首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The anaerobic oxidation of methane (AOM) is a major sink for methane on Earth and is performed by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Here we present a comparative study using in vitro stable isotope probing to examine methane and carbon dioxide assimilation into microbial biomass. Three sediment types comprising different methane-oxidizing communities (ANME-1 and -2 mixture from the Black Sea, ANME-2a from Hydrate Ridge and ANME-2c from the Gullfaks oil field) were incubated in replicate flow-through systems with methane-enriched anaerobic seawater medium for 5–6 months amended with either 13CH4 or H13CO3-. In all three sediment types methane was anaerobically oxidized in a 1:1 stoichiometric ratio compared with sulfate reduction. Similar amounts of 13CH4 or 13CO2 were assimilated into characteristic archaeal lipids, indicating a direct assimilation of both carbon sources into ANME biomass. Specific bacterial fatty acids assigned to the partner SRB were almost exclusively labelled by 13CO2, but only in the presence of methane as energy source and not during control incubations without methane. This indicates an autotrophic growth of the ANME-associated SRB and supports previous hypotheses of an electron shuttle between the consortium partners. Carbon assimilation efficiencies of the methanotrophic consortia were low, with only 0.25–1.3 mol% of the methane oxidized.  相似文献   

2.
The anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor is mediated by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Whereas three clades of ANME have been repeatedly studied with respect to phylogeny, key genes and genomic capabilities, little is known about their sulfate-reducing partner. In order to identify the partner of anaerobic methanotrophs of the ANME-2 clade, bacterial 16S rRNA gene libraries were constructed from cultures highly enriched for ANME-2a and ANME-2c in consortia with Deltaproteobacteria of the Desulfosarcina/Desulfococcus group (DSS). Phylogenetic analysis of those and publicly available sequences from AOM sites supported the hypothesis by Knittel and colleagues that the DSS partner belongs to the diverse SEEP-SRB1 cluster. Six subclusters of SEEP-SRB1, SEEP-SRB1a to SEEP-SRB1f, were proposed and specific oligonucleotide probes were designed. Using fluorescence in situ hybridization on samples from six different AOM sites, SEEP-SRB1a was identified as sulfate-reducing partner in up to 95% of total ANME-2 consortia. SEEP-SRB1a cells exhibited a rod-shaped, vibrioid, or coccoid morphology and were found to be associated with subgroups ANME-2a and ANME-2c. Moreover, SEEP-SRB1a was also detected in 8% to 23% of ANME-3 consortia in Haakon Mosby Mud Volcano sediments, previously described to be predominantly associated with SRB of the Desulfobulbus group. SEEP-SRB1a contributed to only 0.3% to 0.7% of all single cells in almost all samples indicating that these bacteria are highly adapted to a symbiotic relationship with ANME-2.  相似文献   

3.
The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments – namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogenic archaea. Anaerobic oxidation of methane presumably proceeds via a 'reversed' methanogenic pathway. The ANME are generally associated with sulfate-reducing bacteria (SRB) and sulfate is the only documented final electron acceptor for AOM in marine sediments. Our comparative study explored the coupling of AOM with sulfate reduction (SR) and methane generation (MOG) in microbial communities from Gulf of Mexico cold seep sediments that were naturally enriched with methane and other hydrocarbons. These sediments harbour a variety of ANME clades and SRB. Following enrichment under an atmosphere of methane, AOM fuelled 50–100% of SR, even in sediment slurries containing petroleum-associated hydrocarbons and organic matter. In the presence of methane and sulfate, the investigated microbial communities produce methane at a small fraction (∼10%) of the AOM rate. Anaerobic oxidation of methane, MOG and SR rates decreased significantly with decreasing concentration of methane, and in the presence of the SR inhibitor molybdate, but reacted differently to the MOG inhibitor 2-bromoethanesulfonate (BES). The addition of acetate, a possible breakdown product of petroleum in situ and a potential intermediate in AOM/SR syntrophy, did not suppress AOM activity; rather acetate stimulated microbial activity in oily sediment slurries.  相似文献   

4.
The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ⩽25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ⩾75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.  相似文献   

