首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Gunning 《Biophysical journal》1984,45(5):1031-1035
Steady-state current noise from the intrinsic gating of inward rectifier channels in the eggs of the marine polychaete Neanthes arenaceodentata was recorded under voltage clamp conditions. Lorentzian-shaped power spectra with corner frequencies near 1 Hz and zero-frequency asymptotes of 1 - 5 X 10(-23) A2/Hz were obtained for test potentials 15-45 mV positive to EK in solutions containing 10-40 mM Ko. The spectra are compatible with the predictions of a three-state kinetic model for inward rectification in which the single channel rectification is independent of voltage. The single channel conductance derived from this interpretation is 8 pS with 40 mM Ko.  相似文献   

2.
Conduction in inward rectifier, K+-channels in Aplysia neuron and Ba++ blockade of these channels were studied by rapid measurement of the membrane complex admittance in the frequency range 0.05 to 200 Hz during voltage clamps to membrane potentials in the range -90 to -40 mV. Complex ionic conductances of K+ and Cl- rectifiers were extracted from complex admittances of other membrane conduction processes and capacitance by vector subtraction of the membrane complex admittance during suppressed inward K+ current (near zero-mean current and in zero [K+]0) from complex admittances determined at other [K+]0 and membrane potentials. The contribution of the K+ rectifier to the admittance is distinguishable in the frequency domain above 1 Hz from the contribution of the Cl- rectifier, which is only apparent at frequencies less than 0.1 Hz. The voltage dependence (-90 to -40 mV) of the chord conductance (0.2 to 0.05 microS) and the relaxation time (4-8 ms) of K+ rectifier channels at [K+]0 = 40 mM were determined by curve fits of admittance data by a membrane admittance model based on the linearized Hodgkin-Huxley equations. The conductance of inward rectifier, K+ channels at a membrane potential of -80 mV had a square-root dependence on external K+ concentration, and the relaxation time increased from 2 to 7.5 ms for [K+]0 = 20 and 100 mM, respectively. The complex conductance of the inward K+ rectifier, affected by Ba++, was obtained by complex vector subtraction of the membrane admittance during blockage of inward rectifier, K+ channels (at -35 mV and [Ba++]0 = 5 mM) from admittances determined at -80 mV and at other Ba++ concentrations. The relaxation time of the blockade process decreased with increases in Ba++ concentration. An open-closed channel state model produces the inductive-like kinetic behavior in the complex conductance of inward rectifier, K+ channels and the addition of a blocked channel state accounts for the capacitive-like kinetic behavior of the Ba++ blockade process.  相似文献   

3.
W Zhou  S W Jones 《Biophysical journal》1996,70(3):1326-1334
We have investigated the effects of external pH (pHo) on whole-cell calcium channel currents in bullfrog sympathetic neurons. The peak inward current increased at alkaline pHo and decreased at acidic pHo. We used tail currents to distinguish effects of pHo on channel gating and permeation. There were large shifts in the voltage dependence of channel activation (approximately 40 mV between pHo and 9.0 and pHo 5.6), which could be explained by binding of H+ to surface charge according to Gouy-Chapman theory. To examine the effects of pHo on permeation, we measured tail currents at 0 mV, following steps to + 120 mV to maximally activate the channels. Unlike most previous studies, we found only a approximately 10% reduction in channel conductance from pHo 9.0 to pHo 6.4, despite a approximately 25 mV shift of channel activation. At lower pHo the channel conductance did decrease, which could be described by binding of H+ to a site with pKa = 5.1. In some cells, there was a separate slow decrease in conductance at low pHo, possibly because of changes in internal pH. These results suggest that changes in current at pHo > 6.4 result primarily from a shift in the voltage dependence of channel activation. A H(+)-binding site can explain a rapid decrease in channel conductance at lower pHo. The surface charge affecting gating has little effect on the local ion concentration near the pore, or on the channel conductance.  相似文献   

