首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finite element (FE) models of long bones are widely used to analyze implant designs. Experimental validation has been used to examine the accuracy of FE models of cadaveric femurs; however, although convergence tests have been carried out, no FE models of an intact and implanted human cadaveric tibia have been validated using a range of experimental loading conditions. The aim of the current study was to create FE models of a human cadaveric tibia, both intact and implanted with a unicompartmental knee replacement, and to validate the models against results obtained from a comprehensive set of experiments. Seventeen strain rosettes were attached to a human cadaveric tibia. Surface strains and displacements were measured under 17 loading conditions, which consisted of axial, torsional, and bending loads. The tibia was tested both before and after implantation of the knee replacement. FE models were created based on computed tomography (CT) scans of the cadaveric tibia. The models consisted of ten-node tetrahedral elements and used 600 material properties derived from the CT scans. The experiments were simulated on the models and the results compared to experimental results. Experimental strain measurements were highly repeatable and the measured stiffnesses compared well to published results. For the intact tibia under axial loading, the regression line through a plot of strains predicted by the FE model versus experimentally measured strains had a slope of 1.15, an intercept of 5.5 microstrain, and an R(2) value of 0.98. For the implanted tibia, the comparable regression line had a slope of 1.25, an intercept of 12.3 microstrain, and an R(2) value of 0.97. The root mean square errors were 6.0% and 8.8% for the intact and implanted models under axial loads, respectively. The model produced by the current study provides a tool for simulating mechanical test conditions on a human tibia. This has considerable value in reducing the costs of physical testing by pre-selecting the most appropriate test conditions or most favorable prosthetic designs for final mechanical testing. It can also be used to gain insight into the results of physical testing, by allowing the prediction of those variables difficult or impossible to measure directly.  相似文献   

2.
To assess the performance of femoral orthopedic implants, they are often attached to cadaveric femurs, and biomechanical testing is performed. To identify areas of high stress, stress shielding, and to facilitate implant redesign, these tests are often accompanied by finite element (FE) models of the bone/implant system. However, cadaveric bone suffers from wide specimen to specimen variability both in terms of bone geometry and mechanical properties, making it virtually impossible for experimental results to be reproduced. An alternative approach is to utilize synthetic femurs of standardized geometry, having material behavior approximating that of human bone, but with very small specimen to specimen variability. This approach allows for repeatable experimental results and a standard geometry for use in accompanying FE models. While the synthetic bones appear to be of appropriate geometry to simulate bone mechanical behavior, it has not, however, been established what bone quality they most resemble, i.e., osteoporotic or osteopenic versus healthy bone. Furthermore, it is also of interest to determine whether FE models of synthetic bones, with appropriate adjustments in input material properties or geometric size, could be used to simulate the mechanical behavior of a wider range of bone quality and size. To shed light on these questions, the axial and torsional stiffness of cadaveric femurs were compared to those measured on synthetic femurs. A FE model, previously validated by the authors to represent the geometry of a synthetic femur, was then used with a range of input material properties and change in geometric size, to establish whether cadaveric results could be simulated. Axial and torsional stiffnesses and rigidities were measured for 25 human cadaveric femurs (simulating poor bone stock) and three synthetic "third generation composite" femurs (3GCF) (simulating normal healthy bone stock) in the midstance orientation. The measured results were compared, under identical loading conditions, to those predicted by a previously validated three-dimensional finite element model of the 3GCF at a variety of Young's modulus values. A smaller FE model of the 3GCF was also created to examine the effects of a simple change in bone size. The 3GCF was found to be significantly stiffer (2.3 times in torsional loading, 1.7 times in axial loading) than the presently utilized cadaveric samples. Nevertheless, the FE model was able to successfully simulate both the behavior of the 3GCF, and a wide range of cadaveric bone data scatter by an appropriate adjustment of Young's modulus or geometric size. The synthetic femur had a significantly higher stiffness than the cadaveric bone samples. The finite element model provided a good estimate of upper and lower bounds for the axial and torsional stiffness of human femurs because it was effective at reproducing the geometric properties of a femur. Cadaveric bone experiments can be used to calibrate FE models' input material properties so that bones of varying quality can be simulated.  相似文献   