5.
Sulfate‐reducing methanotrophy by anaerobic methanotrophic archaea (ANME) and sulfate‐reducing bacteria (SRB) is a major biological sink of methane in anoxic methane‐enriched marine sediments. The physiology of a microbial community dominated by free‐living ANME‐1 at 14–16 cm below the seafloor in the G11 pockmark at Nyegga was investigated by integrated metagenomic and metaproteomic approaches. Total DNA was subjected to 454‐pyrosequencing (829 527 reads), and 16.6 Mbp of sequence information was assembled into 27352 contigs. Taxonomic analysis supported a high abundance of Euryarchaea (70%) with 66% of the assembled metagenome belonging to ANME‐1. Extracted sediment proteins were separated in two dimensions and subjected to mass spectrometry (LTQ‐Orbitrap XL). Of 356 identified proteins, 245 were expressed by ANME‐1. These included proteins for cold‐adaptation and production of gas vesicles, reflecting both the adaptation of the ANME‐1 community to a permanently cold environment and its potential for positioning in specific sediment depths respectively. In addition, key metabolic enzymes including the enzymes in the reverse methanogenesis pathway (except N5,N10‐methylene‐tetrahydromethanopterin reductase), heterodisulfide reductases and the F420H2:quinone oxidoreductase (Fqo) complex were identified. A complete dissimilatory sulfate reduction pathway was expressed by sulfate‐reducing Deltaproteobacteria. Interestingly, an APS‐reductase comprising Gram‐positive SRB and related sequences were identified in the proteome. Overall, the results demonstrated that our approach was effective in assessing in situ metabolic processes in cold seep sediments.  相似文献   

6.
7.
Anaerobic methane‐oxidizing microbial communities in sediments at cold methane seeps are important factors in controlling methane emission to the ocean and atmosphere. Here, we investigated the distribution and carbon isotopic signature of specific biomarkers derived from anaerobic methanotrophic archaea (ANME groups) and sulphate‐reducing bacteria (SRB) responsible for the anaerobic oxidation of methane (AOM) at different cold seep provinces of Hydrate Ridge, Cascadia margin. The special focus was on their relation to in situ cell abundances and methane turnover. In general, maxima in biomarker abundances and minima in carbon isotope signatures correlated with maxima in AOM and sulphate reduction as well as with consortium biomass. We found ANME‐2a/DSS aggregates associated with high abundances of sn‐2,3‐di‐O‐isoprenoidal glycerol ethers (archaeol, sn‐2‐hydroxyarchaeol) and specific bacterial fatty acids (C16:1ω5c, cyC17:0ω5,6) as well as with high methane fluxes (Beggiatoa site). The low to medium flux site (Calyptogena field) was dominated by ANME‐2c/DSS aggregates and contained less of both compound classes but more of AOM‐related glycerol dialkyl glycerol tetraethers (GDGTs). ANME‐1 archaea dominated deeper sediment horizons at the Calyptogena field where sn‐1,2‐di‐O‐alkyl glycerol ethers (DAGEs), archaeol, methyl‐branched fatty acids (ai‐C15:0, i‐C16:0, ai‐C17:0), and diagnostic GDGTs were prevailing. AOM‐specific bacterial and archaeal biomarkers in these sediment strata generally revealed very similar δ13C‐values of around ?100. In ANME‐2‐dominated sediment sections, archaeal biomarkers were even more 13C‐depleted (down to ?120), whereas bacterial biomarkers were found to be likewise 13C‐depleted as in ANME‐1‐dominated sediment layers (δ13C: ?100). The zero flux site (Acharax field), containing only a few numbers of ANME‐2/DSS aggregates, however, provided no specific biomarker pattern. Deeper sediment sections (below 20 cm sediment depth) from Beggiatoa covered areas which included solid layers of methane gas hydrates contained ANME‐2/DSS typical biomarkers showing subsurface peaks combined with negative shifts in carbon isotopic compositions. The maxima were detected just above the hydrate layers, indicating that methane stored in the hydrates may be available for the microbial community. The observed variations in biomarker abundances and 13C‐depletions are indicative of multiple environmental and physiological factors selecting for different AOM consortia (ANME‐2a/DSS, ANME‐2c/DSS, ANME‐1) along horizontal and vertical gradients of cold seep settings.  相似文献   

