首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Evolutionary transitions from outcrossing between individuals to selfing are partly responsible for the great diversity of animal and plant reproduction systems. The hypothesis of `reproductive assurance’ suggests that transitions to selfing occur because selfers that are able to reproduce on their own ensure the persistence of populations in environments where mates or pollination agents are unavailable. Here we test this hypothesis by performing experimental evolution in Caenorhabditis elegans.

Results

We show that self-compatible hermaphrodites provide reproductive assurance to a male-female population facing a novel environment where outcrossing is limiting. Invasions of hermaphrodites in male-female populations, and subsequent experimental evolution in the novel environment, led to successful transitions to selfing and adaptation. Adaptation was not due to the loss of males during transitions, as shown by evolution experiments in exclusively hermaphroditic populations and in male-hermaphrodite populations. Instead, adaptation was due to the displacement of females by hermaphrodites. Genotyping of single-nucleotide polymorphisms further indicated that the observed evolution of selfing rates was not due to selection of standing genetic diversity. Finally, numerical modelling and evolution experiments in male-female populations demonstrate that the improvement of male fitness components may diminish the opportunity for reproductive assurance.

Conclusions

Our findings support the hypothesis that reproductive assurance can drive the transition from outcrossing to selfing, and further suggest that the success of transitions to selfing hinges on adaptation of obligate outcrossing populations to the environment where outcrossing was once a limiting factor.
  相似文献   

2.
Sexual reproduction shuffles genetic variation, potentially enhancing the evolutionary response to environmental change. Many asexual organisms respond to stress by generating facultative sexual reproduction, presumably as a means of escaping the trap of low genetic diversity. Self-fertilizing organisms are subject to similar genetic limitations: the consistent loss of genetic diversity within lineages restricts the production of variation through recombination. Selfing organisms may therefore benefit from a similar shift in mating strategy during periods of stress. We determined the effects of environmental stress via starvation and passage through the stress-resistant dauer stage on mating system dynamics of Caenorhabditis elegans , which reproduces predominantly through self-fertilization but is capable of outcrossing in the presence of males. Starvation elevated male frequencies in a strain-specific manner through differential male survival during dauer exposure and increased outcrossing rates after dauer exposure. In the most responsive strain, the mating system changed from predominantly selfing to almost exclusively outcrossing. Like facultative sex in asexual organisms, facultative outcrossing in C. elegans may periodically facilitate adaptation under stress. Such a shift in reproductive strategy should have a major impact on evolutionary change within these populations and may be a previously unrecognized feature of other highly selfing organisms.  相似文献   

3.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

4.
Self-fertilization (selfing) favours reproductive success when mate availability is low, but renders populations more vulnerable to environmental change by reducing genetic variability. A mixed-breeding strategy (alternating selfing and outcrossing) may allow species to balance these needs, but requires a system for regulating sexual identity. We explored the role of DNA methylation as a regulatory system for sex-ratio modulation in the mixed-mating fish Kryptolebias marmoratus. We found a significant interaction between sexual identity (male or hermaphrodite), temperature and methylation patterns when two selfing lines were exposed to different temperatures during development. We also identified several genes differentially methylated in males and hermaphrodites that represent candidates for the temperature-mediated sex regulation in K. marmoratus. We conclude that an epigenetic mechanism regulated by temperature modulates sexual identity in this selfing species, providing a potentially widespread mechanism by which environmental change may influence selfing rates. We also suggest that K. marmoratus, with naturally inbred populations, represents a good vertebrate model for epigenetic studies.  相似文献   

5.
In hermaphrodites, pleiotropic genetic trade‐offs between female and male reproductive functions can lead to sexually antagonistic (SA) selection, where individual alleles have conflicting fitness effects on each sex function. Although an extensive theory of SA selection exists for dioecious species, these results have not been generalized to hermaphrodites. We develop population genetic models of SA selection in simultaneous hermaphrodites, and evaluate effects of dominance, selection on each sex function, self‐fertilization, and population size on the maintenance of polymorphism. Under obligate outcrossing, hermaphrodite model predictions converge exactly with those of dioecious populations. Self‐fertilization in hermaphrodites generates three points of divergence with dioecious theory. First, opportunities for stable polymorphism decline sharply and become less sensitive to dominance with increased selfing. Second, selfing introduces an asymmetry in the relative importance of selection through male versus female reproductive functions, expands the parameter space favorable for the evolutionary invasion of female‐beneficial alleles, and restricts invasion criteria for male‐beneficial alleles. Finally, contrary to models of unconditionally beneficial alleles, selfing decreases genetic hitchhiking effects of invading SA alleles, and should therefore decrease these population genetic signals of SA polymorphisms. We discuss implications of SA selection in hermaphrodites, including its potential role in the evolution of “selfing syndromes.”  相似文献   

