首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is essential for EBV-mediated transformation of primary B lymphocytes. LMP1 spontaneously aggregates in the plasma membrane and enables two transformation effector sites (TES1 and TES2) within the 200-amino-acid cytoplasmic carboxyl terminus to constitutively engage the tumor necrosis factor receptor (TNFR)-associated factors TRAF1, TRAF2, TRAF3, and TRAF5 and the TNFR-associated death domain proteins TRADD and RIP, thereby activating NF-kappaB and c-Jun N-terminal kinase (JNK). To investigate the importance of the 60% of the LMP1 carboxyl terminus that lies between the TES1-TRAF and TES2-TRADD and -RIP binding sites, an EBV recombinant was made that contains a specific deletion of LMP1 codons 232 to 351. Surprisingly, the deletion mutant was similar to wild-type (wt) LMP1 EBV recombinants in its efficiency in transforming primary B lymphocytes into lymphoblastoid cell lines (LCLs). Mutant and wt EBV-transformed LCLs were similarly efficient in long-term outgrowth and in regrowth after endpoint dilution. Mutant and wt LMP1 proteins were also similar in their constitutive association with TRAF1, TRAF2, TRAF3, TRADD, and RIP. Mutant and wt EBV-transformed LCLs were similar in steady-state levels of Bcl2, JNK, and activated JNK proteins. The wt phenotype of recombinants with LMP1 codons 232 to 351 deleted further demarcates TES1 and TES2, underscores their central importance in B-lymphocyte growth transformation, and provides a new perspective on LMP1 sequence variation between TES1 and TES2.  相似文献   

2.
The Epstein-Barr virus (EBV) is an important human pathogen that is associated with multiple cancers. The major oncoprotein of the virus, latent membrane protein 1 (LMP1), is essential for EBV B-cell immortalization and is sufficient to transform rodent fibroblasts. This viral transmembrane protein activates multiple cellular signaling pathways by engaging critical effector molecules and thus acts as a ligand-independent growth factor receptor. LMP1 is thought to signal from internal lipid raft containing membranes; however, the mechanisms through which these events occur remain largely unknown. Lipid rafts are microdomains within membranes that are rich in cholesterol and sphingolipids. Lipid rafts act as organization centers for biological processes, including signal transduction, protein trafficking, and pathogen entry and egress. In this study, the recruitment of key signaling components to lipid raft microdomains by LMP1 was analyzed. LMP1 increased the localization of phosphatidylinositol 3-kinase (PI3K) and its activated downstream target, Akt, to lipid rafts. In addition, mass spectrometry analyses identified elevated vimentin in rafts isolated from LMP1 expressing NPC cells. Disruption of lipid rafts through cholesterol depletion inhibited PI3K localization to membranes and decreased both Akt and ERK activation. Reduction of vimentin levels or disruption of its organization also decreased LMP1-mediated Akt and ERK activation and inhibited transformation of rodent fibroblasts. These findings indicate that LMP1 reorganizes membrane and cytoskeleton microdomains to modulate signal transduction.  相似文献   

3.
Epstein-Barr virus (EBV) encodes two integral membrane proteins in latently infected growth-transformed cells. One of these, LMP1, can transform rodent fibroblasts and induce markers of B-lymphocyte activation. The second, LMP2, colocalizes with LMP1 in a constitutive patch in the EBV-transformed B-lymphocyte plasma membrane. The experiments reported here demonstrate that LMP2 may biochemically interact with LMP1 and that LMP2 closely associates with and is an important substrate for a B-lymphocyte tyrosine kinase in EBV-transformed B lymphocytes or in B-lymphoma cells in which LMP2 is expressed by gene transfer. LMP2 is also serine and threonine phosphorylated. LMP2 localizes to a peripheral membrane (presumably plasma membrane) patch in transfected B-lymphoma cells and colocalizes with much of the cellular tyrosine-phosphorylated proteins. LMP2 undergoes tyrosine phosphorylation in anti-LMP2 or antiphosphotyrosine immunoprecipitates from transfected B-lymphoma cells or EBV-transformed B lymphocytes. The first 167 of the 497 amino acids of LMP2 retain full ability to associate with and act as a substrate for a tyrosine kinase. A 70-kDa phosphotyrosine cell protein associates with LMP2 in transfected cells or in EBV-transformed B lymphocytes and could be a mediator of the effects of LMP2.  相似文献   