3.
Finite Element (FE) models for the simulation of intact and implanted bone find their main purpose in accurately reproducing the associated mechanical behavior. FE models can be used for preclinical testing of joint replacement implants, where some biomechanical aspects are difficult, if not possible, to simulate and investigate in vitro. To predict mechanical failure or damage, the models should accurately predict stresses and strains. Commercially available synthetic femur models have been extensively used to validate finite element models, but despite the vast literature available on the characteristics of synthetic tibia, numerical and experimental validation of the intact and implant assemblies of tibia are very limited or lacking. In the current study, four FE models of synthetic tibia, intact and reconstructed, were compared against experimental bone strain data, and an overall agreement within 10% between experimental and FE strains was obtained. Finite element and experimental (strain gauge) models of intact and implanted synthetic tibia were validated based on the comparison of cortex bone strains. The study also includes the analysis carried out on standard tibial components with cemented and noncemented stems of the P.F.C Sigma Modular Knee System. The overall agreement within 10% previously established was achieved, indicating that FE models could be successfully validated. The obtained results include a statistical analysis where the root-mean-square-error values were always <10%. FE models can successfully reproduce bone strains under most relevant acting loads upon the condylar surface of the tibia. Moreover, FE models, once properly validated, can be used for preclinical testing of tibial knee replacement, including misalignment of the implants in the proximal tibia after surgery, simulation of long-term failure according to the damage accumulation failure scenario, and other related biomechanical aspects.  相似文献   

4.
In order to predict and evaluate injury mechanism and biomechanical response of the facial impact on head injury in a crash accident. With the combined modern medical imaging technologies, namely computed tomography (CT) and magnetic resonance imaging (MRI), both geometric and finite element (FE) models for human head-neck with detailed cranio-facial structure were developed. The cadaveric head impact tests were conducted to validate the headneck finite element model. The intracranial pressure, skull dynamic response and skull-brain relative displacement of the whole head-neck model were compared with experimental data. Nine typical cases of facial traffic accidents were simulated, with the individual stress wave propagation paths to the intracranial contents through the facial and cranial skeleton being discussed thoroughly. Intracranial pressure, von Mises stress and shear stress distribution were achieved. It is proved that facial structure dissipates a large amount of impact energy to protect the brain in its most natural way. The propagation path and distribution of stress wave in the skull and brain determine the mechanism of brain impact injury, which provides a theoretic basis for the diagnosis, treatment and protection of craniocerebral injury caused by facial impact.  相似文献   

5.
Traumatic brain injury is a leading cause of disability and injury-related death. To enhance our ability to prevent such injuries, brain response can be studied using validated finite element (FE) models. In the current study, a high-resolution, anatomically accurate FE model was developed from the International Consortium for Brain Mapping brain atlas. Due to wide variation in published brain material parameters, optimal brain properties were identified using a technique called Latin hypercube sampling, which optimized material properties against three experimental cadaver tests to achieve ideal biomechanics. Additionally, falx pretension and thickness were varied in a lateral impact variation. The atlas-based brain model (ABM) was subjected to the boundary conditions from three high-rate experimental cadaver tests with different material parameter combinations. Local displacements, determined experimentally using neutral density targets, were compared to displacements predicted by the ABM at the same locations. Error between the observed and predicted displacements was quantified using CORrelation and Analysis (CORA), an objective signal rating method that evaluates the correlation of two curves. An average CORA score was computed for each variation and maximized to identify the optimal combination of parameters. The strongest relationships between CORA and material parameters were observed for the shear parameters. Using properties obtained through the described multiobjective optimization, the ABM was validated in three impact configurations and shows good agreement with experimental data. The final model developed in this study consists of optimized brain material properties and was validated in three cadaver impacts against local brain displacement data.  相似文献   