4.
Inward rectifier (IR) K+ channels of bovine pulmonary artery endothelial cells were studied using the whole-cell, cell-attached, and outside-out patch-clamp configurations. The effects of Rb+ on the voltage dependence and kinetics of IR gating were explored, with [Rb+]o + [K+]o = 160 mM. Partial substitution of Rb+ for K+ resulted in voltage-dependent reduction of inward currents, consistent with Rb+ being a weakly permeant blocker of the IR. In cells studied with a K(+)- free pipette solution, external Rb+ reduced inward IR currents to a similar extent at large negative potentials but block at more positive potentials was enhanced. In outside-out patches, the single-channel i-V relationship was approximately linear in symmetrical K+, but rectified strongly outwardly in high [Rb+]o due to a reduced conductance for inward current. The permeability of Rb+ based on reversal potential, Vrev, was 0.45 that of K+, whereas the Rb+ conductance was much lower, 0.034 that of K+, measured at Vrev-80 mV. The steady state voltage- dependence of IR gating was determined in Rb(+)-containing solutions by applying variable prepulses, followed by a test pulse to a potential at which outward current deactivation was observed. As [Rb+]o was increased, the half-activation potential, V1/2, changed less than Vrev. In high [K+]o solutions V1/2 was Vrev-6 mV, while in high [Rb+]o V1/2 was Vrev + 7 mV. This behavior contrasts with the classical parallel shift of V1/2 with Vrev in K+ solutions. Steady state IR gating was less steeply voltage-dependent in high [Rb+]o than in K+ solutions, with Boltzmann slope factors of 6.4 and 4.4 mV, respectively. Rb+ decreased (slowed) both activation and deactivation rate constants defined at V1/2, and decreased the steepness of the voltage dependence of the activation rate constant by 42%. Deactivation of IR channels in outside-out patches was also slowed by Rb+. In summary, Rb+ can replace K+ in setting the voltage-dependence of IR gating, but in doing so alters the kinetics.  相似文献   

5.
To identify mechanisms for the simultaneous release of anions and cations into the xylem sap in roots, we investigated voltage-dependent ion conductances in the plasmalemma of xylem parenchyma cells. We applied the patch-clamp technique to protoplasts isolated from the xylem parenchyma by differential enzymic digestion of steles of barley roots (Hordeum vulgare L. cv Apex). In the whole-cell configuration, three types of cation-selective rectifiers could be identified: (a) one activated at membrane potentials above about -50 mV; (b) a second type of outward current appeared at membrane potentials above +20 to +40 mV; (c) below a membrane potential of approximately -110 mV, an inward rectifier could be distinguished. In addition, an anion-specific conductance manifested itself in single-channel activity in a voltage range extending from about -100 to +30 mV, with remarkably slow gating. In excised patches, K+ channels activated at hyperpolarization as well as at depolarization. We suggest that salt is released from the xylem parenchyma into the xylem apoplast by simultaneous flow of cations and anions through channels, following electrochemical gradients set up by the ion uptake processes in the cortex and, possibly, the release and reabsorption of ions on their way to the xylem.  相似文献   

6.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium currents (IA and the delayed rectifier), a voltage-dependent outward current was apparent in the steady state responses to command voltage steps more positive than -40 mV (absolute). This current increased with increasing external Ca++. The magnitude of the outward current decreased and an inward current became apparent following EGTA injection. Substitution of external Ba++ for Ca++ also made the inward current more apparent. This inward current, which was almost eliminated after being exposed for approximately 5 min to a solution in which external Ca++ was replaced with Cd++, was maximally activated at approximately 0 mV. Elevation of external potassium allowed the calcium (ICa++) and calcium-dependent K+ (IC) currents to be substantially separated. Command pulses to 0 mV elicited maximal ICa++ but no IC because no K+ currents flowed at their new reversal potential (0 mV) in 300 mM K+. At a holding potential of -60 mV, which was now more negative than the potassium equilibrium potential, EK+, in 300 mM K+, IC appeared as an inward tail current after positive command steps. The voltage dependence of ICa++ was demonstrated with positive steps in 100 mM Ba++, 4-AP, and TEA. Other data indicated that in 10 mM Ca++, IC underwent pronounced and prolonged inactivation whereas ICa++ did not. When the photoreceptor was stimulated with a light step (with the membrane potential held at -60 mV), there was also a prolonged inactivation of IC. In elevated external Ca++, ICa++ also showed similar inactivation. These data suggest that IC may undergo prolonged inactivation due to a direct effect of elevated intracellular Ca++, as was previously shown for a voltage-dependent potassium current, IA. These results are discussed in relation to the production of training-induced changes of membrane currents on retention days of associative learning.  相似文献   