6.
Ovule discounting denotes the reduction in the number of ovules available for cross-fertilization due to the interference of inferior pollen. Traditionally, ovule discounting has been discussed solely from the perspective of compromised outcrossing opportunities as a result of selfing, but the principle is more general. Here, we extend its applicability beyond the simple contrast between selfing and outcrossing by showing that, in the cryptically dioecious tree species Fraxinus ornus, ovule discounting through frequent outcrossing with inferior fathers also constitutes a substantial cost of mating. In F. ornus, hermaphrodites produce pollen capable of siring offspring, but these offspring are less viable than those sired by males and are inferred to produce few, if any, surviving progeny. In this paper, we used microsatellite markers to analyze the mating system and paternity in a wild population of F. ornus. We found that the effective number of sires per mother was low (N(ep) = 2.93 to 4.95), and that paternity was correlated among progeny sampled from the same mother, but not among progeny sampled from neighboring mothers. Despite the existence of a local spatial genetic structure (up to 30 m), we found no evidence of biparental inbreeding. There was negligible selfing by hermaphrodites, but they sired approximately one fourth of the seeds produced by other hermaphrodites. Given that these progeny are not inferred to reach reproductive maturity, this constitutes a substantial cost of ovule discounting in the broad sense. We discuss the possible reasons for why hermaphrodites invest resources into inferior pollen.  相似文献   

7.
Levels of inbreeding depression, outcrossing rates, and phenotypic patterns of resource allocation were studied to examine their relative importance in the maintenance of high numbers of females in gynodioecious Schiedea adamantis (Caryophyllaceae), an endemic Hawaiian shrub found in a single population on Diamond Head Crater, Oahu. In studies of inbreeding depression in two greenhouse environments, families of hermaphrodites exhibited significant inbreeding depression (δ = 0.60), based on a multiplicative fitness function using seeds per capsule, germination, survival, and the inflorescence biomass of progeny. Differences between inbred and outcrossed progeny were smallest at the early stage of seeds per capsule and more pronounced at the later stages of survival and inflorescence production. These results are consistent with inbreeding depression caused by many mutations of small effect. Using allozyme analyses, the inbreeding coefficient of adult plants in the field was not significantly different from zero, implying that δ in nature may be equal to one. The single locus estimate of the outcrossing rate for hermaphrodites was 0.50 based on progeny that survived to flowering; corrected for the disproportionate loss before flowering of progeny from selfing, the adjusted outcrossing rate at the zygote stage was 0.32, suggesting that considerable selfing occurs in hermaphrodites. Females were totally outcrossed. When females and hermaphrodites were compared for reproductive output in the field, females produced over twice as many seeds per plant as hermaphrodites, primarily because females had far more capsules per inflorescence than hermaphrodites. Females had greater mass per seed than hermaphrodites in the field, either because of greater provisioning or reduced inbreeding depression. There was no significant differential mortality with respect to sex over a seven year period. The higher number of seeds per plant of females, combined with substantial inbreeding depression and relatively high selfing rates for hermaphrodites, are probably responsible for the maintenance of females in this population. The predicted frequency of females based on data for seed production, the adjusted selfing rate, and inbreeding depression is 42%, remarkably close to the observed frequency of 39%. High levels of inbreeding depression suggest that considerable quantitative genetic variation is present for traits affecting fitness in this population, despite low allozyme variability and a presumed founder effect.  相似文献   

8.
The clam shrimpEulimnadia texana is an androdioecious crustacean in which hermaphrodites may self fertilize or outcross with males but cannot outcross with other hermaphrodites. Outcrossing is maintained within most populations of this species despite the high genetic cost of sex, suggesting that compensating factors provide an advantage to outcrossing. We hypothesized that one such benefit would be the production of larger clutch sizes resulting from outcrossed matings. To test this prediction, we recorded the body sizes and clutch sizes of hermaphrodites which mated via selfing or bia outcrossing. Clutch sizes showed significant, almost exponential, increases as body size increased in both selfing and outcrossing hernmaphrodites. The rate of this increase was the same for both groups, and there was no significant difference in clutch size when body size was controlled for between the two fertilization types.  相似文献   