6.
This study developed and validated finite element (FE) models of swine and human thoraxes and abdomens that had subject-specific anatomies and could accurately and efficiently predict body responses to blunt impacts. Anatomies of the rib cage, torso walls, thoracic, and abdominal organs were reconstructed from X-ray computed tomography (CT) images and extracted into geometries to build FE meshes. The rib cage was modeled as an inhomogeneous beam structure with geometry and bone material parameters determined directly from CT images. Meshes of soft components were generated by mapping structured mesh templates representative of organ topologies onto the geometries. The swine models were developed from and validated by 30 animal tests in which blunt insults were applied to swine subjects and CT images, chest wall motions, lung pressures, and pathological data were acquired. A comparison of the FE calculations of animal responses and experimental measurements showed a good agreement. The errors in calculated response time traces were within 10% for most tests. Calculated peak responses showed strong correlations with the experimental values. The stress concentration inside the ribs, lungs, and livers produced by FE simulations also compared favorably to the injury locations. A human FE model was developed from CT images from the Visible Human project and was scaled to simulate historical frontal and side post mortem human subject (PMHS) impact tests. The calculated chest deformation also showed a good agreement with the measurements. The models developed in this study can be of great value for studying blunt thoracic and abdominal trauma and for designing injury prevention techniques, equipments, and devices.  相似文献   

7.
The reliability of patient-specific finite element (FE) modelling is dependent on the ability to provide repeatable analyses. Differences of inter-operator generated grids can produce variability in strain and stress readings at a desired location, which are magnified at the surface of the model as a result of the partial volume edge effects (PVEEs). In this study, a new approach is introduced based on an in-house developed algorithm which adjusts the location of the model's surface nodes to a consistent predefined threshold Hounsfield unit value. Three cadaveric human femora specimens were CT scanned, and surface models were created after a semi-automatic segmentation by three different experienced operators. A FE analysis was conducted for each model, with and without applying the surface-adjustment algorithm (a total of 18 models), implementing identical boundary conditions. Maximum principal strain and stress and spatial coordinates were probed at six equivalent surface nodes from the six generated models for each of the three specimens at locations commonly utilised for experimental strain guage measurement validation. A Wilcoxon signed-ranks test was conducted to determine inter-operator variability and the impact of the PVEE-adjustment algorithm. The average inter-operator difference in stress values was significantly reduced after applying the adjustment algorithm (before: 3.32 ± 4.35 MPa, after: 1.47 ± 1.77 MPa, p = 0.025). Strain values were found to be less sensitive to inter-operative variability (p = 0.286). In summary, the new approach as presented in this study may provide a means to improve the repeatability of subject-specific FE models of bone obtained from CT data.  相似文献   

8.
A better understanding of the three-dimensional mechanics of the pelvis, at the patient-specific level, may lead to improved treatment modalities. Although finite element (FE) models of the pelvis have been developed, validation by direct comparison with subject-specific strains has not been performed, and previous models used simplifying assumptions regarding geometry and material properties. The objectives of this study were to develop and validate a realistic FE model of the pelvis using subject-specific estimates of bone geometry, location-dependent cortical thickness and trabecular bone elastic modulus, and to assess the sensitivity of FE strain predictions to assumptions regarding cortical bone thickness as well as bone and cartilage material properties. A FE model of a cadaveric pelvis was created using subject-specific computed tomography image data. Acetabular loading was applied to the same pelvis using a prosthetic femoral stem in a fashion that could be easily duplicated in the computational model. Cortical bone strains were monitored with rosette strain gauges in ten locations on the left hemipelvis. FE strain predictions were compared directly with experimental results for validation. Overall, baseline FE predictions were strongly correlated with experimental results (r2=0.824), with a best-fit line that was not statistically different than the line y=x (experimental strains = FE predicted strains). Changes to cortical bone thickness and elastic modulus had the largest effect on cortical bone strains. The FE model was less sensitive to changes in all other parameters. The methods developed and validated in this study will be useful for creating and analyzing patient-specific FE models to better understand the biomechanics of the pelvis.  相似文献   