7.
The electrical properties of olfactory receptor neurons, enzymatically dissociated from the channel catfish (Ictalurus punctatus), were studied using the whole-cell patch-clamp technique. Six voltage-dependent ionic currents were isolated. Transient inward currents (0.1-1.7 nA) were observed in response to depolarizing voltage steps from a holding potential of -80 mV in all neurons examined. They activated between -70 and -50 mV and were blocked by addition of 1 microM tetrodotoxin (TTX) to the bath or by replacing Na+ in the bath with N-methyl-D-glucamine and were classified as Na+ currents. Sustained inward currents, observed in most neurons examined when Na+ inward currents were blocked with TTX and outward currents were blocked by replacing K+ in the pipette solution with Cs+ and by addition of 10 mM Ba2+ to the bath, activated between -40 and -30 mV, reached a peak at 0 mV, and were blocked by 5 microM nimodipine. These currents were classified as L-type Ca2+ currents. Large, slowly activating outward currents that were blocked by simultaneous replacement of K+ in the pipette with Cs+ and addition of Ba2+ to the bath were observed in all olfactory neurons examined. The outward K+ currents activated over approximately the same range as the Na+ currents (-60 to -50 mV), but the Na+ currents were larger at the normal resting potential of the neurons (-45 +/- 11 mV, mean +/- SD, n = 52). Four different types of K+ currents could be differentiated: a Ca(2+)-activated K+ current, a transient K+ current, a delayed rectifier K+ current, and an inward rectifier K+ current. Spontaneous action potentials of varying amplitude were sometimes observed in the cell-attached recording configuration. Action potentials were not observed in whole-cell recordings with normal internal solution (K+ = 100 mM) in the pipette, but frequently appeared when K+ was reduced to 85 mM. These observations suggest that the membrane potential and action potential amplitude of catfish olfactory neurons are significantly affected by the activity of single channels due to the high input resistance (6.6 +/- 5.2 G omega, n = 20) and low membrane capacitance (2.1 +/- 1.1 pF, n = 46) of the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Several conflicting models have been used to characterize the gating behavior of the cardiac delayed rectifier. In this study, whole-cell delayed rectifier currents were measured in voltage-clamped guinea pig ventricular myocytes, and a minimal model which reproduced the observed kinetic behavior was identified. First, whole-cell potassium currents between -10 and +70 mV were recorded using external solutions designed to eliminate Na and Ca currents and two components of time-dependent outward current were found. One component was a La3(+)-sensitive current which inactivated and resembled the transient outward current described in other cell types; single-channel observations confirmed the presence of a transient outward current in these guinea pig ventricular cells (gamma = 9.9 pS, [K]o = 4.5 mM). Analysis of envelopes of tail amplitudes demonstrated that this component was absent in solutions containing 30-100 microM La3+. The remaining time-dependent current, IK, activated with a sigmoidal time course that was well-characterized by three time constants. Nonlinear least-squares fits of a four-state Markovian chain model (closed - closed - closed - open) to IK activation were therefore compared to other models previously used to characterize IK gating: n2 and n4 Hodgkin-Huxley models and a Markovian chain model with only two closed states. In each case the four-state model was significantly better (P less than 0.05). The failure of the Hodgkin-Huxley models to adequately describe the macroscopic current indicates that identical and independent gating particles should not be assumed for this K channel. The voltage-dependent terms describing the rate constants for the four-state model were then derived using a global fitting approach for IK data obtained over a wide range of potentials (-80 to +70 mV). The fit was significantly improved by including a term representing the membrane dipole forces (P less than 0.01). The resulting rate constants predicted long single-channel openings (greater than 1 s) at voltages greater than 0 mV. In cell-attached patches, single delayed rectifier channels which had a mean chord conductance of 5.4 pS at +60 mV ([K]o = 4.5 mM) were recorded for brief periods. These channels exhibited behavior predicted by the four-state model: long openings and latency distributions with delayed peaks. These results suggest that the cardiac delayed rectifier undergoes at least two major transitions between closed states before opening upon depolarization.  相似文献   