4.
The common pathogen Epstein-Barr virus (EBV) transforms normal human B cells and can cause cancer. Latent membrane protein 2A (LMP2A) of EBV supports activation and proliferation of infected B cells and is expressed in many types of EBV-associated cancer. It is not clear how latent EBV infection and cancer escape elimination by host immunity, and it is unknown whether LMP2A can influence the interaction of EBV-infected cells with the immune system. We infected primary B cells with EBV deleted for LMP2A, and established lymphoblastoid cell lines (LCLs). We found that CD8+ T cell clones showed higher reactivity against LMP2A-deficient LCLs compared to LCLs infected with complete EBV. We identified several potential mediators of this immunomodulatory effect. In the absence of LMP2A, expression of some EBV latent antigens was elevated, and cell surface expression of MHC class I was marginally increased. LMP2A-deficient LCLs produced lower amounts of IL-10, although this did not directly affect CD8+ T cell recognition. Deletion of LMP2A led to several changes in the cell surface immunophenotype of LCLs. Specifically, the agonistic NKG2D ligands MICA and ULBP4 were increased. Blocking experiments showed that NKG2D activation contributed to LCL recognition by CD8+ T cell clones. Our results demonstrate that LMP2A reduces the reactivity of CD8+ T cells against EBV-infected cells, and we identify several relevant mechanisms.  相似文献   

5.
6.
7.
Latent membrane protein 2A (LMP2A) is expressed in latent Epstein-Barr virus (EBV) infection. We have demonstrated that Nedd4 family ubiquitin-protein ligases (E3s), AIP4, WWP2/AIP2, and Nedd4, bind specifically to two PY motifs present within the LMP2A amino-terminal domain. In this study, LMP2A PY motif mutant viruses were constructed to investigate the role of the LMP2A PY motifs. AIP4 was found to specifically associate with the LMP2A PY motifs in EBV-transformed lymphoblastoid cell lines (LCLs), extending our original observation to EBV-infected cells. Mutation of both of the LMP2A PY motifs resulted in an absence of binding of AIP4 to LMP2A, which resulted in an increase in the expression of Lyn and the constitutive hyperphosphorylation of LMP2A and an unknown 120-kDa protein. In addition, there was a modest increase in the constitutive phosphorylation of Syk and an unidentified 60-kDa protein. These results indicate that the PY motifs contained within LMP2A are important in regulating phosphorylation in EBV-infected LCLs, likely through the regulation of Lyn activity by specifically targeting the degradation of Lyn by ubiquination by Nedd4 family E3s. Despite differences between PY motif mutant LCLs and wild-type LCLs, the PY motif mutants still exhibited a block in B-cell receptor (BCR) signal transduction as measured by the induction of tyrosine phosphorylation and BZLF1 expression following BCR activation. EBV-transformed LCLs with mutations in the PY motifs were not different from wild-type LCLs in serum-dependent cell growth. Protein stability of LMP1, which colocalizes with LMP2A, was not affected by the LMP2A-associated E3s.  相似文献   

8.
9.
Lee J  Sugden B 《Journal of virology》2007,81(17):9121-9130
Latent membrane protein 1 (LMP1) of Epstein Barr virus (EBV) is important for maintaining proliferation of EBV-infected B cells. LMP1, unlike its cellular counterpart, CD40, signals without a ligand and is largely internal to the plasma membrane. In order to understand how LMP1 initiates its ligand-independent signaling, we focused on a leucine heptad in LMP1's first membrane-spanning domain that was shown to be necessary for LMP1's signaling through NF-kappaB. LZ1EBV, a recombinant EBV genetically altered to express LZ1, a derivative of LMP1 in which a leucine heptad was replaced with alanines, transformed B cells with 56% of wild-type (wt) EBV's efficiency, demonstrating the importance of this heptad. To elucidate the mechanism by which this domain contributes to the functions of LMP1, the properties of the wt and LZ1 were compared in transfected cells. LZ1 failed to home to lipid rafts as efficiently as did wt LMP1. The distribution of tagged derivatives of LZ1 also differed from that of wt LMP1 in transfected cells. LZ1's defect in homing to lipid rafts and altered trafficking likely underlie the defect in transformation of LZ1EBV. While the third and fourth membrane-spanning domains of LMP1 foster its trafficking to the Golgi, the leucine heptad within the first membrane-spanning domain contributes to its trafficking, particularly to internal rafts. B cells that are successfully transformed by LZ1EBV have the same average number of viral genomes and the same fraction of cells with capped LZ1 at the cell surface but express 50% more of the LZ1 allele than wt infected cells.  相似文献   