8.
In anoxic environments, methane oxidation is conducted in a syntrophic process between methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB). Microbial mats consisting of ANME, SRB and other microorganisms form methane seep-related carbonate buildups in the anoxic bottom waters of the Black Sea Crimean shelf. To shed light on the localization of the biochemical processes at the level of single cells in the Black Sea microbial mats, we applied antibody-based markers for key enzymes of the relevant metabolic pathways. The dissimilatory adenosine-5′-phosphosulfate (APS) reductase, methyl-coenzyme M reductase (MCR) and methanol dehydrogenase (MDH) were selected to localize sulfate respiration, reverse methanogenesis and aerobic methane oxidation, respectively. The key enzymes could be localized by double immunofluorescence and immunocytochemistry at light- and electron microscopic levels. In this study we show that sulfate reduction is conducted synchronized and in direct proximity to reverse methanogenesis of ANME archaea. Microcolonies in interspaces between ANME/SRB express methanol dehydrogenase, which is indicative for oxidation of C1 compounds by methylotrophic or methanotrophic bacteria. Thus, in addition to syntrophic AOM, oxygen-dependent processes are also conducted by a small proportion of the microbial population.  相似文献   

9.
Anaerobic methanotrophic archaea (ANME) are ubiquitous in marine sediments where sulfate dependent anaerobic oxidation of methane (AOM) occurs. Despite considerable progress in the understanding of AOM, physiological details are still widely unresolved. We investigated two distinct microbial mat samples from the Black Sea that were dominated by either ANME‐1 or ANME‐2. The 13C lipid stable isotope probing (SIP) method using labelled substances, namely methane, bicarbonate, acetate, and methanol, was applied, and the substrate‐dependent methanogenic capabilities were tested. Our data provide strong evidence for a versatile physiology of both, ANME‐1 and ANME‐2. Considerable methane production rates (MPRs) from CO2‐reduction were observed, particularly from ANME‐2 dominated samples and in the presence of methane, which supports the hypothesis of a co‐occurrence of methanotrophy and methanogenesis in the AOM systems (AOM/MPR up to 2:1). The experiments also revealed strong methylotrophic capabilities through 13C‐assimilation from labelled methanol, which was independent of the presence of methane. Additionally, high MPRs from methanol were detected in both of the mat samples. As demonstrated by the 13C‐uptake into lipids, ANME‐1 was found to thrive also under methane free conditions. Finally, C35‐isoprenoid hydrocarbons were identified as new lipid biomarkers for ANME‐1, most likely functioning as a hydrogen sink during methanogenesis.  相似文献   

10.
Microbial consortia mediating the anaerobic oxidation of methane with sulfate are composed of methanotrophic Archaea (ANME) and Bacteria related to sulfate‐reducing Deltaproteobacteria. Cultured representatives are not available for any of the three ANME clades. Therefore, a metagenomic approach was applied to assess the genetic potential of ANME‐1 archaea. In total, 3.4 Mbp sequence information was generated based on metagenomic fosmid libraries constructed directly from a methanotrophic microbial mat in the Black Sea. These sequence data represent, in 30 contigs, about 82–90% of a composite ANME‐1 genome. The dataset supports the hypothesis of a reversal of the methanogenesis pathway. Indications for an assimilatory, but not for a dissimilatory sulfate reduction pathway in ANME‐1, were found. Draft genome and expression analyses are consistent with acetate and formate as putative electron shuttles. Moreover, the dataset points towards downstream electron‐accepting redox components different from the ones known from methanogenic archaea. Whereas catalytic subunits of [NiFe]‐hydrogenases are lacking in the dataset, genes for an [FeFe]‐hydrogenase homologue were identified, not yet described to be present in methanogenic archaea. Clustered genes annotated as secreted multiheme c‐type cytochromes were identified, which have not yet been correlated with methanogenesis‐related steps. The genes were shown to be expressed, suggesting direct electron transfer as an additional possible mode to shuttle electrons from ANME‐1 to the bacterial sulfate‐reducing partner.  相似文献   

