首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skotodormant seeds of Lactuca sativa Grand Rapids imbibed in darkness for 10 days (10-day DS) germinated poorly upon terminal treatment with red light (R) or gibberellin A3 (GA3). Soluble sugars in the imbibition solutions influenced the depth of skotodormancy. Ten-day DS seeds, imbibed in 50–500 mm sucrose or 100–500 mm glucose and given terminal GA3 germinated completely and germinated about 80% when imbibed in 100 mm galactose, mannose, lactose, or maltose. In contrast, terminal R applied to 10-day DS seeds caused only 20–50% germination. If given R at day 0 and imbibed for 10 days in darkness in 500 mm sucrose or glucose, seeds washed free of exogenous glucose or sucrose then germinated about 50% in darkness in water. These seeds responded to terminal R or GA3 with complete germination. When seeds were given FR at day 0, germination responses following terminal R or GA3 were significantly lower when the duration of DS was increased from 7–10 day DS to 15 days. In 10-day DS seeds given initial FR and imbibed in either solutions of 50 or 100 mm sucrose and KNO3, either terminal R or GA3 treatment gave complete or near complete germination. It is concluded that seed exposure to certain soluble sugars and/or nitrate during a 10-day DS protected certain substrates and thereby extended the sensitivity of the seeds to terminal R or GA3 treatment. The study provides substantial evidence for nonhormonal factors associated with light and GA action in the control of seed skotodormancy. Received October 30, 1996; accepted April 22, 1997  相似文献   

2.
Summary Uptake and respiration of radioactive glucose, mannitol and arabitol were studied during basidiospore germination of the woodrotting mushroomSchizophyllum commune. Glucose uptake was rapid and immediate, depressed at 4° C and unaffected by the protein synthesis antagonist cycloheximide. In contrast, uptake of either mannitol or arabitol exhibited a lag phase while the induction of this process was sensitive to cycloheximide. Prior incubation of basidiospores in unlabelled mannitol induced uptake processes for either labelled mannitol or arabitol. Respiratory rates for either arabitol or mannitol increased markedly upon germination in glucose-asparagine minimal culture medium.This research was supported by Public Health Service Grant AI-04603-09 to Donald J. Niederpruem.  相似文献   

3.
Summary Dikaryotic cells of S. commune synthesized polyols throughout the life cycle when grown on glucose, cellobiose, or cellulose. Basidiospores contained arabitol and mannitol which were depleted during germination. The mannitol content of the young germlings rose to normal levels within a day; arabitol accumulation remained depressed for 5 to 7 days and then returned to normal levels characteristic of vegetative cells. Individual homokaryons differed in their production of intracellular polyols, which, unlike germlings, remained constant with cultural age. Homokaryon (str. 699) produced low levels of arabitol but high levels of glycerol while another homokaryon (str. 845) was the reverse. Mixtures of these homokaryons as well as the dikaryon (699×845) produced arabitol and glycerol levels intermediate between the parent homokaryons. High concentrations of glucose did not change the nature of the polyols produced. Arabitol formation could be induced prematurely in germlings or elevated in the dikaryon by growth on acetate or ethanol. Both homokaryons responded to growth on acetate with elevated arabitol production; acetate induction of arabitol formation was repressed in all types of cells if glucose were added simultaneously with acetate. Maltose, cellobiose, and trehalose also stimulated arabitol formation in young germlings, suggesting that glucose repression was the cause of decreased arabitol formation in basidiospore germlings. There was no correlation between the formation of arabitol and the derepression of isocitrate lyase or change in specific activities of alkaline and acid phosphatase in germlings grown on various carbon sources.  相似文献   

4.
Gluconeogenesis in Citrullus lanatus seeds is a post germinative event. Increases in isocitrate lyase activity and incorporation of radioactivity from [2-14C]acetate into sugars occur only after radicle emergence. During germination, the seeds appear to rely on carbohydrate as the respiratory substrate. At this time, glycolysis, the pentose phosphate pathway, and the tricarbocyclic acid cycle seem to be functional. Utilization of raffinose during germination appears to be important.