9.
Closely related species coexisting in sympatry provide critical insight into the mechanisms underlying speciation and the maintenance of genetic divergence. Selfing may promote reproductive isolation by facilitating local adaptation, causing reduced hybrid fitness in parental environments. Here, we propose a novel mechanism by which selfing can further impair interspecific gene flow: selfing may act to ensure that nonhybrid progeny systematically co-occur whenever hybrid genotypes are produced. Under a competition arena, the fitness differentials between nonhybrid and hybrid progeny are then magnified, preventing development of interspecific hybrids. We investigate whether this "sibling competition arena" can explain the coexistence in sympatry of closely related species of the plant fungal pathogens (Microbotryum) causing anther-smut disease. The probabilities of intrapromycelial mating (automixis), outcrossing, and sibling competition were manipulated in artificial inoculations to evaluate their contribution to reproductive isolation. We report that both intrapromycelial selfing and sibling competition significantly reduced rates of hybrid infection beyond that expected based solely upon selfing rates and noncompetitive fitness differentials between hybrid and nonhybrid progeny. Our results thus suggest that selfing and a sibling competition arena can combine to constitute a barrier to gene flow and diminish selection for additional barriers to gene flow in sympatry.  相似文献   

10.
Standing genetic variation is considered a major contributor to the adaptive potential of species. The low heritable genetic variation observed in self‐fertilizing populations has led to the hypothesis that species with this mating system would be less likely to adapt. However, a non‐negligible amount of cryptic genetic variation for polygenic traits, accumulated through negative linkage disequilibrium, could prove to be an important source of standing variation in self‐fertilizing species. To test this hypothesis, we simulated populations under stabilizing selection subjected to an environmental change. We demonstrate that, when the mutation rate is high (but realistic), selfing populations are better able to store genetic variance than outcrossing populations through genetic associations, notably due to the reduced effective recombination rate associated with predominant selfing. Following an environmental shift, this diversity can be partially remobilized, which increases the additive variance and adaptive potential of predominantly (but not completely) selfing populations. In such conditions, despite initially lower observed genetic variance, selfing populations adapt as readily as outcrossing ones within a few generations. For low mutation rates, purifying selection impedes the storage of diversity through genetic associations, in which case, as previously predicted, the lower genetic variance of selfing populations results in lower adaptability compared to their outcrossing counterparts. The population size and the mutation rate are the main parameters to consider, as they are the best predictors of the amount of stored diversity in selfing populations. Our results and their impact on our knowledge of adaptation under high selfing rates are discussed.  相似文献   

11.
Stewart AD  Phillips PC 《Genetics》2002,160(3):975-982
Caenorhabditis elegans is an androdioecious nematode composed of selfing hermaphrodites and rare males. A model of male maintenance demonstrates that selfing rates in hermaphrodites cannot be too high or else the frequency of males will be driven down to the rate of spontaneous nondisjunction of the X chromosome. After their outcrossing ability is assessed, males are found to skirt the frequency range in which they would be maintained. When male maintenance is directly assessed by elevating male frequency and observing the frequency change through time, males are gradually eliminated from the population. Males, therefore, appear to reproduce at a rate just below that necessary for them to be maintained. Populations polymorphic for a mutation (fog-2) that effectively changes hermaphrodites into females demonstrate that there is strong selection against dioecy. Factors such as variation in male mating ability and inbreeding depression could potentially lead to the long-term maintenance of males.  相似文献   

12.
Miguel Verdú 《Oikos》2004,105(2):239-246
Androdioecy, the co-occurrence of males and hermaphrodites in a breeding population, is a rare reproductive system in the nature. This rarity may be the result of the large fitness gain required for male plants to be maintained by selection. Physiological, vegetative and reproductive characters of males and hermaphrodites of the androdioecious species Fraxinus ornus (Oleaceae) were compared, supporting the hypothesis that males compensate the fitness advantage of hermaphrodites with greater reproductive -but not vegetative- output, with concomitant differences in physiological capacities between the genders. Photosynthetic rate was similar between both genders, but hermaphrodites had lower water potential and carbon isotope discrimination than males. Photosynthesis rates decreased with decreasing water potentials more steeply in males than in hermaphrodites, indicating that hermaphrodites were more drought tolerant than males. Vegetative characters such as current year shoot growth or tree size did not differ between genders. Males produced 1.6 times more inflorescences than hermaphrodites. This difference was consistent across years and populations.  相似文献   

