首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A gene encoding a receptor protein-tyrosine kinase closely related to the vertebrate insulin receptor has been identified in the Cnidarian Hydra vulgaris. The gene is expressed in both epithelial layers of the adult polyp. A particularly high level of expression is seen in the ectoderm of the proximal portions of the tentacles and in a ring of ectodermal cells at the border between the foot basal disk and body column. The expression pattern of the gene in asexual buds is dynamic; expression is high throughout the newly emerging bud but the area of high expression becomes restricted to the apex as the bud lengthens. When the bud begins hypostome and tentacle formation, a high level of expression appears at the bases of the emerging tentacles. Finally, a ring of high expression appears just above the foot of the bud, completing the pattern seen in the adult polyp. The presence of this receptor and its pattern of expression suggested that an endogenous molecule related to insulin plays a role in regulating cell division in the body column and in differentiation of the tentacle and foot cells in Hydra, with the switch between the two being determined by the level of the receptor. Treatment of Hydra polyps with mammalian insulin caused an increase in the number of ectodermal and endodermal cells undergoing DNA synthesis. Received: 19 April 1996 / Accepted: 5 July 1996  相似文献   

2.
The effects of light regime, feeding regime and tentacle number on the zooplankton feeding capability of Hydra viridis were tested in the laboratory. Feeding was measured by exposing Hydra to a known volume of Artemia salina nauplii and recording the number captured and ingested. In all cases there was a correlation between the number of Artemia captured and the number ingested. H. viridis with 7 tentacles captured and ingested more Artemia than Hydra with 6 tentacles. However, changes in light and/or feeding regimes did not alter the number of tentacles/Hydra. Varying light and feeding regimes altered the number of Zoochlorellae/cell and Hydra growth rate. There was no effect on the number of Artemia captured or ingested and no effect on the percent ingestion of captured Artemia. These data suggest that, under these conditions, zooplankton feeding by H. viridis is independent of nutritional history.  相似文献   

3.
 Two different cDNA clones from Hydra (HvPKC1a and HvPKC1b) were characterized, which encode members of the cPKC family of protein kinase Cs (PKCs). The two predicted proteins differ only in their amino-terminal sequences and thus probably represent the products of alternatively spliced mRNAs from a single gene. In situ hybridization with a probe recognizing sequences in common between the two mRNAs detects HvPKC1 RNA in all parts of the adult polyp except the foot. The mRNA is contained in ecto- and endodermal epithelial cells as well as a certain subset of gland cells and pairs of interstitial cells. During head and foot formation, induced by either regeneration, budding, lithium treatment or repeated application of a diacylglycerol, HvPKC1 expression is upregulated immediately prior to the evagination of tentacles and downregulated by foot formation. Although PKC activity is clearly inducible in vitro by diacylglycerol and a tumour promoting phorbol ester, structural features detected in the regulatory domains of HvPKC1a and 1b indicate that endogenous activators for Hydra PKC might differ from those of other organisms. The results corroborate the hypothesis that signal transduction systems using protein kinase C are key elements controlling the formation of head structures in Hydra. Received: 2 May 1997 / Accepted: 4 December 1997  相似文献   

4.
The small guanosine triphosphatase Rac1 is activated by E-cadherin-mediated cell-cell adhesion and is required for the accumulation of actin filaments, E-cadherin, and β-catenin at sites of cell-cell contact. However, the modes of activation and action of Rac1 remain to be clarified. We here found that suppression of IQGAP1, an actin-binding protein and an effector of Rac1, by small interfering RNA apparently reduced the accumulation of actin filaments, E-cadherin, and β-catenin at sites of cell-cell contact in Madin-Darby canine kidney II epithelial cells under the conditions in which knockdown of Rac1 reduced them. Knockdown of Rac1 did not affect the localization of these junctional components in cells expressing a constitutively active IQGAP1 mutant defective in Rac1/Cdc42 binding. Knockdown of either Rac1 or IQGAP1 accelerated the 12-O-tetradecanoylphorbol-13-acetate-induced cell-cell dissociation. The basal Rac1 activity, which was maintained by E-cadherin-mediated cell-cell adhesion, was inhibited in the IQGAP1-knocked down cells, whereas the Rac1 activity was increased in the cells overexpressing IQGAP1. Together, these results indicate that Rac1 enhances the accumulation of actin filaments, E-cadherin, and β-catenin by acting on IQGAP1 and suggest that there exists a positive feedback loop comprised of “E-cadherin-mediated cell-cell adhesion→Rac1 activation→actin-meshwork formation by IQGAP1→increasing E-cadherin-mediated cell-cell adhesion.”  相似文献   