9.
Finite element (FE) models of long bones constructed from computed-tomography (CT) data are emerging as an invaluable tool in the field of bone biomechanics. However, the performance of such FE models is highly dependent on the accurate capture of geometry and appropriate assignment of material properties. In this study, a combined numerical-experimental study is performed comparing FE-predicted surface strains with strain-gauge measurements. Thirty-six major, cadaveric, long bones (humerus, radius, femur and tibia), which cover a wide range of bone sizes, were tested under three-point bending and torsion. The FE models were constructed from trans-axial volumetric CT scans, and the segmented bone images were corrected for partial-volume effects. The material properties (Young's modulus for cortex, density-modulus relationship for trabecular bone and Poisson's ratio) were calibrated by minimizing the error between experiments and simulations among all bones. The R(2) values of the measured strains versus load under three-point bending and torsion were 0.96-0.99 and 0.61-0.99, respectively, for all bones in our dataset. The errors of the calculated FE strains in comparison to those measured using strain gauges in the mechanical tests ranged from -6% to 7% under bending and from -37% to 19% under torsion. The observation of comparatively low errors and high correlations between the FE-predicted strains and the experimental strains, across the various types of bones and loading conditions (bending and torsion), validates our approach to bone segmentation and our choice of material properties.  相似文献   

10.
Pre-operative planning help the surgeon in taking the proper clinical decision. The ultimate goal of this work is to develop numerical models that allow the surgeon to estimate the primary stability during the pre-operative planning session. The present study was aimed to validate finite-element (FE) models accounting for patient and prosthetic size and position as planned by the surgeon. For this purpose, the FE model of a cadaveric femur was generated starting from the CT scan and the anatomical position of a cementless stem derived by a skilled surgeon using a pre-operative CT-based planning simulation software. In-vitro experimental measurements were used as benchmark problem to validate the bone-implant relative micromotions predicted by the patient-specific FE model. A maximum torque in internal rotation of 11.4 Nm was applied to the proximal part of the hip stem. The error on the maximum predicted micromotion was 12% of the peak micromotion measured experimentally. The average error over the entire range of applied torques was only 7% of peak measurement. Hence, the present study confirms that it is possible to accurately predict the level of primary stability achieved for cementless stems using numerical models that account for patient specificity and surgical variability.  相似文献   

11.
Hip osteoarthritis may be initiated and advanced by abnormal cartilage contact mechanics, and finite element (FE) modeling provides an approach with the potential to allow the study of this process. Previous FE models of the human hip have been limited by single specimen validation and the use of quasi-linear or linear elastic constitutive models of articular cartilage. The effects of the latter assumptions on model predictions are unknown, partially because data for the instantaneous behavior of healthy human hip cartilage are unavailable. The aims of this study were to develop and validate a series of specimen-specific FE models, to characterize the regional instantaneous response of healthy human hip cartilage in compression, and to assess the effects of material nonlinearity, inhomogeneity and specimen-specific material coefficients on FE predictions of cartilage contact stress and contact area. Five cadaveric specimens underwent experimental loading, cartilage material characterization and specimen-specific FE modeling. Cartilage in the FE models was represented by average neo-Hookean, average Veronda Westmann and specimen- and region-specific Veronda Westmann hyperelastic constitutive models. Experimental measurements and FE predictions compared well for all three cartilage representations, which was reflected in average RMS errors in contact stress of less than 25 %. The instantaneous material behavior of healthy human hip cartilage varied spatially, with stiffer acetabular cartilage than femoral cartilage and stiffer cartilage in lateral regions than in medial regions. The Veronda Westmann constitutive model with average material coefficients accurately predicted peak contact stress, average contact stress, contact area and contact patterns. The use of subject- and region-specific material coefficients did not increase the accuracy of FE model predictions. The neo-Hookean constitutive model underpredicted peak contact stress in areas of high stress. The results of this study support the use of average cartilage material coefficients in predictions of cartilage contact stress and contact area in the normal hip. The regional characterization of cartilage material behavior provides the necessary inputs for future computational studies, to investigate other mechanical parameters that may be correlated with OA and cartilage damage in the human hip. In the future, the results of this study can be applied to subject-specific models to better understand how abnormal hip contact stress and contact area contribute to OA.  相似文献   