10.
Recombinant Epstein-Barr viruses (EBVs) were made with mutated latent membrane protein 1 (LMP1) genes that express only the LMP1 amino-terminal cytoplasmic and six transmembrane domains (MS187) or these domains and the first 44 amino acids of the 200-residue LMP1 carboxy-terminal domain (MS231). After infection of primary B lymphocytes with virus stocks having small numbers of recombinant virus and large numbers of P3HR-1 EBV which is transformation defective but wild type (WT) for LMP1, all lymphoblastoid cell lines (LCLs) that had MS187 or MS231 LMP1 also had WT LMP1 provided by the coinfecting P3HR-1 EBV. Lytic virus infection was induced in these coinfected LCLs, and primary B lymphocytes were infected. In over 200 second-generation LCLs, MS187 LMP1 was never present without WT LMP1. Screening of over 600 LCLs infected with virus from MS231 recombinant virus-infected LCLs identified two LCLs which were infected with an MS231 recombinant without WT LMP1. The MS231 recombinant virus could growth transform primary B lymphocytes when cells were grown on fibroblast feeders. Even after 6 months on fibroblast feeder layers, cells transformed by the MS231 recombinant virus died when transferred to medium without fibroblast feeder cells. These data indicate that the LMP1 carboxy terminus is essential for WT growth-transforming activity. The first 44 amino acids of the carboxy-terminal cytoplasmic domain probably include an essential effector of cell growth transformation, while a deletion of the rest of LMP1 can be complemented by growth on fibroblast feeder layers. LMP1 residues 232 to 386 therefore provide a growth factor-like effect for the transformation of B lymphocytes. This effect may be indicative of the broader role of LMP1 in cell growth transformation.  相似文献   

11.
The Epstein-Barr virus (EBV) oncoprotein latent membrane protein 1 (LMP1) is thought to act as the major transforming protein in various cell types, by rerouting the tumor necrosis factor receptor family signaling pathway. Despite this implication in EBV-associated transformation of cells, LMP1 toxicity is a well-known but poorly studied feature, perhaps because it contradicts its role in transformation. We show that LMP1 physiological levels are very heterogeneous and that the highest levels of LMP1 correlate with Fas overexpression and spontaneous apoptosis in lymphoblastoid cell lines (LCLs). To understand the cytotoxic effect of LMP1 in LCLs, we cloned wild-type LMP1 into a doxycycline double-inducible episomal vector pRT-1, with a truncated version of NGFR as a surrogate marker of inducibility. We found that LMP1 overexpression induced apoptosis in LCL B cells, as shown by annexin V labeling, sub-G(1) peak, and poly(ADP ribose) polymerase cleavage. Knocking down Fas expression by small interfering RNA abolished LMP1-induced apoptosis. The absence of detectable levels of Fas ligand mRNA suggested a ligand-independent activation of Fas. LMP1 induced Fas overexpression with its relocalization in lipid raft microdomains of the membrane. Fas immunoprecipitation detected FADD (Fas-associated death domain protein) and caspase 8, suggesting a Fas-dependent formation of the death-inducing signaling complex. Caspases 8, 9, 3, and 7 were activated by LMP1. Caspase 8 activation was associated with BID cleavage and truncated-BID mitochondrial relocalization, consistent with type II apoptosis. Therefore, our results are in agreement with a model where LMP1-dependent NF-kappaB activation induces Fas overexpression and autoactivation that could overwhelm the antiapoptotic effect of NF-kappaB, revealing an ambivalent function of LMP1 in cell survival and programmed cell death.  相似文献   