5.
Nematogenesis, the production of stinging cells (nematocytes) in Cnidaria, can be considered as a model neurogenic process. Most molecular data concern the freshwater polyp Hydra, in which nematocyte production is scattered throughout the body column ectoderm, the mature cells then migrating to the tentacles. We have characterized tentacular nematogenesis in the Clytia hemisphaerica hydromedusa and found it to be confined to the ectoderm of the tentacle bulb, a specialized swelling at the tentacle base. Analysis by a variety of light and electron microscope techniques revealed that while cellular aspects of nematogenesis are similar to Hydra, the spatio-temporal characteristics are markedly more ordered. The tentacle bulb nematogenic ectoderm (TBE) was found to be polarized, with a clear progression of successive nematoblast stages from a proximal zone (comprising a majority of undifferentiated cells) to the distal end where the tentacle starts. Pulse-chase labelling experiments demonstrated a continuous displacement of differentiating nematoblasts towards the tentacle tip, and that nematogenesis proceeds more rapidly in Clytia than in Hydra. Compact expression domains of orthologues of known nematogenesis-associated genes (Piwi, dickkopf-3, minicollagens and NOWA) were correspondingly staggered along the TBE. These distinct characteristics make the Clytia TBE a promising experimental system for understanding the mechanisms regulating nematogenesis.  相似文献   

6.
Hym-301 is a peptide that was discovered as part of a project aimed at isolating novel peptides from hydra. We have isolated and characterized the gene Hym-301, which encodes this peptide. In an adult, the gene is expressed in the ectoderm of the tentacle zone and hypostome, but not in the tentacles. It is also expressed in the developing head during bud formation and head regeneration. Treatment of regenerating heads with the peptide resulted in an increase in the number of tentacles formed, while treatment with Hym-301 dsRNA resulted in a reduction of tentacles formed as the head developed during bud formation or head regeneration. The expression patterns plus these manipulations indicate the gene has a role in tentacle formation. Furthermore, treatment of epithelial animals indicates the gene directly affects the epithelial cells that form the tentacles. Raising the head activation gradient, a morphogenetic gradient that controls axial patterning in hydra, throughout the body column results in extending the range of Hym-301 expression down the body column. This indicates the range of expression of the gene appears to be controlled by this gradient. Thus, Hym-301 is involved in axial patterning in hydra, and specifically in the regulation of the number of tentacles formed.  相似文献   

7.
目的:研究IQGAP1基因干扰对人食管癌细胞同质粘附能力的影响。方法:体外培养人食管癌KYSE150和 EC9706细胞,利用Western blot方法检测两株细胞IQGAP1蛋白的表达,利用缓慢聚集和细胞分离实验比较两株细胞同质粘附能力的差异;进一步在KYSE150和EC9706细胞中构建IQGAP1基因干扰的稳定细胞系,观察IQGAP1基因干扰后细胞同质粘附能力的改变。结果:KYSE150细胞IQGAP1蛋白表达量低于EC9706细胞,而同质粘附能力高于EC9706细胞;IQGAP1基因干扰后,其蛋白表达量明显降低,而细胞同质粘附能力明显增强。结论:IQGAP1 基因干扰能够显著增强食管癌细胞的同质粘附能力,从而降低肿瘤细胞的恶性表型。  相似文献   