12.
Every year, thousands of fatalities result from head injuries, the majority of which are sustained in automotive accidents. In this paper, an experimental study of the response of the human head to impact is presented. A rapid prototyped model of a human head was generated based on high-resolution magnetic resonance imaging (MRI) scan data. The physical model was subjected to low velocity impacts using a metallic pendulum and a sensitivity study was performed to explore the influence of various parameters, including mass and velocity of the impactor, on the response. The experimental response characteristics are compared with predictions from an analytical model as well as with numerical predictions from finite element (FE) models generated from the same MRI data set. The results from the experimental tests closely match those predicted by both the analytical and the FE models and thus provide us with substantive corroboration of all three approaches. The remarkable agreement obtained between the measured response characteristics of rapid-prototyped skulls and numerical (FE) models obtained from in vivo MRI data clearly demonstrates the potential use of rapid-prototyping to generate experimental models for head impact studies, and, more generally, for the study of the response of complex bio-structures to loading. In addition, the quantitative and qualitative accuracy of the predictions from the analytical model is clearly demonstrated by the FE and experimental corroboration. In particular, the analytical prediction that, as impact mass drops the impact duration becomes increasingly short, appears to be substantiated, which has important implications for the onset of high pressure and shear strain gradients in the brain with potentially deleterious effects.  相似文献   

13.
Finite element models have been widely employed in an effort to quantify the stress and strain distribution around implanted prostheses and to explore the influence of these distributions on their long-term stability. In order to provide meaningful predictions, such models must contain an appropriate reflection of mechanical properties. Detailed geometrical and density information is now readily available from CT scanning. However, despite the use of phantoms, a method of determining mechanical properties (or elastic constants) from bone density has yet to be made available in a usable form.In this study, a cadaveric bone was CT scanned and its natural frequencies were measured using modal analysis. Using the geometry obtained from the CT scan data, a finite element mesh was created with the distribution of density established by matching the mass of the FE bone model with the mass of the cadaveric bone. The maximum values of the orthotropic elastic constants were then established by matching the predictions from FE modal analyses to the experimental natural frequencies, giving a maximum error of 7.8% over 4 modes of vibration. Finally, the elastic constants of the bone derived from the analyses were compared with those measured using ultrasound techniques. This produced a difference of <1% for both the maximum density and axial Young's Modulus. This study has thereby produced an orthotropic finite element model of a human femur. More importantly, however, is the implication that it is possible to create a valid FE model by simply comparing the FE results with the measured resonant frequency of the CT scanned bone.  相似文献   

14.
In vitro pre-clinical testing of total knee replacement (TKR) devices is a necessary step in the evaluation of new implant designs. Whole joint knee simulators, like the Kansas knee simulator (KKS), provide a controlled and repeatable loading environment for comparative evaluation of component designs or surgical alignment under dynamic conditions. Experimental testing, however, is time and cost prohibitive for design-phase evaluation of tens or hundreds of design variations. Experimentally-verified computational models provide an efficient platform for analysis of multiple components, sizes, and alignment conditions. The purpose of the current study was to develop and verify a computational model of a dynamic, whole joint knee simulator. Experimental internal-external and valgus-varus laxity tests, followed by dynamic deep knee bend and gait simulations in the KKS were performed on three cadaveric specimens. Specimen-specific finite element (FE) models of posterior-stabilized TKR were created from magnetic resonance images and CAD geometry. The laxity data was used to optimize mechanical properties of tibiofemoral soft-tissue structures on a specimen-specific basis. Each specimen was subsequently analyzed in a computational model of the experimental KKS, simulating both dynamic activities. The computational model represented all joints and actuators in the experimental setup, including a proportional-integral-derivative (PID) controller to drive quadriceps actuation. The computational model was verified against six degree-of-freedom patellofemoral (PF) and tibiofemoral (TF) kinematics and actuator loading during both deep knee bend and gait activities, with good agreement in trends and magnitudes between model predictions and experimental kinematics; differences were less than 1.8 mm and 2.2° for PF and TF translations and rotations. The whole joint FE simulator described in this study can be applied to investigate a wide range of clinical and research questions.  相似文献   