11.
Correlation between hydrogen isotope fractionation in fatty acids and carbon metabolism in pure cultures of bacteria indicates the potential of biomarker D/H analysis as a tool for diagnosing carbon substrate usage in environmental samples. However, most environments, in particular anaerobic habitats, are built from metabolic networks of micro‐organisms rather than a single organism. The effect of these networks on D/H of lipids has not been explored and may complicate the interpretation of these analyses. Syntrophy represents an extreme example of metabolic interdependence. Here, we analyzed the effect of metabolic interactions on the D/H biosignatures of sulfate‐reducing bacteria (SRB) using both laboratory maintained cocultures of the methanogen Methanosarcina acetivorans and the SRB Desulfococcus multivorans in addition to environmental samples harboring uncultured syntrophic consortia of anaerobic methane‐oxidizing archaea (ANME) and sulfate‐reducing Deltaproteobacteria (SRB) recovered from deep‐sea methane seeps. Consistent with previously reported trends, we observed a ~80‰ range in hydrogen isotope fractionation (εlipid–water) for D. multivorans grown under different carbon assimilation conditions, with more D‐enriched values associated with heterotrophic growth. In contrast, for cocultures of D. multivorans with M. acetivorans, we observed a reduced range of εlipidwater values (~36‰) across substrates with shifts of up to 61‰ compared to monocultures. Sediment cores from methane seep settings in Hydrate Ridge (offshore Oregon, USA) showed similar D‐enrichment in diagnostic SRB fatty acids coinciding with peaks in ANME/SRB consortia concentration suggesting that metabolic associations are connected to the observed shifts in εlipid–water values.  相似文献   

12.
Anaerobic oxidation of methane (AOM) is an important methane sink in the ocean but the microbes responsible for AOM are as yet resilient to cultivation. Here we describe the microbial analysis of an enrichment obtained in a novel submerged‐membrane bioreactor system and capable of high‐rate AOM (286 μmol gdry weight?1 day?1) coupled to sulfate reduction. By constructing a clone library with subsequent sequencing and fluorescent in situ hybridization, we showed that the responsible methanotrophs belong to the ANME‐2a subgroup of anaerobic methanotrophic archaea, and that sulfate reduction is most likely performed by sulfate‐reducing bacteria commonly found in association with other ANME‐related archaea in marine sediments. Another relevant portion of the bacterial sequences can be clustered within the order of Flavobacteriales but their role remains to be elucidated. Fluorescent in situ hybridization analyses showed that the ANME‐2a cells occur as single cells without close contact to the bacterial syntrophic partner. Incubation with 13C‐labelled methane showed substantial incorporation of 13C label in the bacterial C16 fatty acids (bacterial; 20%, 44% and 49%) and in archaeal lipids, archaeol and hydroxyl‐archaeol (21% and 20% respectively). The obtained data confirm that both archaea and bacteria are responsible for the anaerobic methane oxidation in a bioreactor enrichment inoculated with Eckernförde bay sediment.  相似文献   

13.
The diversity of the methyl‐coenzyme reductase A (mcrA) and 16S rRNA genes was investigated in gas hydrate containing sediment from the Kazan mud volcano, eastern Mediterranean Sea. mcrA was detected only at 15 and 20 cm below seafloor (cmbsf) from a 40‐cm long push core, while based on chemical profiles of methane, sulfate, and sulfide, possible anaerobic oxidation of methane (AOM) depth was inferred at 12–15 cmbsf. The phylogenetic relationships of the obtained mcrA, archaeal and bacterial 16S rRNA genes, showed that all the found sequences were found in both depths and at similar relative abundances. mcrA diversity was low. All sequences were related to the Methanosarcinales, with the most dominant (77.2%) sequences falling in group mcrA‐e. The 16S rRNA‐based archaeal diversity also revealed low diversity and clear dominance (72.8% of all archaeal phylotypes) of the Methanosarcinales and, in particular, ANME‐2c. Bacteria showed higher diversity but 83.2% of the retrieved phylotypes from both sediment layers belonged to the δ‐Proteobacteria. These phylotypes fell in the SEEP‐SRB1 putative AOM group. In addition, the rest of the less abundant phylotypes were related to yet‐uncultivated representatives of the Actinobacteria, Spirochaetales, and candidate divisions OP11 and WS3 from gas hydrate‐bearing habitats. These phylotype patterns indicate that AOM is occurring in the 15 and 20 cmbsf sediment layers.  相似文献   