Water stress, which completely inhibits germination, has a marked effect on carbohydrate metabolism. The rate of 14CO2 release from [2-14C]acetate, [1-14C]glucose, and [6-14C]glucose is lower in the stressed seeds than the control seeds during the respiratory lag phase. However, in the stressed seeds neither glycolysis, the pentose phosphate pathway, nor the tricarboxylic acid cycle is completely inhibited. In contrast to the control seeds in which raffinose content sharply declines after 12 h of incubation, raffinose content in the stressed seeds remains fairly constant.

The respiratory lag phase of the control seeds coincides with a lower reducing substance content, glucose content, and fructose content than in the stressed seeds during the corresponding incubation period.

  相似文献   

5.
Enzymes of polyol metabolism were studied in basidiospore germination of Schizophyllum commune during periods of in vivo arabitol and mannitol pool depletion (growth on glucose-asparagine) and during their subsequent synthesis (growth on acetate-NH 4 + ). Optimal conditions for assays were established and specific activities of enzymes employing d-arabitol, d-mannitol, d-ribulose, d-fructose and d-xylulose as substrates were traced. Inquiries into the products formed during these reactions showed that d-ribulose generated arabitol while d-fructose produced mannitol with d-xylulose giving rise to xylitol. The dehydrogenase reactions were further investigated using polyacrylamide disc gel electrophoresis. Here was revealed the existence of at least two separate enzymatic activities pertaining to the catabolism of arabitol and mannitol. Also noted were the electrophoretic patterns when d-sorbitol, ribitol, xylitol and ethanol were used as substrates.  相似文献   

6.
Summary Glucose uptake by whole cells of Bacteroides ruminicola B14 is constitutive. Potassium concentrations between 10 and 150 mm stimulated uptake over fourfold, while sodium had little effect on uptake. The involvement of potassium in glucose uptake by B. ruminicola was supported by strong inhibition of uptake by the ionophores valinomycin, lasalocid, and monensin. The electron transport inhibitor antimycin A had little effect on uptake, but menadione and acriflavine inhibited uptake by 30 and 48%, respectively. Potent inhibitors of uptake included oxygen, p-chloromercuribenzoate, HgCl2, and o-phenanthroline. Sodium arsenate decreased uptake by 40%, suggesting that a high-energy phosphate compound and possibly a binding protein may be involved in glucose uptake. The protonophores carbonyl cyanide m-chlorophenylhydrazone and 2,4-dinitrophenol inhibited glucose uptake by 37 and 22%, respectively. Little change in uptake activity was observed at extracellular pH values between 4.0 and 8.0. Excess (10 mm) cellobiose, maltose, and sucrose inhibited glucose uptake less than 15%. High levels (0.15% w/v) of p-coumaric acid and vanillin decreased uptake by 32 and 37%, respectively, while 0.15% ferulic acid decreased uptake by 15%.  相似文献   

7.
Summary Biochemical events occurring in synchronously germinating spores of Aspergillus niger strain 1617 were investigated. The spores were found to require l-proline (or l-alanine), glucose and phosphate for the complete germination. The germination process in the above synthetic medium could be divided into three phases: endogenous swelling, exogenous swelling and sprouting. The first swelling phase was not influenced by the severe environmental factors so far tested, while the second phase was found to be affected by them, especially the CO2 concentration. Rates of increase in cellular substances and in consumption of environmental substances changed markedly after germ tubes sprouted. The first cellular synthesis thus far detected was nucleic acid synthesis in the exogenous swelling phase. At the end of this phase accumulation of free amino acids, mainly glutamic acid and alanine, was observed. Protein synthesis then followed. A conspicuous increase in O2-uptake commenced in parallel with the active synthesis of protein, when germ tubes began to sprout.During the course of germination a shift of metabolic pattern from that of the spore to the mycelium was indicated by the ratios of total nitrogen/dry weight, RNA/DNA, oxygen consumed/glucose consumed, and oxygen consumed/total nitrogen taken at various time intervals.Rosalie B. Hite Post-doctoral Fellow of the University of Texas.  相似文献   