13.
Self‐fertilization is hypothesized to be an evolutionary dead end because reversion to outcrossing can rarely happen, and selfing lineages are thought to rapidly become extinct because of limited potential for adaptation and/or accumulation of deleterious mutations. We tested these two assumptions by combining morphological characters and molecular‐evolution analyses in a tribe of hermaphroditic grasses (Triticeae). First, we determined the mating system of the 19 studied species. Then, we sequenced 27 protein‐coding loci and compared base composition and substitution patterns between selfers and outcrossers. We found that the evolution of the mating system is best described by a model including outcrossing‐to‐selfing transitions only. At the molecular level, we showed that regions of low recombination exhibit signatures of relaxed selection. However, we did not detect any evidence of accumulation of nonsynonymous substitutions in selfers compared to outcrossers. Additionally, we tested for the potential deleterious effects of GC‐biased gene conversion in outcrossing species. We found that recombination and not the mating system affected substitution patterns and base composition. We suggest that, in Triticeae, although recombination patterns have remained stable, selfing lineages are of recent origin and inbreeding may have persisted for insufficient time for differences between the two mating systems to evolve.  相似文献   

14.
When selection differs between males and females, pleiotropic effects among genes expressed by both sexes can result in sexually antagonistic selection (SA), where beneficial alleles for one sex are deleterious for the other. For hermaphrodites, alleles with opposing fitness effects through each sex function represent analogous genetic constraints on fitness. Recent theory based on single‐locus models predicts that the maintenance of SA genetic variation should be greatly reduced in partially selfing populations. However, selfing also reduces the effective rate of recombination, which should facilitate selection on linked allelic combinations and expand opportunities for balancing selection in a multilocus context. Here, I develop a two‐locus model of SA selection for simultaneous hermaphrodites, and explore the joint influence of linkage, self‐fertilization, and dominance on the maintainance of SA polymorphism. I find that the effective reduction in recombination caused by selfing significantly expands the parameter space where SA polymorphism can be maintained relative to single‐locus models. In particular, linkage facilitates the invasion of male‐beneficial alleles, partially compensating for the “female‐bias” in the net direction of selection created by selfing. I discuss the implications of accounting for linkage among SA loci for the maintenance of SA genetic variation and mixed mating systems in hermaphrodites.  相似文献   

15.
PARASITES AND THE EVOLUTION OF SELF-FERTILIZATION   总被引:4,自引:0,他引:4  
Abstract.— Assuming all else is equal, an allele for selfing should spread when rare in an outcrossing population and rapidly reach fixation. Such an allele will not spread, however, if self‐fertilization results in inbreeding depression so severe that the fitness of selfed offspring is less that half that of outcrossed offspring. Here we consider an ecological force that may also counter the spread of a selfing allele: coevolution with parasites. Computer simulations were conducted for four different genetic models governing the details of infection. Within each of these models, we varied both the level of selfing in the parasite and the level of male‐gamete discounting in the host (i.e., the reduction in outcrossing fitness through male function due to the selfing allele). We then sought the equilibrium level of host selfing under the different conditions. The results show that, over a wide range of conditions, parasites can select for host reproductive strategies in which both selfed and outcrossed progeny are produced (mixed mating). In addition, mixed mating, where it exits, tends to be biased toward selfing.  相似文献   

16.
Postcopulatory sexual selection affects the evolution of numerous features ranging from mating behavior to seminal fluid toxicity to the size of gametes. In an earlier study of the effect of sperm competition risk on sperm size evolution, experimental populations of the nematode Caenorhabditis elegans were maintained either by outcrossing (sperm competition present) or by selfing (no sperm competition), and after 60 generations, significantly larger sperm had evolved in the outcrossing populations. To determine the effects of this selection on population genetic variation, we assessed genetic diversity in a large number of loci using random amplification of polymorphic DNA-PCR. Nearly 80% of the alleles present in parental strain populations persisted in the 6 experimental populations after the 60 generations and, despite a 2.2-fold difference in expected heterozygosity, the resulting levels of genetic variation were equivalent between the outcrossing and selfing experimental populations. By inference, we conclude that genetic hitchhiking due to sexual selection in the experimental populations dramatically reduced genetic diversity. We use the levels of variation in the selfing populations as a control for the effects of drift, and estimate the strength of sexual selection to be strong in obligatorily outcrossing populations. Although sequential hermaphrodites like C. elegans probably experience little sexual selection in nature, these data suggest that sexual selection can profoundly affect diversity in outcrossing taxa.  相似文献   