14.
Communities of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB) grow slowly, which limits the ability to perform physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated SRB are affected by it. Here, we report on the growth of ANME-SRB in a membrane capsule bioreactor inoculated with Eckernförde Bay sediment that combines high-pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2-μm-pore-size membrane. The results were compared to previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor inoculated with the same sediment. The rates of oxidation of labeled methane were not higher at 10.1 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b was abundant in both reactors, but subtype ANME-2c was enriched only at 10.1 MPa. SRB at 10.1 MPa mainly belonged to the SEEP-SRB2 and Eel-1 groups and the Desulfuromonadales and not to the typically found SEEP-SRB1 group. The increase of ANME-2a/b occurred in parallel with the increase of SEEP-SRB2, which was previously found to be associated only with ANME-2c. Our results imply that the syntrophic association is flexible and that methane pressure and sulfide concentration influence the growth of different ANME-SRB consortia. We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at a high methane partial pressure.  相似文献   

15.
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is a microbially mediated unique natural phenomenon with an ecological relevance in the global carbon balance and potential application in biotechnology. This study aimed to enrich an AOM performing microbial community with the main focus on anaerobic methanotrophic archaea (ANME) present in sediments from the Ginsburg mud volcano (Gulf of Cadiz), a known site for AOM, in a membrane bioreactor (MBR) for 726 days at 22 (± 3)°C and at ambient pressure. The MBR was equipped with a cylindrical external ultrafiltration membrane, fed a defined medium containing artificial seawater and operated at a cross flow velocity of 0.02 m/min. Sulfide production with simultaneous sulfate reduction was in equimolar ratio between days 480 and 585 of MBR operation, whereas methane consumption was in oscillating trend. At the end of the MBR operation (day 726), the enriched biomass was incubated with 13C labeled methane, 13C labeled inorganic carbon was produced and the AOM rate based on 13C‐inorganic carbon was 1.2 μmol/(gdw d). Microbial analysis of the enriched biomass at 400 and 726 days of MBR operation showed that ANME‐2 and Desulfosarcina type sulfate reducing bacteria were enriched in the MBR, which formed closely associated aggregates. The major relevance of this study is the enrichment of an AOM consortium in a MBR system which can assist to explore the ecophysiology of ANME and provides an opportunity to explore the potential application of AOM.  相似文献   

16.
Anoxic sediment from a methane hydrate area (Hydrate Ridge, north-east Pacific; water depth 780 m) was incubated in a long-term laboratory experiment with semi-continuous supply of pressurized [1.4 MPa (14 atm)] methane and sulfate to attempt in vitro propagation of the indigenous consortia of archaea (ANME-2) and bacteria (DSS, Desulfosarcina/Desulfococcus cluster) to which anaerobic oxidation of methane (AOM) with sulfate has been attributed. During 24 months of incubation, the rate of AOM (measured as methane-dependent sulfide formation) increased from 20 to 230 micromol day(-1) (g sediment dry weight)(-1) and the number of aggregates (determined by microscopic counts) from 0.5 x 10(8) to 5.7 x 10(8) (g sediment dry weight)(-1). Fluorescence in situ hybridization targeting 16S rRNA of both partners showed that the newly grown consortia contained central archaeal clusters and peripheral bacterial layers, both with the same morphology and phylogenetic affiliation as in the original sediment. The development of the AOM rate and the total consortia biovolume over time indicated that the consortia grew with a doubling time of approximately 7 months (growth rate 0.003 day(-1)) under the given conditions. The molar growth yield of AOM was approximately 0.6 g cell dry weight (mol CH(4) oxidized)(-1); according to this, only 1% of the consumed methane is channelled into synthesis of consortia biomass. Concentrations of biomarker lipids previously attributed to ANME-2 archaea (e.g. sn-2-hydroxyarchaeol, archaeol, crocetane, pentamethylicosatriene) and Desulfosarcina-like bacteria [e.g. hexadecenoic-11 acid (16:1omega5c), 11,12-methylene-hexadecanoic acid (cy17:0omega5,6)] strongly increased over time (some of them over-proportionally to consortia biovolume), suggesting that they are useful biomarkers to detect active anaerobic methanotrophic consortia in sediments.  相似文献   