9.
Inward rectifier (IR) currents were studied in bovine pulmonary artery endothelial cells in the whole-cell configuration of the patch-clamp technique with extracellular K+ concentrations, [K+]o, ranging from 4.5 to 160 mM. Whether the concentration of free Mg2+ in the intracellular solution, [Mg2+]i, was 1.9 mM or nominally 0, the IR exhibited voltage- and time-dependent gating. The IR conductance was activated by hyperpolarization and deactivated by depolarization. Small steady-state outward IR currents were present up to approximately 40 mV more positive than the K+ reversal potential, EK, regardless of [Mg2+]i. Modeled as a first-order C in equilibrium O gating process, both the opening rate, alpha, and the closing rate, beta, were exponentially dependent on voltage, with beta more steeply voltage dependent, changing e-fold for 9 mV compared with 18 mV for an e-fold change in alpha. Over all [K+]o studied, the voltage dependence of alpha and beta shifted along with EK, as is characteristic of IR channels in other cells. The steady-state voltage dependence of the gating process was well described by a Boltzmann function. The half-activation potential was on average approximately 7 mV negative to the observed reversal potential in all [K+]o regardless of [Mg2+]i. The activation curve was somewhat steeper when Mg-free pipette solutions were used (slope factor, 4.3 mV) than when pipettes contained 1.9 mM Mg2+ (5.2 mV). The simplest interpretation of these data is that IR channels in bovine pulmonary artery endothelial cells have an intrinsic gating mechanism that is not due to Mg block.  相似文献   

10.
Voltage-activated H+ currents were studied in rat alveolar epithelial cells using tight-seal whole-cell voltage clamp recording and highly buffered, EGTA-containing solutions. Under these conditions, the tail current reversal potential, Vrev, was close to the Nernst potential, EH, varying 52 mV/U pH over four delta pH units (delta pH = pHo - pHi). This result indicates that H+ channels are extremely selective, PH/PTMA > 10(7), and that both internal and external pH, pHi, and pHo, were well controlled. The H+ current amplitude was practically constant at any fixed delta pH, in spite of up to 100-fold symmetrical changes in H+ concentration. Thus, the rate-limiting step in H+ permeation is pH independent, must be localized to the channel (entry, permeation, or exit), and is not bulk diffusion limitation. The instantaneous current- voltage relationship exhibited distinct outward rectification at symmetrical pH, suggesting asymmetry in the permeation pathway. Sigmoid activation kinetics and biexponential decay of tail currents near threshold potentials indicate that H+ channels pass through at least two closed states before opening. The steady state H+ conductance, gH, as well as activation and deactivation kinetic parameters were all shifted along the voltage axis by approximately 40 mV/U pH by changes in pHi or pHo, with the exception of the fast component of tail currents which was shifted less if at all. The threshold potential at which H+ currents were detectably activated can be described empirically as approximately 20-40(pHo-pHi) mV. If internal and external protons regulate the voltage dependence of gH gating at separate sites, then they must be equally effective. A simpler interpretation is that gating is controlled by the pH gradient, delta pH. We propose a simple general model to account for the observed delta pH dependence. Protonation at an externally accessible site stabilizes the closed channel conformation. Deprotonation of this site permits a conformational change resulting in the appearance of a protonation site, possibly the same one, which is accessible via the internal solution. Protonation of the internal site stabilizes the open conformation of the channel. In summary, within the physiological range of pH, the voltage dependence of H+ channel gating depends on delta pH and not on the absolute pH.  相似文献   