8.
Summary An NAD-dependent erythritol dehydrogenase was detected in cell-extracts of basidiospore germinants of Schizophyllum commune following culture on either meso-erythritol or glycerol as sole carbon sources. Induction of erythritol dehydrogenase was also observed in purely vegetative mycelium (str. 845 or str. 699). Erythritol dehydrogenase was not observed in ungerminated basidiospores or germinants which arose on d-glucose, d-mannitol, sorbitol, ribitol, xylitol, d-arabitol or l-arabitol. NAD-coupled polyol dehydrogenases for all the latter sugar alcohols were observed in ungerminated basidiospores, germinants, and vegetative mycelium of S. commune cultured on d-glucose. Basidiospore germination on d-glucose plus meso-erythritol led to a 90% decrease in erythritol dehydrogenase and the specific activity of ribitol dehydrogenase was directly comparable to that seen in d-glucose germinants. Storage experiments of crude extracts of meso-erythritol germinants indicated differential enzyme decay of dehydrogenases for d-mannitol, sorbitol and erythritol while the respective enzymes could be further distinguished by heat-stability as well as preferential utilization of analogues of NAD. DEAE-cellulose column chromatography led to separation of sorbitol dehydrogenase which was also active with xylitol, erythritol dehydrogenase, and mannitol dehydrogenase which was also active with d-arabitol.  相似文献   

9.
Degradation of glucose has been implicated in acetate production in rice field soil, but the abundance of glucose, the temporal change of glucose turnover, and the relationship between glucose and acetate catabolism are not well understood. We therefore measured the pool sizes of glucose and acetate in rice field soil and investigated the turnover of [U-14C]glucose and [2-14C]acetate. Acetate accumulated up to about 2 mM during days 5 to 10 after flooding of the soil. Subsequently, methanogenesis started and the acetate concentration decreased to about 100 to 200 μM. Glucose always made up >50% of the total monosaccharides detected. Glucose concentrations decreased during the first 10 days from 90 μM initially to about 3 μM after 40 days of incubation. With the exception at day 0 when glucose consumption was slow, the glucose turnover time was in the range of minutes, while the acetate turnover time was in the range of hours. Anaerobic degradation of [U-14C]glucose released [14C]acetate and 14CO2 as the main products, with [14C]acetate being released faster than 14CO2. The products of [2-14C]acetate metabolism, on the other hand, were 14CO2 during the reduction phase of soil incubation (days 0 to 15) and 14CH4 during the methanogenic phase (after day 15). Except during the accumulation period of acetate (days 5 to 10), approximately 50 to 80% of the acetate consumed was produced from glucose catabolism. However, during the accumulation period of acetate, the rate of acetate production from glucose greatly exceeded that of acetate consumption. Under steady-state conditions, up to 67% of the CH4 was produced from acetate, of which up to 56% was produced from glucose degradation.  相似文献   

10.
Bioorganic fertilizer containing Paenibacillus polymyxa SQR-21 showed very good antagonistic activity against Fusarium oxysporum. To optimize the role of P. polymyxa SQR-21 in bioorganic fertilizer, we conducted a study of spore germination under various conditions. In this study, l-asparagine, glucose, fructose and K+ (AGFK), and sugars (glucose, fructose, sucrose, and lactose) plus l-alanine were evaluated to determine their ability to induce spore germination of two strains; P. polymyxa ACCC10252 and SQR-21. Spore germination was measured as a decrease in optical density at 600 nm. The effect of heat activation and germination temperature were important for germination of spores of both strains on AGFK in Tris–HCl. l-Alanine alone showed a slight increase in spore germination; however, fructose plus l-alanine significantly induced spore germination, and the maximum spore germination rate was observed with 10 mmol l−1 l-alanine in the presence of 1 mmol l−1 fructose in phosphate-buffered saline (PBS). In contrast, fructose plus l-alanine hardly induced spore germination in Tris–HCl; however, in addition of 10 mmol l−1 NaCl into Tris–HCl, the percentages of OD600 fall were increased by 19.6% and 24.3% for ACCC10252 and SQR-21, respectively. AGFK-induced spore germination was much more strict to germination temperature than that induced by fructose plus l-alanine. For both strains, fructose plus l-alanine-induced spore germination was not sensitive to pH. The results in this study can help to predict the effect of environmental factors and nutrients on spore germination diversity, which will be beneficial for bioorganic fertilizer storage and transportation to improve the P. polymyxa efficacy as biological control agent.  相似文献   