8.
Zonula occludens-1 (ZO-1) is one of the earliest identified molecular components of tight junctions. Sequence analysis has placed ZO-1 into the broader membrane-associated guanylate kinase (MAGUK) protein family that contains such diverse members as postsynaptic density 95 (PSD-95), Drosophila discs large tumor suppressor gene product (dlg-A), p55, and TamA. Studies in both vertebrates and invertebrates have established that the MAGUK family is involved in a wide variety of cellular functions. These functions involve the regulation of such cellular processes as: (1) tight junction formation, (2) cell proliferation, (3) cell differentiation, and (4) neuronal synapse transmission. Extending these studies, we report the presence of a ZO-1 homologue in Hydra vulgaris, a member of the Cnidaria, the second oldest phylum of the animal kingdom. Hydra ZO-1 (HZO-1) is encoded by a single messenger RNA (mRNA) of approximately 6.0 kb that contains an open reading frame of 5,085 bp. The 191 kDa predicted protein consists of a characteristic MAGUK domain structure, including three PSD-95/SAP90, discs-large, ZO-1 (PDZ) domains, a src homology (SH3) domain, and a guanylate kinase (GUK) domain. Western blot analysis using an antibody generated from a synthetic peptide designed from the HZO-1 sequence confirmed the presence of a Hydra protein of the appropriate mass. While whole mount in situ hybridization determined that HZO-1 mRNA was expressed along the entire longitudinal axis of Hydra, cross-sectional analysis established that HZO-1 mRNA expression was restricted to the ectoderm or outer cell layer of the organism’s epithelial bilayer. Consistent with this mRNA expression pattern, immunofluorescence studies localized HZO-1 protein to the apical plasma membrane of ectodermal cells. It is unclear what role HZ0-1 has in the cellular physiology of Hydra; however, immunolocalization studies indicate a conserved plasma membrane-associated function(s), as reported for its counterparts in other invertebrate and vertebrate species. These studies establish that the MAGUK family of proteins with a membrane-associated function arose early during metazoan evolution, even before the divergence of protostomes and deuterostomes. Received: 11 May 2000 / Accepted: 26 July 2000  相似文献   

9.
Proliferation of epithelial cells must be spatiotemporally regulated to maintain the organization of epithelial sheets. Here we show that the IQGAP family, comprising IQGAP1, 2 and 3, underlies lateral cell-cell contacts of epithelial cells. Of the three proteins, IQGAP3 is unique in that its expression is specifically confined to proliferating cells. Knockdown of IQGAP3 in cultured epithelial cells caused inhibition of proliferation and ERK activity. When exogenously expressed in quiescent cells, IQGAP3 was capable of inducing cell-cycle re-entry, which was completely inhibited by the MEK inhibitor U0126. Thus, IQGAP3 is necessary and sufficient for driving cell proliferation and ERK acts downstream of IQGAP3. Furthermore, IQGAP3 specifically interacted with the active, GTP-bound form of Ras, and in IQGAP3 knockdown cells, the activity of Ras, but not of other small GTPases, was inhibited. Thus, IQGAP3 regulates the promotion of cell proliferation through Ras-dependent ERK activation.  相似文献   

10.
Summary Ultrastructural study of the buccal tentacles of Holothuria forskali revealed that each tentacle bears numerous apical papillae. Each papilla consists of several differentiated sensory buds.The epidermis of the buds is composed of three cell types, i.e. mucus cells, ciliated cells, and glandular vesicular cells (GV cells). The GV cells have apical microvilli; they contain bundles of cross striated fibrillae associated with microtubules. Ciliated cells have a short non-motile cilium. Bud epidermal cells intimately contact an epineural nervous plate which is located slightly above the basement membrane of the epidermis. The epineural plate of each bud connects with the hyponeural nerve plexus of the tentacle. This nerve plexus consists of an axonic meshwork surrounded in places by sheath cells. The buccal tentacles have well-developed mesothelial muscles. Direct innervation of these muscles by the hyponeural nerve plexus was not seen.It is suggested that the buccal tentacles of H. forskali are sensory organs. They would recognize the organically richest areas of the sediment surface through the chemosensitive abilities of their apical buds. Tentacles presumably trap particles by wedging them between their buds and papillae.  相似文献   

11.
We have previously proposed that IQGAP1, an effector of Rac1 and Cdc42, negatively regulates cadherin-mediated cell-cell adhesion by interacting with beta-catenin and by causing the dissociation of alpha-catenin from cadherin-beta-catenin-alpha-catenin complexes and that activated Rac1 and Cdc42 positively regulate cadherin-mediated cell-cell adhesion by inhibiting the interaction of IQGAP1 with beta-catenin. However, it remains to be clarified in which physiological processes the Rac1-Cdc42-IQGAP1 system is involved. We here examined whether the Rac1-IQGAP1 system is involved in the cell-cell dissociation of Madin-Darby canine kidney II cells during 12-O-tetradecanoylphorbol-13-acetate (TPA)- or hepatocyte growth factor (HGF)-induced cell scattering. By using enhanced green fluorescent protein (EGFP)-tagged alpha-catenin, we found that EGFP-alpha-catenin decreased prior to cell-cell dissociation during cell scattering. We also found that the Rac1-GTP level decreased after stimulation with TPA and that the Rac1-IQGAP1 complexes decreased, while the IQGAP1-beta-catenin complexes increased during action of TPA. Constitutively active Rac1 and IQGAP1 carboxyl terminus, a putative dominant-negative mutant of IQGAP1, inhibited the disappearance of alpha-catenin from sites of cell-cell contact induced by TPA. Taken together, these results indicate that alpha-catenin is delocalized from cell-cell contact sites prior to cell-cell dissociation induced by TPA or HGF and suggest that the Rac1-IQGAP1 system is involved in cell-cell dissociation through alpha-catenin relocalization.  相似文献   