11.
In whole-cell patch clamp recordings from chick dorsal root ganglion neurons, removal of intracellular K+ resulted in the appearance of a large, voltage-dependent inward tail current (Icat). Icat was not Ca2+ dependent and was not blocked by Cd2+, but was blocked by Ba2+. The reversal potential for Icat shifted with the Nernst potential for [Na+]. The channel responsible for Icat had a cation permeability sequence of Na+ >> Li+ >> TMA+ > NMG+ (PX/PNa = 1:0.33:0.1:0) and was impermeable to Cl-. Addition of high intracellular concentrations of K+, Cs+, or Rb+ prevented the occurrence of Icat. Inhibition of Icat by intracellular K+ was voltage dependent, with an IC50 that ranged from 3.0-8.9 mM at membrane potentials between -50 and -110 mV. This voltage- dependent shift in IC50 (e-fold per 52 mV) is consistent with a single cation binding site approximately 50% of the distance into the membrane field. Icat displayed anomolous mole fraction behavior with respect to Na+ and K+; Icat was inhibited by 5 mM extracellular K+ in the presence of 160 mM Na+ and potentiated by equimolar substitution of 80 mM K+ for Na+. The percent inhibition produced by both extracellular and intracellular K+ at 5 mM was identical. Reversal potential measurements revealed that K+ was 65-105 times more permeant than Na+ through the Icat channel. Icat exhibited the same voltage and time dependence of inactivation, the same voltage dependence of activation, and the same macroscopic conductance as the delayed rectifier K+ current in these neurons. We conclude that Icat is a Na+ current that passes through a delayed rectifier K+ channel when intracellular K+ is reduced to below 30 mM. At intracellular K+ concentrations between 1 and 30 mM, PK/PNa remained constant while the conductance at -50 mV varied from 80 to 0% of maximum. These data suggest that the high selectivity of these channels for K+ over Na+ is due to the inability of Na+ to compete with K+ for an intracellular binding site, rather than a barrier that excludes Na+ from entry into the channel or a barrier such as a selectivity filter that prevents Na+ ions from passing through the channel.  相似文献   

12.
Inhibition of inward rectifier K(+) channels under ischemic conditions may contribute to electrophysiological consequences of ischemia such as cardiac arrhythmia. Ischemia causes metabolic inhibition, and the use of metabolic inhibitors is one experimental method of simulating ischemia. The effects of metabolic inhibitors on the activity of inward rectifier K(+) channels K(ir)2.1, K(ir)2.2, and K(ir)2.3 were studied by heterologous expression in Xenopus oocytes and two-electrode voltage clamp. 10 microm carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) inhibited K(ir)2.2 and K(ir)2.3 currents but was without effect on K(ir)2.1 currents. The rate of decline of current in FCCP was faster for K(ir)2.3 than for K(ir)2.2. K(ir)2.3 was inhibited by 3 mm sodium azide (NaN(3)), whereas K(ir)2.1 and K(ir)2.2 were not. K(ir)2.2 was inhibited by 10 mm NaN(3). All three of these inward rectifiers were inhibited by lowering the pH of the solution perfusing inside-out membrane patches. K(ir)2.3 was most sensitive to pH (pK = 6.9), whereas K(ir)2.1 was least sensitive (pK = 5.9). For K(ir)2.2 the pK was 6.2. These results demonstrate the differential sensitivity of these inward rectifiers to metabolic inhibition and internal pH. The electrophysiological response of a particular cell type to ischemia may depend on the relative expression levels of different inward rectifier genes.  相似文献   

13.
A method for measuring muscle fiber capacitance using small test pulses applied with the three-microelectrode voltage clamp is presented. Using this method, three membrane potential-dependent changes in capacitance were observed: (a) Capacitance of polarized fibers increased by 5--15% with depolarization from V less then -100 mV to voltages slightly below the contraction threshold. (b) Capacitance of fibers depolarized to -30 mV by 100 mM Rb solution decreased by roughly 8% with further depolarization to about +50 mV and increased with repolarization, exhibiting a maximum increase of about 10% at -80 to -90 mV. (c) Capacitance of fibers depolarized to -15 mV by 100 mM K solution increased by about 19% with further depolarization to +43 mV and decreased by about 23% with repolarization to -62 mV. Effects a and b are attributed to changes in specific membrane capacitance due to voltage-dependent redistribution of mobile charged groups within surface of T-tubule membranes. Effect c is caused by changes in the T-system space constant lambdaT due to the voltage dependence of K conductance (inward rectification). Analysis of c showed that in 100 mM K solution lambdaT congruent to 30 mum when inward rectification was fully activated by hyperpolarization and that the density of inward rectifier channels is about the same in surface and tubular membranes. Fiber internal resistance was found to be independent of voltage, a necessary condition for the interpretation of the capacitance measurements.  相似文献   