12.
Epstein-Barr virus (EBV) infection of primary human B cells drives their indefinite proliferation into lymphoblastoid cell lines (LCLs). B cell immortalization depends on expression of viral latency genes, as well as the regulation of host genes. Given the important role of microRNAs (miRNAs) in regulating fundamental cellular processes, in this study, we assayed changes in host miRNA expression during primary B cell infection by EBV. We observed and validated dynamic changes in several miRNAs from early proliferation through immortalization; oncogenic miRNAs were induced, and tumor suppressor miRNAs were largely repressed. However, one miRNA described as a p53-targeted tumor suppressor, miR-34a, was strongly induced by EBV infection and expressed in many EBV and Kaposi's sarcoma-associated herpesvirus (KSHV)-infected lymphoma cell lines. EBV latent membrane protein 1 (LMP1) was sufficient to induce miR-34a requiring downstream NF-κB activation but independent of functional p53. Furthermore, overexpression of miR-34a was not toxic in several B lymphoma cell lines, and inhibition of miR-34a impaired the growth of EBV-transformed cells. This study identifies a progrowth role for a tumor-suppressive miRNA in oncogenic-virus-mediated transformation, highlighting the importance of studying miRNA function in different cellular contexts.  相似文献   

13.
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is expressed constitutively in lipid rafts in latently infected B lymphocytes. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids selective for specific protein association. Lipid rafts have been shown to be necessary for B-cell receptor (BCR) signal transduction. LMP2A prevents BCR recruitment to lipid rafts, thereby abrogating BCR function. As LMP2A is palmitoylated, whether this fatty acid modification is necessary for LMP2A to localize to lipid rafts and for protein function was investigated. LMP2A palmitoylation was confirmed in latently infected B cells. LMP2A was found to be palmitoylated on multiple cysteines only by S acylation. An LMP2A mutant that was not palmitoylated was identified and functioned similar to wild-type LMP2A; unmodified LMP2A localized to lipid rafts, was tyrosine phosphorylated, was associated with LMP2A-associated proteins, was ubiquitinated, and was able to block calcium mobilization following BCR cross-linking. Therefore, palmitoylation of LMP2A is not required for LMP2A targeting to buoyant complexes or for function.  相似文献   

14.
The rare human genetic disorder ataxia-telangiectasia (A-T) has multiple consequences including a variable degree of immunodeficiency. Khanna and co-workers (Khanna, K. K., Yan, J., Watters, D., Hobson, K., Beamish, H., Spring, K., Shiloh, Y., Gatti, R. A., and Lavin, M. F. (1997) J. Biol. Chem. 272, 9489-9495) evaluated signaling in Epstein-Barr virus (EBV) immortalized A-T lymphoblastoid cell lines (LCLs), derived from the B cells of A-T patients. They showed that A-T lymphoblastoid cells lack signaling through the B cell antigen receptor and concluded that the fault in A-T encompasses intracellular signaling in B cells. However, it is established that EBV latent membrane protein 2A (LMP2A) blocks signaling in EBV-bearing cells by interaction with cellular tyrosine kinases. To test whether the reported fault in A-T B cells was not inherent in A-T but the result of influence of wild-type EBV, we derived A-T LCLs with wild-type or LMP2A-deleted EBV and studied signaling in these cells in response to cross-linking the B cell antigen receptor. We report that intracellular calcium mobilization and tyrosine phosphorylation in LMP2A-depleted LCLs derived from A-T patients is indistinguishable from that in LMP2A-depleted LCLs derived from normal controls. Further, signaling is blocked similarly in A-T and normal lymphoblastoid cells bearing wild-type EBV. In conclusion there is no evidence of any defect in B cell receptor signal transduction in A-T B cells.  相似文献   