11.
In vitro studies were undertaken to determine the effect of pH, temperature, water availability and carbon dioxide (CO2) concentration on germination and growth of Colletotrichum musae, the causal pathogen of anthracnose of bananas. The optimum pH for germination and growth varied between 4·0 and 5·0 depending on temperature. At low pH (< 3·0) and 15°C, both germination and growth were significantly reduced, with a marked increase in the lag time, in days, prior to growth. C. musae germinated and grew over a wide range of water activities (aw; 0·995−0·94 and 0·995−0·92, respectively) at 20, 25 and 30°C. In all cases where germination occurred appresoria were subsequently produced. Optimum growth occurred at 30°C and 0·995 aw, although this changed to 0·98 aw at 35°C. Increasing CO2 concentration to 15% or reducing oxygen concentration to 1% resulted in a significant (P < 0·05) reduction in growth, but did not inhibit growth completely.  相似文献   

12.
The role of carbon dioxide in glucose metabolism of Bacteroides fragilis   总被引:2,自引:0,他引:2  
The effect of CO2 concentration on growth and glucose fermentation of Bacteroides fragilis was studied in a defined mineral medium. Batch culture experiments were done in closed tubes containing CO2 concentrations ranging from 10% to 100% (with appropriate amounts of bicarbonate added to maintain the pH at 6.7). These experiments revealed that CO2 had no influence on growth rate or cell yield when the CO2 concentration was above 30% CO2 (minimum available CO2–HCO 3 - , 25.5 mM), whereas a slight decrease in these parameters was observed at 20% and 10% CO2 (available CO2–HCO 3 - , 17 and 8.5 mM, respectively). If CO2–HCO 3 - concentrations were below 10 mM, the lag phase lengthened and a decrease in maximal growth rate and cell yield were observed. The amount of acetate made decreased, while d-lactate concentration increased. A net production of CO2 allowed growth under conditions of extremely low concentrations of added CO2.When B. fragilis was grown in continuous culture with 100% CO2 or 100% N2, the dilution rate influenced the concentrations of acetate, succinate, propionate, d-lactate, l-malate and formate formed. Decreasing the dilution rate favored propionate and acetate production under both conditions. When the organism was grown with 100% N2, the amount of propionate formed was greater than the amount of succinate formed at all dilution rates. Except at slow dilution rates the reverse was true when 100% CO2 was used. B. fragilis was unable to grow at dilution rates faster than 0.154 h-1 when grown with 100% N2; the Y glc max was 67.9 g DW cells/mol glucose and m s was 0.064 mmol glucose/g DW·h. If the gas atmosphere was 100% CO2 the organism was washed out of the culture when the dilution rate exceeded 0.38 h-1; the Y glc max was 59.4 g DW cells/mol glucose and m s was 0.094 mmol glucose/g DW·h.Measurement of the phosphoenolpyruvate (PEP) carboxykinase (E.C. 4.1.1.49) with whole, permeabilized cells of B. fragilis showed an increase of specific enzyme activity with decreasing CO2 concentrations. The mechanisms used by B. fragilis to adjust to low levels of CO2 are discussed.  相似文献   

13.
Effects of pH, NH4-N, and temperature on basidiospore germination in Coprinopsis austrophlyctidospora from New Zealand, C. phlyctidospora from Japan, C. aff. rugosobispora from Canada, and C. echinospora from Canada were investigated. The Coprinopsis spp. required the presence of ammonium-nitrogen under weak alkaline to neutral conditions for germination, regardless of their different areas of occurrence. The former two species had a wider concentration of NH4Cl solution and pH range for germination in comparison to the latter two species. The optimum concentration of NH4Cl solution for the germination was 0.01 M in C. austrophlyctidospora and 0.1 M in the other three species. The pH optimum for germination in the former two species was 8.0 whereas that for germination in the latter two species was 8.0–8.5. The temperature range (5.0–40.0°C) for the former two species was wider than that (5–30°C) for the latter two species. Temperature optima for the germination in the former two species, C. aff. rugosobispora and C. echinospora, were 30, 20–25 and 15°C, respectively. The germination abilities of these Coprinopsis species in a wide range of temperatures are relevant to their natural temperature regime, showing their potential ability to propagate in tropical to subarctic regions.  相似文献   