12.
Summary From crude extracts ofHydra tissue a substance has been purified which prevents or retards the asexual reproduction by budding. The molecular weight is in the range of 300 to 1000 daltons. Inhibition of bud formation can be observed with concentrations equivalent to the extract from one hydra per 4 ml, that is, to a more than 10,000-fold dilution of the initial crude extract of a hydra. The purified inhibitor is active at a concentration of less than 10–8 M.Most of the inhibitor present inHydra is bound to cells. Within the cells the substance is mainly bound to particulate structures which sediment at 10,000 g. Its concentration is highest in the hypostomal region and decreases in the direction of the tentacles and peduncle. A second, lower, peak has been found in the basal disc. Treatment of the animals with a toxic agent (nitrogen mustard) which depletes the animal of interstitial cells, nematocytes and nematoblasts excludes the possibility that the inhibitor is present to any great extent in these cells. In conjunction with cell separation experiments by centrifugation of fixed cells in suspension, these results indicate that nerve cells are the most likely sites of storage of the inhibiting substance, although epithelial cells are not excluded as sources for the inhibitor.  相似文献   

13.
Summary Antisera to the sequence Arg-Phe-amide (RF-amide) have a high affinity to the nervous system of fixed hydroid polyps. Whole-mount incubations of several Hydra species with RFamide antisera visualize the three-dimensional structure of an ectodermal nervous system in the hypostome, tentacles, gastric region and peduncle. In the hypostome of Hydra attenuata a ganglion-like structure occurs, consisting of numerous sensory cells located in a region around the mouth opening and a dense plexus of processes which project mostly radially towards the bases of the tentacles. In Hydra oligactis an ectodermal nerve ring was observed lying at the border of hypostome and tentacle bases. This nerve ring consists of a few large ganglion cells with thick processes forming a circle around the hypostome. This is the first direct demonstration of a nerve ring in a hydroid polyp.Incubation of Hydractinia echinata gastrozooids with RFamide antisera visualizes an extremly dense plexus of neuronal processes in body and head regions. A ring of sensory cells around the mouth opening is the first group of neurons to show RFamide immunoreactivity during the development of a primary polyp. In gonozooids the oocytes and spermatophores are covered with strongly immunoreactive neurons.All examples of whole-mount incubations with RF-amide antisera clearly show that hydroid polyps have by no means a diffuse nerve net, as is often believed, and that neuronal centralization and plexus formation are common in these animals. The examples also show that treatment of intact fixed animals with RFamide antisera is a useful technique to study the anatomy or development of a principal portion of the hydroid nervous system.  相似文献   