15.
16.
Tubacin is a small molecule inhibitor of histone deacetylase 6 and blocks aggresome activity. We found that Epstein-Barr virus (EBV)-positive Burkitt lymphoma (BL) cells were generally killed by lower doses of tubacin than EBV-transformed lymphoblastoid cells (LCLs) or EBV-negative BL cells. Tubacin induced apoptosis of LCLs, which was inhibited by pretreatment with a pancaspase inhibitor but not by butylated hydroxyanisole, which inhibits reactive oxygen species. In contrast, tubacin killed EBV-positive BL cells in a caspase-3-independent pathway that involved reactive oxygen species and was blocked by butylated hydroxyanisole. Previously, we showed that bortezomib, a proteasome inhibitor, induces apoptosis of EBV LCLs and that LCLs are killed by lower doses of bortezomib than EBV-positive BL cells. Here we found that the combination of bortezomib and tubacin acted in synergy to kill EBV-positive BL cells and LCLs. Tubacin or the combination of bortezomib and tubacin did not induce EBV lytic replication. These findings suggest that the combination of a proteasome inhibitor and an HDAC6 inhibitor may represent a useful strategy for the treatment of certain EBV-associated B cell lymphomas.Epstein-Barr virus (EBV)4 is associated with several human lymphoid malignancies, including Hodgkin disease, Burkitt lymphoma (BL), T cell lymphomas, and post-transplant lymphoproliferative disease (1, 2). Tissues from patients with EBV post-transplant lymphoproliferative disease typically have a type 3 latency pattern in which each of the EBV latency-associated proteins, including EBV nuclear antigens (EBNA-1, -2, -3A, -3B, and -3C) and latent membrane proteins (LMP1 and LMP2) are expressed. A type 3 latency pattern is also seen in lymphoblastoid cell lines (LCLs), derived from primary B cells transformed with EBV in vitro. Tissues from patients with EBV-positive BL usually have a type 1 latency pattern with expression of EBNA-1 but not the other latency-associated proteins. When grown in cell culture, BL cell lines can have a type 1 or a type 3 pattern of latency.The treatment of EBV-associated lymphoid malignancies often requires cytotoxic chemotherapy, which is not always successful. Inhibition of proteasomes and aggresomes represents new therapeutic targets for malignancies (35). Degradation of proteins is required for vital cell functions and is carried out both in proteasomes and aggresomes. Misfolded or unfolded proteins are polyubiquitinated by a complex of proteins and subsequently degraded by proteasomes. However, if ubiquitinated proteins escape degradation by proteasomes and aggregate, they accumulate into aggresomes (6). Aggresome formation can be abrogated by disrupting the microtubule cytoskeleton or by overexpression of the p50 subunit of dynactin (7). HDAC6 (histone deacetylase 6) is a microtubule-associated deacetylase that can induce microtubule disassembly and promote chemotactic cell motility (810). HDAC6 contains a dynein motor binding domain, two catalytic domains with histone deacetylase activity, and a carboxyl-terminal domain that binds polyubiquitinated misfolded proteins (11). The carboxyl catalytic domain of HDAC6 possesses α-tubulin deacetylase activity (12). HDAC6 is required for transport of misfolded proteins for aggresome formation and to prevent apoptosis in response to misfolded protein stress (11). HDAC6 inhibitors disrupt aggresomes (5). Tubacin inhibits the carboxyl catalytic domain of HDAC6, increases the level of acetylated α-tubulin, and blocks aggresome activity (4, 12, 13).Bortezomib is an inhibitor of the 26 S proteasome (3). Previously, we showed that bortezomib induces apoptosis of EBV-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells (14). In contrast, EBV-negative Burkitt lymphoma cells were much less sensitive to killing by bortezomib. Since bortezomib has been shown to interact synergistically with tubacin to induce apoptosis in multiple myeloma cells (4), we studied the effect of tubacin on EBV-transformed B cells and Burkitt lymphoma cells both in the absence and presence of bortezomib. We show that tubacin kills LCLs by apoptosis and induction of caspase-3, whereas tubacin kills EBV-positive BL cells by induction of reactive oxygen species. Bortezomib and tubacin acted in synergy to kill EBV-positive BL cells and LCLs. These findings suggest that the combination of tubacin and bortezomib may have potential as a model for the treatment of certain EBV-associated lymphomas.  相似文献   

17.
CaM kinase-Gr is a multifunctional Ca2+/calmodulin-dependent protein kinase which is enriched in neurons and T lymphocytes. The kinase is absent from primary human B lymphocytes but is expressed in Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cell lines, suggesting that expression of the kinase can be upregulated by an EBV gene product(s). We investigated the basis of CaM kinase-Gr expression in EBV-transformed cells and the mechanisms that regulate its activity therein by using an EBV-negative Burkitt lymphoma cell line, BJAB, and BJAB cells converted to expression of individual EBV proteins by single-gene transfer. CaM kinase-Gr expression was upregulated in BJAB cells by EBV latent-infection membrane protein 1 (LMP1) but not by LMP2A or by nuclear proteins EBNA1, EBNA2, EBNA3A, and EBNA3C. In LMP1-converted BJAB cells, the kinase was functional and was dramatically activated upon cross-linking of surface immunoglobulin M. Overlapping cDNA clones that encode human CaM kinase-Gr were sequenced, revealing 81% amino acid identity between the rat and human proteins. Transfection of BJAB cells with an expression construct for the human enzyme resulted in a functional kinase which was shown by epitope tagging to localize primarily to cytoplasmic and perinuclear structures. Induction of CaM kinase-Gr expression by LMP1 provides the first example of a Ca2+/calmodulin-dependent protein kinase upregulated by a viral protein. In view of the key role played by LMP1 in B-lymphocyte immortalization by EBV, these findings implicate CaM kinase-Gr as a potential mediator of B-lymphocyte growth transformation.  相似文献   