14.
Clostridium acetobutylicum strain P262 utilized lactate at a rapid rate [600 nmol min–1 (mg protein)–1], but lactate could not serve as the sole energy source. When acetate was provided as a co-substrate, the growth rate was 0.05 h–1. Butyrate, carbon dioxide and hydrogen were the end products of lactate and acetate utilization, and the stoichiometry was 1 lactate + 0.4 acetate → 0.7 butyrate + 0.6 H2 + 1 CO2. Lactate-grown cells had twofold lower hydrogenase than glucose-grown cells, and the lactate-grown cells used acetate as an alternative electron acceptor. The cells had a poor affinity for lactate (Ks = 1.1 mM), and there was no evidence for active transport. Lactate utilization was catabolyzed by an inducible NAD-independent lactate dehydrogenase (iLDH) that had a pH optimum of 7.5. The iLDH was fivefold more active with d-lactate than l-lactate, and the K m for d-lactate was 3.2 mM. Lactate-grown cells had little butyraldehyde dehydrogenase activity, and this defect did not allow the conversion of lactate to butanol. Received: 17 October 1994 / Accepted: 30 January 1995  相似文献   

15.
Summary The specific growth rate () during cultivation of Bacteroides polypragmatus in 2.51 batch cultures in 4–5% (w/v) l-arabinose medium was 0.23 h-1 while that in either d-xylose or d-ribose medium was lower (=0.19 h-1). Whereas growth on arabinose or xylose occurred after about 6–8 h lag period, growth on ribose commenced after a 30 h lag phase. The maximum substrate utilization rate for arabinose, ribose and xylose in media with an initial substrate concentration of 4–5% (w/v) was 0.77, 0.76, and 0.60 g/l/h respectively. In medium containing a mixture of glucose, arabinose, and xylose, the utilization of all three substrates occurred concurrently. The maximum amount of ethanol produced after 72 h growth in 4–5% (w/v) of arabinose, xylose, and ribose was 9.4, 6.5, and 5.3 g/l, respectively. The matabolic end products (mol/mol substrate) of growth in 4.4% (w/v) xylose medium were 0.73 ethanol, 0.49 acetate, 1.39 CO2, 1.05 H2, and 0.09 butyrate.National Research Council of Canada No. 23406  相似文献   

16.
The pyruvate dehydrogenase complex was deleted to increase precursor availability in Corynebacterium glutamicum strains overproducing l-valine. The resulting auxotrophy is treated by adding acetate in addition glucose for growth, resulting in the puzzling fact of gluconeogenic growth with strongly reduced glucose uptake in the presence of acetate in the medium. This result was proven by intracellular metabolite analysis and labelling experiments. To increase productivity, the SugR protein involved in negative regulation of the phosphotransferase system, was inactivated, resulting in enhanced consumption of glucose. However, the surplus in substrate uptake was not converted to l-valine; instead, the formation of up to 289 μM xylulose was observed for the first time in C. glutamicum. As an alternative to the genetic engineering solution, a straightforward process engineering approach is proposed. Acetate limitation resulted in a more efficient use of acetate as cosubstrate, shown by an increased biomass yield Y X/Ac and improved l-valine formation.  相似文献   