17.
Anaerobic oxidation of methane (AOM) with sulfate is apparently catalyzed by an association of methanotrophic archaea (ANME) and sulfate-reducing bacteria. In many habitats, the free energy change (ΔG) available through this process is only -20 kJ/mol and therefore AOM with sulfate reduction generating life-supporting ATP is predicted to operate near thermodynamic equilibrium (ΔG=0 kJ/mol). On the basis of meta-genome sequencing and enzyme studies, it has been proposed that AOM in ANME is catalyzed by the same enzymes that catalyze CO2 reduction to CH4 in methanogenic archaea. Here, this proposal is reviewed and evaluated in terms of the process thermodynamics, kinetics, and enzyme reversibilities. Currently, there is no evidence for the presence of the gene that encodes methylene-tetrahydromethanopterin reductase in ANME, one of the central enzymes in the CO2 to CH4 pathway. However, all of the remaining enzymes do appear to be present and, with the exception of a coenzyme M-S-S-coenzyme B heterodisulfide reductase, all of these enzymes have been confirmed to catalyze reversible reactions.  相似文献   

18.
Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon into bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as m 103. Specific fatty acids released from bacterial membranes include C 16:1 y 5c , C 17:1 y 6c , and cyC 17:0 y 5,6 , all of which have been fully characterized by mass spectrometry. These unusual fatty acids continuously display the lowest i 13 C values in all sediment horizons and two of them are detected in high abundance (i.e., C 16:1 y 5c and cyC 17:0 y 5,6 ). Combined with microscopic examination by fluorescence in situ hybridization specifically targeting sulfate-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content and aggregate number in combination with pore water sulfate data provide further evidence of this finding. Using mass balance calculations we present a cell-specific fatty acid pattern most likely displaying a very close resemblance to the still uncultured Desulfosarcina/Desulfococcus species involved in AOM.  相似文献   

19.
Lipid biomarkers and their stable carbon isotopic composition, as well as 16S rRNA gene sequences, were investigated in sediment cores from active seepage zones in the Sea of Marmara (Turkey) located on the active North Anatolian Fault, to assess processes associated with methane turnover by indigenous microbial communities. Diagnostic 13C‐depleted archaeal lipids of anaerobic methane oxidizers were only found in one core from the South of Çinarcik Basin and consist mainly of archaeol, sn‐2 hydroxyarchaeol and various unsaturated pentamethylicosenes. Concurrently, abundant fatty acids (FAs) and a substantial amount of monoalkylglycerolethers (MAGEs), assigned to sulphate‐reducing bacteria, were detected with strong 13C‐depletions. Both microbial lipids and their δ13C values suggest that anaerobic oxidation of methane with sulphate reduction (AOM/SR) occurs, specially in the 10‐ to 12‐cm depth interval. Lipid biomarker results accompanied by 16S rRNA‐based microbial diversity analyses showed that ANME‐2 (ANME‐2a and ‐2c) archaea and Desulfosarcina/Desulfococcus and Desulfobulbus deltaproteobacterial clades are the major AOM assemblages, which indicate a shallow AOM community at high methane flux. Apart from the typical AOM lipid biomarker pattern, a 13C‐depleted diunsaturated hydrocarbon, identified as 7,14‐tricosadiene, occurred in the inferred maximum AOM interval at 10–12 cm depth. Its isotopic fingerprint implies that its microbial precursor occurs in close association with the AOM communities. Interestingly, the presence of 7,14‐tricosadiene coincides with the presence of the so‐far uncultured bacterial Candidate Division JS1, often detected in AOM areas. We propose the hypothesis that the JS1 bacterial group could be the potential source of 13C‐depleted tricosadiene. Future testing of this hypothesis is essential to fully determine the role of this bacterial group in AOM.  相似文献   

20.
Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ13CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed (34ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate‐driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号