18.
In latently infected growth-transformed human lymphocytes, Epstein-Barr virus (EBV) encodes two integral plasma membrane proteins: LMP1, which constitutively induces B-lymphocyte activation and intercellular adhesion, and LMP2A, which associates with LMP1 and is a tyrosine kinase substrate. We now demonstrate that LMP2A associates with src family protein tyrosine kinases, particularly lyn kinase, in nonionic detergent extracts of transfected B lymphoma cells or in extracts of EBV-transformed B lymphocytes. The LMP2A and tyrosine kinase association is stable in nonionic detergents and includes a 70-kDa cell protein which is also an in vitro or in vivo kinase substrate. This LMP2A association with B-lymphocyte src family tyrosine kinases is likely to be an important pathway in EBV's effects on cell growth.  相似文献   

19.
Nasopharyngeal carcinoma (NPC), an Epstein–Barr virus (EBV)-associated tumour common in Southern Chinese populations, is a potentially important target for T cell-based immunotherapy. The tumour cells are HLA class I- and II-positive and express a limited subset of EBV latent proteins, namely the nuclear antigen EBNA1 and the latent membrane proteins LMP2 and (in some cases) LMP1. To ask whether the tumour develops in the presence of a potentially protective host response or in its absence, we set out to determine the prevailing levels of CD4+ and CD8+ T cell memory to these proteins in NPC patients at tumour diagnosis. We first screened healthy Chinese donors against Chinese strain EBNA1, LMP1 and LMP2 sequences in Elispot assays of interferon-γ release and identified the immunodominant CD4+ and CD8+ epitope peptides presented by common Chinese HLA alleles. Then, comparing 60 patients with >70 healthy controls on peptide epitope mini-panels, we found that T cell memory to CD4 epitopes in all three proteins was unimpaired in the blood of patients at diagnosis. In most cases NPC patients also showed detectable responses to CD8 epitopes relevant to their HLA type, the one consistent exception being the absence in patients of a B*4001-restricted response to LMP2. We infer that NPC arises in patients whose prevailing levels of T cell memory to tumour-associated EBV proteins is largely intact; the therapeutic goal must therefore be to re-direct the existing memory repertoire more effectively against antigen-expressing tumour cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Seven virus-coded proteins, the nuclear proteins EBNA-1 to EBNA-6 and the latent membrane protein (LMP), are regularly expressed in Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines. In nasopharyngeal carcinoma (NPC), only EBNA-1 is regularly expressed; LMP is detected in about 65% of the tumors. In Burkitt's lymphoma tumors only EBNA-1 is expressed. We have recently shown that the methylation patterns of the EBV genome varied between these cell types. In virally transformed lymphoblastoid cell lines of normal origin, the EBV DNA is completely unmethylated. In contrast, in the Burkitt's lymphoma-derived cell line Rael and in a nude mouse-passaged NPC tumor, C15, there was an extensive methylation of CpG pairs. The methylation extended into the coding regions of the two expressed genes, EBNA-1 (in both tumor types) and LMP (in C15). Two presumptive control regions were exempted from this overall methylation: the oriP that contains both an origin of DNA replication and an EBNA-1-dependent enhancer and the 5'-flanking region of the BNLF-1 open reading frame that codes for LMP. The latter was only exempted in the LMP expressing NPC. We have now investigated the relation between expression of LMP and methylation of DNA in the 5'-flanking 1 kb region of BNLF-1, coding for LMP. LMP was methylated in 3 of 12 NPC biopsies that did not express LMP but was partially or totally unmethylated in the remaining 9 that expressed the protein. The three BNLF-1 exons were highly methylated in all the tumors. The oriP region was unmethylated in all the tumors, as in the previously studied Rael cell line and nude mouse-passaged NPC. Also, the BamHI W enhancer region involved in the expression of EBNA nuclear proteins was methylated. None of the biopsies expressed EBNA-2. Our data show that the EBV genomes are highly methylated in NPC tumors. The strong reverse correlation between the methylation of the putative control region of the LMP gene and the expression of LMP suggests that methylation has a role in the regulation of this gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号