17.
This study was conducted to identify randomly amplified polymorphic DNA (RAPD) markers associated with quantitative trait loci (QTLs) conferring salt tolerance during germination in tomato. Germination response of an F2 population (2000 individuals) of a cross between UCT5 (Lycopersicon esculentum, salt-sensitive) and LA716 (L. pennellii, salt-tolerant) was evaluated at a salt-stress level of 175 mM NaCl+17.5 mM CaCl2 (water potential ca. –9.5 bars). Germination was scored visually as radicle protrusion at 6-h intervals for 30 consecutive days. Individuals at both extremes of the response distribution (i.e., salt-tolerants and salt-sensitives) were selected. The selected individuals were genotyped for 53 RAPD markers and allele frequencies at each marker locus were determined. The linkage association among the markers was determined using a “Mapmaker” program. Trait-based marker analysis (TBA) identified 13 RAPD markers at eight genomic regions that were associated with QTLs affecting salt tolerance during germination in tomato. Of these genomic regions, five included favorable QTL alleles from LA716, and three included favorable alleles from UCT5. The approximate effects of individual QTLs ranged from 0.46 to 0.82 phenotypic standard deviation. The results support our previous suggestion that salt tolerance during germination in tomato is polygenically controlled. The identification of favorable QTLs in both parents suggests the likelihood of recovering transgressive segregants in progeny derived from these genotypes. Results from this study are discussed in relation to using marker-assisted selection in breeding for salt tolerance. Received: 16 June 1997 / Revision received: 11 August 1997 / Accepted: 2 September 1997  相似文献   

18.
An Arthrobacter sp. (strain 9006), isolated from lake water, accumulated nitrite up to about 15 mg N/l, but no nitrate. In a mineral medium supplemented with tryptone, yeast extract, acetate and ammonium, the cells released nitrite into the medium parallel to growth or when growth had virtually ceased. The nitrite formed was proportional to the initial acetate concentration, indicating an involvement of acetate metabolism with nitrification. The organism grew with a wide variety of organic carbon sources, but washed cells formed nitrite from ammonium only in the presence of citrate, malate, acetate or ethanol. Magnesium ions were required for nitrification of ammonium and could not be replaced by other divalent metal ions. Analysis of the glyoxylate cycle key enzymes in washed suspensions incubated in a minimal medium revealed that isocitrate lyase and malate synthase were most active during the nitrification phase. Nitrite accumulation but not growth was inhibited by glucose, tryptone and yeast extract. A possible explanation for the different nitrification patterns during growth is based on the regulatory properties of glyoxylate cycle enzymes.Abbreviations IL Isocitrate lyase [threo-Ds-isocitrate glyoxylate-lase, E.C. 4.1.3.1.] - MS malate synthase [l-malate glyoxylate-lyase (CoA-acetylating), E.C. 4.1.3.2.]  相似文献   

19.
During germination of winter vetch (Vicia villosa Roth.) seeds, the degradation of raffinose family oligosaccharides and galactosyl pinitols occurred faster in axis than in cotyledons. After 7 days of germination, all α-d-galactosides disappeared and the soluble carbohydrates in seedling tissues consisted of d-pinitol, sucrose, fructose, glucose and myo-inositol. Osmotic stress caused by incubation of seedlings in PEG 8000 solution (−0.5, −1.0, and −1.5 MPa) for 48 h induced the activity of crucial enzymes of the RFOs pathway, i.e. galactinol synthase and raffinose synthase, in both the root and epicotyl but not in cotyledons. The root and epicotyl accumulated elevated amounts of galactinol and raffinose as the osmotic potential was lowered. This process was transient because when PEG solution was replaced with water, galactinol and raffinose were degraded, thus confirming their direct involvement in the response of tissues to osmotic stress. Among other soluble carbohydrates, only sucrose accumulated in response to stress. The results did not show potential role of d-pinitol in the adjustment of winter vetch seedlings to osmotic stress.  相似文献   

20.
Summary The effect of different concentrations of CO2 on the germination of conidiospores of Aspergillus niger A 5 has been studied using Pardee's buffer mixtures which maintain constant CO2 tensions. The beneficial effect of CO2 on germination is maximum at 0.5% CO2 concentration, when 70–90% of the spores germinate within 6 hours, whereas in controls with air containing 0.03% CO2 there is only 15–20% germination at 6 hours. At higher CO2 concentrations this beneficial effect of CO2 on germination diminishes and at 3% there is a complete inhibition of spore germination.The spore density and the ph of the medium have a noticeable effect on germination rates in presence of 0.5% CO2. The germination rates decrease at spore densities higher than 5 · 105/ml and at a ph of 6.8.Communication No. 431.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号