14.
Na/K pump current in aggregates of cultured chick cardiac myocytes   总被引:1,自引:1,他引:0       下载免费PDF全文
Spontaneously beating aggregates of cultured embryonic chick cardiac myocytes, maintained at 37 degrees C, were voltage clamped using a single microelectrode switching clamp to measure the current generated by the Na/K pump (Ip). In resting, steady-state preparations an ouabain-sensitive current of 0.46 +/- 0.03 microA/cm2 (n = 22) was identified. This current was not affected by 1 mM Ba, which was used to reduce inward rectifier current (IK1) and linearize the current-voltage relationship. When K-free solution was used to block Ip, subsequent addition of Ko reactivated the Na/K pump, generating an outward reactivation current that was also ouabain sensitive. The reactivation current magnitude was a saturating function of Ko with a Hill coefficient of 1.7 and K0.5 of 1.9 mM in the presence of 144 mM Nao. The reactivation current was increased in magnitude when Nai was increased by lengthening the period of time that the preparation was exposed to K-free solution prior to reactivation. When Nai was raised by 3 microM monensin, steady-state Ip was increased more than threefold above the resting value to 1.74 +/- 0.09 microA/cm2 (n = 11). From these measurements and other published data we calculate that in a resting myocyte: (a) the steady-state Ip should hyperpolarize the membrane by 6.5 mV, (b) the turnover rate of the Na/K pump is 29 s-1, and (c) the Na influx is 14.3 pmol/cm2.s. We conclude that in cultured embryonic chick cardiac myocytes, the Na/K pump generates a measurable current which, under certain conditions, can be isolated from other membrane currents and has properties similar to those reported for adult cardiac cells.  相似文献   

15.
Modulation of L-type Ca2+ channel current by extracellular pH (pHo) was studied in vascular smooth muscle cells from bovine pial and porcine coronary arteries. Relative to pH 7.4, alkaline pH reversibly increased and acidic pH reduced ICa. The efficacy of pHo in modulating ICa was reduced when the concentration of the charge carrier was elevated ([Ca2+]o or [Ba2+]o varied between 2 and 110 mM). Analysis of whole cell and single Ca2+ channel currents suggested that more acidic pHo values shift the voltage-dependent gating (approximately 15 mV per pH- unit) and reduce the single Ca2+ channel conductance gCa due to screening of negative surface charges. pHo effects on gCa depended on the pipette [Ba2+] ([Ba2+]p), pK*, the pH providing 50% of saturating conductance, increased with [Ba2+]p according to pK* = 2.7-2.log ([Ba2+]p) suggesting that protons and Ba2+ ions complete for a binding site that modulates gCa. The above mechanisms are discussed in respect to their importance for Ca2+ influx and vasotonus.  相似文献   

16.
Membrane properties of isolated mudpuppy taste cells   总被引:13,自引:3,他引:10       下载免费PDF全文
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage-dependent K+ conductance.  相似文献   

17.
The mechanism of inward rectification was examined in cell-attached and inside-out membrane patches from Xenopus oocytes expressing the cloned strong inward rectifier HRK1. Little or no outward current was measured in cell-attached patches. Inward currents reach their maximal value in two steps: an instantaneous phase followed by a time-dependent "activation" phase, requiring at least two exponentials to fit the time- dependent phase. After an activating pulse, the quasi-steady state current-voltage (I-V) relationship could be fit with a single Boltzmann equation (apparent gating charge, Z = 2.0 +/- 0.1, n = 3). Strong rectification and time-dependent activation were initially maintained after patch excision into high [K+] (K-INT) solution containing 1 mM EDTA, but disappeared gradually, until only a partial, slow inactivation of outward current remained. Biochemical characterization (Lopatin, A. N., E. N. Makhina, and C. G. Nichols, 1994. Nature. 372:366-396.) suggests that the active factors are naturally occurring polyamines (putrescine, spermidine, and spermine). Each polyamine causes reversible, steeply voltage-dependent rectification of HRK1 channels. Both the blocking affinity and the voltage sensitivity increased as the charge on the polyamine increased. The sum two Boltzmann functions is required to fit the spermine and spermidine steady state block. Putrescine unblock, like Mg2+ unblock, is almost instantaneous, whereas the spermine and spermidine unblocks are time dependent. Spermine and spermidine unblocks (current activation) can each be fit with single exponential functions. Time constants of unblock change e-fold every 15.0 +/- 0.7 mV (n = 3) and 33.3 +/- 6.4 mV (n = 5) for spermine and spermidine, respectively, matching the voltage sensitivity of the two time constants required to fit the activation phase in cell-attached patches. It is concluded that inward rectification in intact cells can be entirely accounted for by channel block. Putrescine and Mg2+ ions can account for instantaneous rectification; spermine and spermidine provide a slower rectification corresponding to so-called intrinsic gating of inward rectifier K channels. The structure of spermine and spermidine leads us to suggest a specific model in which the pore of the inward rectifier channel is plugged by polyamines that enter deeply into the pore and bind at sites within the membrane field. We propose a model that takes into account the linear structure of the natural polyamines and electrostatic repulsion between two molecules inside the pore. Experimentally observed instantaneous and steady state rectification of HRK1 channels as well as the time-dependent behavior of HRK1 currents are then well fit with the same set of parameters for all tested voltages and concentrations of spermine and spermidine.  相似文献   