14.
The spatio‐temporal regulation of hepatocyte proliferation is a critical issue in liver regeneration. Here, in normal and regenerating liver as well as in developing liver, we examined its expression/localization of IQGAP3, which was most recently reported as a Ras/Rac/Cdc42‐binding proliferation factor associated with cell–cell contacts in epithelial‐type cells. In parallel, the expression/localization of Rac/Cdc42‐binding IQGAP1/2 was examined. IQGAP3 showed a specific expression in proliferating hepatocytes positive for the proliferating marker Ki‐67, the levels of expressions of mRNAs and proteins were significantly increased in hepatocytes in liver regeneration and development. In immunofluorescence, IQGAP3 was highly enriched at cell–cell contacts of hepatocytes. IQGAP1 and IQGAP2 were exclusively expressed in Kupffer and sinusoidal endothelial cells, respectively, in normal, regenerating, and developing liver. The expression of IQGAP1, but not of IQGAP2, was increased in CCl4‐induced (but not in partial hepatectomy‐induced) liver regeneration. Exclusive expression/localization of IQGAP3 to hepatocytes in the liver likely reflects the specific involvement of the IQGAP3/Ras/ERK signaling cascade in hepatocyte proliferation in addition to the previously identified signaling pathways, possibly by integrating cell–cell contact‐related proliferating signaling events. On the other hand, the Rac/Cdc42‐binding properties of IQGAP1/2/3 may be related to the distinct modes of remodeling due to the different strategies which induced proliferation of liver cells; partial hepatectomy, CCl4 injury, or embryonic development. Thus, the functional orchestration of Ras and the Ras homologous (Rho) family proteins Rac/Cdc42 likely plays a critical role in liver regeneration and development. J. Cell. Physiol. 220: 621–631, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
TEM observations of catch tentacles revealed that the tentacle tip epidermis is filled with two size classes of mature holotrich nematocysts and a gland cell filled with electron-dense vesicles. Vesicle production is restricted to upper-middle and tentacle tip regions, whereas holotrich development occurs in the lower-middle and tentacle base regions. Thus, catch tentacles have a maturity gradient along their length, with mature tissues concentrated at the tentacle tip. Occasional feeding tentacle cnidae (microbasic p-mastigophores and basitrichs) and mucus gland cells occur in proximal portions of catch tentacles, but are phagocytized by amoeboid granulocytes and transported to the gastrodermis for further degradation. No feeding tentacle cnidae or mucus cells occur distally in catch tentacles. Unlike catch tentacles, feeding tentacles are homogeneous in structure along their length with enidocytes containing mature spirocysts, microbasic p-mastigophore or basitrich nematocysts distributed along the epithelial surface. Cnidoblasts are recessed beneath cnidocytes, occurring along the nerve plexus. Mucus gland cells and gland cells filled with electron-dense vesicles are present in feeding tentacles, distributed at the epithelial surface. Granular phagocytes are rare in the feeding tentacle tip, but common in the tentacle base.  相似文献   

16.
IQGAP1 and calmodulin modulate E-cadherin function   总被引:4,自引:0,他引:4  
Ca(2+)-dependent cell-cell adhesion is mediated by the cadherin family of transmembrane proteins. Adhesion is achieved by homophilic interaction of the extracellular domains of cadherins on adjacent cells, with the cytoplasmic regions serving to couple the complex to the cytoskeleton. IQGAP1, a novel RasGAP-related protein that interacts with the cytoskeleton, binds to actin, members of the Rho family, and E-cadherin. Calmodulin binds to IQGAP1 and regulates its association with Cdc42 and actin. Here we demonstrate competition between calmodulin and E-cadherin for binding to IQGAP1 both in vitro and in a normal cellular milieu. Immunocytochemical analysis in MCF-7 (E-cadherin positive) and MDA-MB-231 (E-cadherin negative) epithelial cells revealed that E-cadherin is required for accumulation of IQGAP1 at cell-cell junctions. The cell-permeable calmodulin antagonist CGS9343B significantly increased IQGAP1 at areas of MCF-7 cell-cell contact, with a concomitant decrease in the amount of E-cadherin at cell-cell junctions. Analysis of E-cadherin function revealed that CGS9343B significantly decreased homophilic E-cadherin adhesion. On the basis of these data, we propose that disruption of the binding of calmodulin to IQGAP1 enhances the association of IQGAP1 with components of the cadherin-catenin complex at cell-cell junctions, resulting in impaired E-cadherin function.  相似文献   