15.
This study aimed to develop and validate a finite element (FE) model of a human clavicle which can predict the structural response and bone fractures under both axial compression and anterior–posterior three-point bending loads. Quasi-static non-injurious axial compression and three-point bending tests were first conducted on a male clavicle followed by a dynamic three-point bending test to fracture. Then, two types of FE models of the clavicle were developed using bone material properties which were set to vary with the computed tomography image density of the bone. A volumetric solid FE model comprised solely of hexahedral elements was first developed. A solid-shell FE model was then created which modelled the trabecular bone as hexahedral elements and the cortical bone as quadrilateral shell elements. Finally, simulations were carried out using these models to evaluate the influence of variations in cortical thickness, mesh density, bone material properties and modelling approach on the biomechanical responses of the clavicle, compared with experimental data. The FE results indicate that the inclusion of density-based bone material properties can provide a more accurate reproduction of the force–displacement response and bone fracture timing than a model with uniform bone material properties. Inclusion of a variable cortical thickness distribution also slightly improves the ability of the model to predict the experimental response. The methods developed in this study will be useful for creating subject-specific FE models to better understand the biomechanics and injury mechanism of the clavicle.  相似文献   

16.
The influence of sulci in dynamic finite element simulations of the human head has been investigated. First, a detailed 3D FE model was constructed based on an MRI scan of a human head. A second model with a smoothed brain surface was created based on the same MRI scan as the first FE model. These models were validated against experimental data to confirm their human-like dynamic responses during impact. The validated FE models were subjected to several acceleration impulses and the maximum principle strain and strain rate in the brain were analyzed. The results suggested that the inclusion of sulci should be considered for future FE head models as it alters the strain and strain distribution in an FE model.  相似文献   

17.
Bone strain is considered one of the factors inducing bone tissue response to loading. Nevertheless, where animal studies can provide detailed data on bone response, they only offer limited information on experimental bone strains. Including micro-CT-based finite element (micro FE) models in the analysis represents a potent methodology for quantifying strains in bone. Therefore, the main objective of this study was to develop and validate specimen-specific micro FE models for the assessment of bone strains in the rat tibia compression model. Eight rat limbs were subjected to axial compression loading; strain at the medio-proximal site of the tibiae was measured by means of strain gauges. Specimen-specific micro FE models were created and analyzed. Repeated measurements on each limb indicated that the effect of limb positioning was small (COV?= 6.45 ± 2.27 %). Instead, the difference in the measured strains between the animals was high (54.2%). The computational strains calculated at the strain gauge site highly correlated to the measured strains (R 2?=?0.95). Maximum peak strains calculated at exactly 25% of the tibia length for all specimens were equal to 435.11 ± 77.88 microstrains (COV?=?17.19%). In conclusion, we showed that strain gauge measurements are very sensitive to the exact strain gauge location on the bone; hence, the use of strain gauge data only is not recommended for studies that address at identifying reliable relationships between tissue response and local strains. Instead, specimen-specific micro FE models of rat tibiae provide accurate estimates of tissue-level strains.  相似文献   