17.
Mixed-mating strategies (i.e., intermediate levels of self-fertilization and outcrossing in hermaphrodites) are relatively common in plants and animals, but why self-fertilization (selfing) rates vary so much in nature has proved difficult to explain. We tested the hypothesis that parasites help maintain mixed-mating using a partially selfing fish (Kryptolebias marmoratus) as a model. We show that outcrossed progeny in the wild are genetically more diverse and less susceptible to multiple parasite infections than their selfed counterparts. Given that outcrossing in K. marmoratus can only be attained by male-hermaphrodite matings, our data provide an explanation for the coexistence of males and hermaphrodites in androdioecious species where hermaphrodites are unable to outcross among themselves. Moreover, our study provides evidence that parasites contribute to maintaining mixed-mating in a natural animal population.  相似文献   

18.
Self-fertilization is generally seen to be disadvantageous in the long term. It increases genetic drift, which subsequently reduces polymorphism and the efficiency of selection, which also challenges adaptation. However, high selfing rates can increase the fixation probability of recessive beneficial mutations, but existing theory has generally not accounted for the effect of linked sites. Here, we analyze a model for the fixation probability of deleterious mutants that hitchhike with selective sweeps in diploid, partially selfing populations. Approximate analytical solutions show that, conditional on the sweep not being lost by drift, higher inbreeding rates increase the fixation probability of the deleterious allele, due to the resulting reduction in polymorphism and effective recombination. When extending the analysis to consider a distribution of deleterious alleles, as well as the average fitness increase after a sweep, we find that beneficial alleles generally need to be more recessive than the previously assumed dominance threshold (h < 1/2) for selfing to be beneficial from one-locus theory. Our results highlight that recombination aiding the efficiency of selection on multiple loci amplifies the fitness benefits of outcrossing over selfing, compared to results obtained from one-locus theory. This effect additionally increases the parameter range under which obligate outcrossing is beneficial over partial selfing.  相似文献   

19.
Androdioecy is an uncommon form of reproduction in which males coexist with hermaphrodites. Androdioecy is thought to be difficult to evolve in species that regularly inbreed. The freshwater shrimp Eulimnadia texana has recently been described as both androdioecious and highly selfing and is thus anomalous. Inbreeding depression is one factor that may maintain males in these populations. Here we examine the extent of "late" inbreeding depression (after sexual maturity) in these clam shrimp using two tests: (1) comparing the fitness of shrimp varying in their levels of individual heterozygosity from two natural populations that differ in overall genetic diversity; and (2) specifically outcrossing and selfing shrimp from these same populations and comparing fitness of the resulting offspring. The effects of inbreeding differed within each population. In the more genetically diverse population, fecundity, size, and mortality were significantly reduced in inbred shrimp. In the less genetically diverse population, none of the fitness measures was significantly lowered in selfed shrimp. Combining estimates of early inbreeding depression from a previous study with current estimates of late inbreeding depression suggests that inbreeding depression is substantial (delta = 0.68) in the more diverse population and somewhat lower (delta = 0.50) in the less diverse population. However, given that males have higher mortality rates than hermaphrodites, neither estimate of inbreeding depression is large enough to account for the maintenance of males in either population by inbreeding depression alone. Thus, the stability of androdioecy in this system is likely only if hermaphrodites are unable to self-fertilize many of their own eggs when not mated to a male or if male mating success is generally high (or at least high when males are rare). Patterns of fitness responses in the two populations were consistent with the hypothesis that inbreeding depression is caused by partially recessive deleterious alleles, although a formal test of this hypothesis still needs to be conducted.  相似文献   

20.
Fungi have a large potential for flexibility in their mode of sexual reproduction, resulting in mating systems ranging from haploid selfing to outcrossing. However, we know little about which mating strategies are used in nature, and why, even in well-studied model organisms. Here, we explored the fitness consequences of alternative mating strategies in the ascomycete fungus Podospora anserina. We measured and compared fitness proxies of nine genotypes in either diploid selfing or outcrossing events, over two generations, and with or without environmental stress. We showed that fitness was consistently lower in outcrossing events, irrespective of the environment. The cost of outcrossing was partly attributed to non-self recognition genes with pleiotropic effects on fertility. We then predicted that when presented with options to either self or outcross, individuals would perform mate choice in favour of the reproductive strategy that yields higher fitness. Contrary to our prediction, individuals did not seem to avoid outcrossing when a choice was offered, in spite of the fitness cost incurred. Our results suggest that, although functionally diploid, P. anserina does not benefit from outcrossing in most cases. We outline different explanations for the apparent lack of mate choice in face of high fitness costs associated with outcrossing, including a new perspective on the pleiotropic effect of non-self recognition genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号