17.
The destruction of stable cell-cell adhesion and the acquisition of the ability to migrate are consistent stages of neoplastic evolution of tumor cells of epithelial origin. We studied the morphological and migration characteristics of epithelial cells of IAR1162 and IAR1170 clones derived from a mixed culture of N-RasV12 oncogene-transformed IAR-2 cell line. It was found that the oncogenic RAS can cause two types of morphological changes in IAR-2 epithelial cells. Cells of one type (IAR1162 clones) underwent epithelial-mesenchymal transition: they stopped to express E-cadherin, acquired fibroblast-like morphology, and did not form tight junctions. Cells of the other type (IAR1170 clones) retained a morphology close to the morphology of nontransformed progenitor cells, assembled E-cadherin-based adherens junctions and tight junctions, and formed a monolayer in confluent culture. However, in both IAR1162 and IAR1170 cells, the oncogenic RAS caused the destruction of marginal actin bundle and the reorganization of cell-cell adherens junctions. RAS-transformed IAR1162 and IAR1170 epithelial cells acquired the ability to migrate on a flat substrate as well as through narrow pores in membranes of migration chambers. A videomicroscopic study of transformed epithelial cell cultures demonstrated the instability of cell-cell contacts and the independent nature of cell migration. IAR1170 epithelial cells, which had E-cadherin-based adherens junctions, were also able to move as a group (collective migration). 1162D3 cells, which lost the ability to express endogenous E-cadherin as a result of Ras-transformation, were transfected with a plasmid carrying the CDH1. As a result of transfection, clones of cells with different levels of expression of exogenous E-cadherin were obtained. The high level of expression of exogenous E-cadherin in transformed epithelial cells led to a decrease in the rate of migration on a two-dimensional substrate of the cells that were in contact with neighboring cells but almost had no effect on the migration of single cells, at the same time increasing the number of cells that migrated through the pores in migration chambers. Thus, the destruction of marginal actin bundle and the change in the spatial organization of cell-cell adherens junctions, irrespective of the presence or absence of E-cadherin, was accompanied by destruction of stable cell-cell adhesion and the appearance of cell motility in Ras-transformed epithelial cells. The retaining of E-cadherin in cell-cell adhesion junctions affects the motility of transformed epithelial cells and plays an important role in their collective migration.  相似文献   

18.
Tentacles armed with stinging cells (cnidocytes) are a defining trait of the cnidarians, a phylum that includes sea anemones, corals, jellyfish, and hydras. While cnidarian tentacles are generally characterized as structures evolved for feeding and defense, significant variation exists between the tentacles of different species, and within the same species across different life stages and/or body regions. Such diversity suggests cryptic distinctions exist in tentacle function. In this paper, we use confocal and transmission electron microscopy to contrast the structure and development of tentacles in the moon jellyfish, Aurelia species 1. We show that polyp oral tentacles and medusa marginal tentacles display markedly different cellular and muscular architecture, as well as distinct patterns of cellular proliferation during growth. Many structural differences between these tentacle types may reflect biomechanical solutions to different feeding strategies, although further work would be required for a precise mechanistic understanding. However, differences in cell proliferation dynamics suggests that the two tentacle forms lack a conserved mechanism of development, challenging the textbook-notion that cnidarian tentacles can be homologized into a conserved bauplan.  相似文献   

19.
A full-length cDNA encoding an acetylcholinesterase (AChE) from Hydra magnipapillata was isolated. All of the important aromatic residues that line a catalytic gorge in cholinesterases of other species were conserved, but the sequences of peripheral anionic and choline binding sites were not. Hydra AChE, expressed in Xenopus oocytes, showed AChE activity. The gene was expressed in both ectodermal and endodermal epithelial cells except for the tentacles and basal disk. AChE gene expression was not detected in the regenerating tips in either the head or the foot, indicating that regeneration is controlled by the non-neuronal cholinergic system in Hydra.  相似文献   

20.
Multicellular organisms consist of a variety of cells of distinctive morphology, with the cell shapes often reproduced with astonishing accuracy between individuals and across species. The morphology of cells varies with tissues, and cell shape changes are of profound importance in many occasions of morphogenesis. To elucidate the mechanisms of cell shape determination and regulation is therefore an important issue. One of the simplest multicellular organisms is the freshwater polyp Hydra. Although much is known about patterning in this early branching metazoan, there is currently little understanding of how cells in Hydra regulate their shape in response to upstream signals. We previously reported generation of transgenic Hydra to trace cells and to study cell behavior in vivo in an animal at the basis of animal evolution. Here, we use a novel transgenic line which expresses enhanced green fluorescent protein (eGFP) specifically in the ectodermal epithelial cells to analyze the structure and shape of epithelial cells as they are recruited into specific regions along the body column and respond to upstream signals such as components of the canonical Wnt signaling pathway. As a general theme, in contrast to epithelial cells in more complex animals, ectodermal epithelial cells in Hydra are capable of drastic changes in structure, shape, and cell contact along the body column. The remarkable phenotypic plasticity of epithelial cells in response to positional signals allows Hydra to build its body with only a limited number of different cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号