread shift in patterns of photosynthetic limitation in higher plants. Limitations in electron transport and Rubisco activase capacity should be more common in the warmer, high CO(2) conditions expected by the end of the century.  相似文献   

16.
17.
Abstract. Fully expanded leaves of 25°C grown Phaseolus vulgaris and six other species were exposed for 3 h to chilling temperatures at photon flux densities equivalent to full sunlight. In four of the species this treatment resulted in substantial inhibition of the subsequent quantum yield of CO2 uptake, indicating reduction of the photochemical efficiency of photosynthesis. The extent of inhibition was dependent on the photon flux density during chilling and no inhibition occurred when chilling occurred at a low photon flux density. No inhibition occurred at temperatures above 11.5°C, even in the presence of the equivalent of full sunlight. This interaction between chilling and light to cause inhibition of photosynthesis was promoted by the presence of oxygen at normal air partial pressures and was unaffected by the CO2 partial pressure present when chilling occurred in air. When chilling occurred at low O2 partial pressures, CO2 was effective in reducing the degree of inhibition. Apparently, when leaves of chilling-sensitive plants are exposed to chilling temperatures in air of normal composition then light is instrumental in inducing rapid damage to the photochemical efficiency of photosynthesis.  相似文献   

18.
The effect of variable autumn temperatures in combination with decreasing irradiance and daylength on photosynthesis, growth cessation and freezing tolerance was investigated in northern‐ and southern‐adapted populations of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense) intended for use in regions at northern high latitudes. Plants were subjected to three different acclimation temperatures; 12, 6 and 9/3°C (day/night) for 4 weeks, followed by 1 week of cold acclimation at 2°C under natural light conditions. This experimental setup was repeated at three different periods during autumn with decreasing sums of irradiance and daylengths. Photoacclimation, leaf elongation and freezing tolerance were studied. The results showed that plants cold acclimated during the period with lowest irradiance and shortest day had lowest freezing tolerance, lowest photosynthetic activity, longest leaves and least biomass production. Higher acclimation temperature (12°C) resulted in lower freezing tolerance, lower photosynthetic activity, faster leaf elongation rate and higher biomass compared with the other temperatures. Photochemical mechanisms were predominant in photoacclimation. The northern‐adapted populations had a better freezing tolerance than the southern‐adapted except when grown during the late autumn period and at the highest temperature; then there were no differences between the populations. Our results indicate that the projected climate change in the north may reduce freezing tolerance in grasses as acclimation will take place at higher temperatures and shorter daylengths with lower irradiance.  相似文献   

19.
C(4) plants dominate the world's subtropical grasslands, but investigations of their ecology typically focus on climatic variation, ignoring correlated changes in soil nutrient concentration. The hypothesis that higher photosynthetic nitrogen use efficiency (PNUE) in C(4) than in C(3) species allows greater flexibility in the partitioning of growth, especially under nutrient-deficient conditions, is tested here. Our experiment applied three levels of N supply to the subtropical grass Alloteropsis semialata, a unique model system with C(3) and C(4) subspecies. Photosynthesis was significantly higher for the same investment of leaf N in the C(4) than C(3) subspecies, and was unaffected by N treatments. The C(4) plants produced more biomass than the C(3) plants at high N levels, diverting a greater fraction of growth into inflorescences and corms, but less into roots and leaves. However, N-limitation of biomass production caused size-dependent shifts in the partitioning of growth. Root production was higher in small than large plants, and associated with decreasing leaf biomass in the C(3), and inflorescence production in the C(4) plants. Higher PNUE in the C(4) than C(3) subspecies was therefore linked with greater investment in sexual reproduction and storage, and the avoidance of N-limitations on leaf growth, suggesting advantages of the C(4) pathway in disturbed and infertile ecosystems.  相似文献   

20.
The C4 photosynthetic pathway uses water more efficiently than the C3 type, yet biogeographical analyses show a decline in C4 species relative to C3 species with decreasing rainfall. To investigate this paradox, the hypothesis that the C4 advantage over C3 photosynthesis is diminished by drought was tested, and the underlying stomatal and metabolic mechanisms of this response determined. The effects of drought and high evaporative demand on leaf gas exchange and photosynthetic electron sinks in C3 and C4 subspecies of the grass Alloteropsis semialata were examined. Plant responses to climatic variation and soil drought were investigated using a common garden experiment with well-watered and natural rainfall treatments, and underlying mechanisms analysed using controlled drying pot experiments. Photosynthetic rates were significantly higher in the C4 than the C3 subspecies in the garden experiment under well-watered conditions, but this advantage was completely lost during a rainless period when unwatered plants experienced severe drought. Controlled drying experiments showed that this loss was caused by a greater increase in metabolic, rather than stomatal, limitations in C4 than in the C3 leaves. Decreases in CO2 assimilation resulted in lower electron transport rates and decreased photochemical efficiency under drought conditions, rather than increased electron transport to alternative sinks. These findings suggest that the high metabolic sensitivity of photosynthesis to severe drought seen previously in several C4 grass species may be an inherent characteristic of the C4 pathway. The mechanism may explain the paradox of why C4 species decline in arid environments despite high water-use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号