18.
Concept and development of an orthotropic FE model of the proximal femur   总被引:2,自引:0,他引:2  
PURPOSE: In contrast to many isotropic finite-element (FE) models of the femur in literature, it was the object of our study to develop an orthotropic FE "model femur" to realistically simulate three-dimensional bone remodelling. METHODS: The three-dimensional geometry of the proximal femur was reconstructed by CT scans of a pair of cadaveric femurs at equal distances of 2mm. These three-dimensional CT models were implemented into an FE simulation tool. Well-known "density-determined" bony material properties (Young's modulus; Poisson's ratio; ultimate strength in pressure, tension and torsion; shear modulus) were assigned to each FE of the same "CT-density-characterized" volumetric group.In order to fix the principal directions of stiffness in FE areas with the same "density characterization", the cadaveric femurs were cut in 2mm slices in frontal (left femur) and sagittal plane (right femur). Each femoral slice was scanned into a computer-based image processing system. On these images, the principal directions of stiffness of cancellous and cortical bone were determined manually using the orientation of the trabecular structures and the Haversian system. Finally, these geometric data were matched with the "CT-density characterized" three-dimensional femur model. In addition, the time and density-dependent adaptive behaviour of bone remodelling was taken into account by implementation of Carter's criterion. RESULTS: In the constructed "model femur", each FE is characterized by the principal directions of the stiffness and the "CT-density-determined" material properties of cortical and cancellous bone. Thus, on the basis of anatomic data a three-dimensional FE simulation reference model of the proximal femur was realized considering orthotropic conditions of bone behaviour. CONCLUSIONS: With the orthotropic "model femur", the fundamental basis has been formed to realize realistic simulations of the dynamical processes of bone remodelling under different loading conditions or operative procedures (osteotomies, total hip replacements, etc).  相似文献   

19.
Mechanical validation of whole bone composite tibia models   总被引:5,自引:0,他引:5  
Composite synthetic models of the human tibia have recently become commercially available as substitutes for cadaveric specimens. Their use is justified by the advantages they offer as a substitute for real tibias. The present investigation concentrated on an extensive experimental validation of the mechanical behaviour of the whole bone composite model, compared to human specimens for different loading conditions. The stiffness of the tibias was measured with a torsional load applied along the long axis, and with a bending load applied both in the latero-medial and in the antero-posterior direction. The bending stiffness of the composite tibias matched well with that of the cadaveric specimens. This was not true for the torsional stiffness. In fact, the composite tibias were much stiffer than the cadaveric specimens, possibly due to the structure of the reinforcement material. The inter-specimen variability for the composite tibias was much lower than that for the cadaveric specimens. Thus, it seems that the composite tibias are suitable to replace cadaveric specimens for certain types of test, whereas they might be unsuitable for others, depending on the loading regimen.  相似文献   

20.
No technology is presently available to provide real-time information on internal deformations and stresses in plantar soft tissues of individuals during evaluation of the gait pattern. Because internal deformations and stresses in the plantar pad are critical factors in foot injuries such as diabetic foot ulceration, this severely limits evaluation of patients. To allow such real-time subject-specific analysis, we developed a hierarchal modeling system which integrates a two-dimensional gross structural model of the foot (high-order model) with local finite element (FE) models of the plantar tissue padding the calcaneus and medial metatarsal heads (low-order models). The high-order whole-foot model provides real-time analytical evaluations of the time-dependent plantar fascia tensile forces during the stance phase. These force evaluations are transferred, together with foot-shoe local reaction forces, also measured in real time (under the calcaneus, medial metatarsals and hallux), to the low-order FE models of the plantar pad, where they serve as boundary conditions for analyses of local deformations and stresses in the plantar pad. After careful verification of our custom-made FE solver and of our foot model system with respect to previous literature and against experimental results from a synthetic foot phantom, we conducted human studies in which plantar tissue loading was evaluated in real time during treadmill gait in healthy individuals (N = 4). We concluded that internal deformations and stresses in the plantar pad during gait cannot be predicted from merely measuring the foot-shoe force reactions. Internal loading of the plantar pad is constituted by a complex interaction between the anatomical structure and mechanical behavior of the foot skeleton and soft tissues, the body characteristics, the gait pattern and footwear. Real-time FE monitoring of internal deformations and stresses in the plantar pad is therefore required to identify elevated deformation/stress exposures toward utilizing it in gait laboratories to protect feet that are susceptible to injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号