18.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

19.
Animal and plant voltage-gated ion channels share a common architecture. They are made up of four subunits and the positive charges on helical S4 segments of the protein in animal K+ channels are the main voltage-sensing elements. The KAT1 channel cloned from Arabidopsis thaliana, despite its structural similarity to animal outward rectifier K+ channels is, however, an inward rectifier. Here we detected KAT1-gating currents due to the existence of an intrinsic voltage sensor in this channel. The measured gating currents evoked in response to hyperpolarizing voltage steps consist of a very fast (tau = 318 +/- 34 micros at -180 mV) and a slower component (4.5 +/- 0.5 ms at -180 mV) representing charge moved when most channels are closed. The observed gating currents precede in time the ionic currents and they are measurable at voltages (less than or equal to -60) at which the channel open probability is negligible ( approximately 10-4). These two observations, together with the fact that there is a delay in the onset of the ionic currents, indicate that gating charge transits between several closed states before the KAT1 channel opens. To gain insight into the molecular mechanisms that give rise to the gating currents and lead to channel opening, we probed external accessibility of S4 domain residues to methanethiosulfonate-ethyltrimethylammonium (MTSET) in both closed and open cysteine-substituted KAT1 channels. The results demonstrate that the putative voltage-sensing charges of S4 move inward when the KAT1 channels open.  相似文献   

20.
A novel, small conductance of Cl- channel was characterized by incorporation into planar bilayers from a plasma membrane preparation of lobster walking leg nerves. Under conditions of symmetrical 100 mM NaCl, 10 mM Tris-HCl, pH 7.4, single Cl- channels exhibit rectifying current-voltage (I-V) behavior with a conductance of 19.2 +/- 0.8 pS at positive voltages and 15.1 +/- 1.6 pS in the voltage range of -40 to 0 mV. The channel exhibits a negligible permeability for Na+ compared with Cl- and displays the following sequence of anion permeability relative to Cl- as measured under near bi-ionic conditions: I- (2.7) greater than NO3- (1.8) greater than Br- (1.5) greater than Cl- (1.0) greater than CH3CO2- (0.18) greater than HCO3- (0.10) greater than gluconate (0.06) greater than F- (0.05). The unitary conductance saturates with increasing Cl- concentration in a Michaelis-Menten fashion with a Km of 100 mM and gamma max = 33 pS at positive voltage. The I-V curve is similar in 10 mM Tris or 10 mM HEPES buffer, but substitution of 100 mM NaCl with 100 mM tetraethylammonium chloride on the cis side results in increased rectification with a 40% reduction in current at negative voltages. The gating of the channel is weakly voltage dependent with an open-state probability of 0.23 at -75 mV and 0.64 at +75 mV. Channel gating is sensitive to cis pH with an increased opening probability observed for a pH change of 7.4 to 11 and nearly complete inhibition for a pH change of 7.4 to 6.0. The lobster Cl- channel is reversibly blocked by the anion transport inhibitors, SITS (4-acetamido, 4'-isothiocyanostilbene-2,2'-disulfonic acid) and NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid). Many of these characteristics are similar to those previously described for small conductance Cl- channels in various vertebrate cells, including epithelia. These functional comparisons suggest that this invertebrate Cl- channel is an evolutionary prototype of a widely distributed class of small conductance anion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号