首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Site-specific DNA deletion occurs at thousands of sites within the genome during macronuclear development of Tetrahymena thermophila. These deletion elements are usually not detected in macronuclear chromosomes. We have interfered with the normal deletion of two of these elements, the adjacent M and R elements, by loading vegetative macronuclei with these elements prior to sexual conjugation. Transformed cell lines containing the exogenous M or R element, carried on high-copy-number vectors containing genes encoding rRNA within parental (old) macronuclei, consistently failed to excise chromosomal copies of the M or R element during formation of new macronuclei. Little or no interference with the deletions of adjacent elements or of unlinked elements was observed. The micronucleus (germ line)-limited region of each element was sufficient to inhibit specific DNA deletion. This interference with DNA deletion usually is manifested as a cytoplasmic dominant trait: deletion elements present in the old macronucleus of one partner of a mating pair were sufficient to inhibit deletion occurring in the other partner. Remarkably, the failure to excise these elements became a non-Mendelian, inheritable trait in the next generation and did not require the high copy number of exogenously introduced elements. The introduction of exogenous deletion elements into parental macronuclei provides us with an epigenetic means to establish a heritable pattern of DNA rearrangement.  相似文献   

2.
The odd (O) or even (E) mating type in Paramecium tetraurelia is determined during the first cell cycle after new macronuclear development. The present paper demonstrates that mating type E is irreversibly determined at the end of the first cell cycle. Direct evidence comes from transplanting O macronuclear karyoplasm containing O-determining factor into E autogamous cells during a new postzygotic macronuclear development. Transplantation of O macronuclear karyoplasm into E autogamous cells at 7–8 hr after the origin of the macronucleus from a product of the synkaryon produces nearly 100% O mating type among the exautogamous cell lines but almost none 10–11 hr after the origin of the macronucleus (around the end of the first cell cycle). The macronuclear anlagen at the stage at which mating type E seems to be fixed contains about 20 times as much DNA as the vegetative G1 micronucleus. The O-determining factor shifting E cells toward O mating type by transplanting O macronuclear karyoplasm is also produced by the newly developed macronucleus in an effective concentration at 10–11 hr after the sensitive period and produced at full levels by the third cell cycle. The level of O factor in the macronucleus then gradually declines with subsequent repeated rounds of DNA synthesis and is finally lost by the eighth cell cycle.  相似文献   

3.
4.
The macronucleus of Paramecium caudatum controls most cellular activities, including sexual immaturity after conjugation. Exconjugant cells have two macronuclear forms: (1) fragments of the maternal macronucleus, and (2) the new macronuclei that develop from the division products of a fertilization micronucleus. The fragments are distributed into daughter cells without nuclear division and persist for at least eight cell cycles after conjugation. Conjugation between heterokaryons revealed that the fragmented maternal macronuclei continued to express genetic information for up to eight cell cycles. When the newly developed macronucleus was removed artificially within four cell cycles after conjugation, the clones regenerated the macronuclear fragments (macronuclear regeneration; MR) and showed mating reactivity, because they were sexually mature. However, when the new macronucleus was removed during later stages, many MR clones did not show mating reactivity. In some extreme cases, immaturity continued for more than 50 fissions after conjugation, as seen with normal clones that had new macronuclei derived from a fertilization micronucleus. These results indicate that the immaturity determined by the new macronucleus is not annulled by the regenerated maternal macronucleus. Mature macronuclear fragments may be "reprogrammed" in the presence of the new macronucleus, resulting in their expression of "immaturity."  相似文献   

5.
Kazuyuki Mikami 《Chromosoma》1979,73(1):131-142
An exconjugant cell of Paramecium caudatum has two kinds of macronuclei, fragmented prezygotic macronuclei and postzygotic new macronuclei (anlagen). Although the DNA synthesis in the fragmented prezygotic macronucleus continues until the third cell cycle after conjugation, selective suppression of the DNA synthesis in the prezygotic macronucleus takes place at the fourth cell cycle. The inhibition of DNA synthesis in prezygotic fragmented macronuclei is due to the presence of a postzygotic macronucleus (anlage) in the same cytoplasm because the inhibition does not occur when the postzygotic macronucleus (anlage) is removed by micromanipulation during the third or fourth cell cycle. Well-developed postzygotic macronuclei (anlagen) with full ability to divide have the ability to depress the DNA synthesis of prezygotic macronuclear fragments. The suppression of DNA synthesis in prezygotic macronuclear fragments seems to be irreversible. Competition for the limited amount of DNA precursors also plays an important role in the onset of the selective suppression of the DNA synthesis.  相似文献   

6.
7.
J. G. Ward  M. C. Davis  C. D. Allis    G. Herrick 《Genetics》1995,140(3):989-1005
Conjugation fails postzygotically after mating of Tetrahymena cells that have wild-type parental macronuclei but harbor noncomplementing nullisomic parental germline deficiencies. Failures begin shortly after formation of the new macronuclear precursor (anlage) and completion of the first step in elimination of the parental macronucleus (pycnosis). Conjugants fail to complete pair separation, to eliminate one new micronucleus, and to amplify anlage DNA, and they eventually die. Some deficiencies block resorption of the pycnotic parental macronucleus, but we find no evidence for its regeneration. Some deficiencies cause aberrant anlage DNA loss. Those that do not cause DNA loss are epistatic to those that do, indicating that normal anlage development requires the dependent function of at least two types of genes. The possibility that these genes are involved in developmentally regulated anlage DNA rearrangements is discussed. Each observed conjugation defect indicates insufficiency of the parental macronucleus to direct postzygotic development and can be explained by the deficiency of essential conjugation genes that are expressed from the anlage. The failure of nullisomic conjugants to complete pair separation indicates a requirement for gene products, expressed from the early anlage or its precursors, soon after anlage first differentiate.  相似文献   

8.
9.
Paramecium internal eliminated sequences (IESs) are short AT-rich DNA elements that are precisely eliminated from the germ line genome during development of the somatic macronucleus. They are flanked by one 5'-TA-3' dinucleotide on each side, a single copy of which remains at the donor site after excision. The timing of their excision was examined in synchronized conjugating cells by quantitative PCR. Significant amplification of the germ line genome was observed prior to IES excision, which starts 12 to 14 h after initiation of conjugation and extends over a 2- to 4-h period. Following excision, two IESs were shown to form extrachromosomal circles that can be readily detected on Southern blots of genomic DNA from cells undergoing macronuclear development. On these circular molecules, covalently joined IES ends are separated by one copy of the flanking 5'-TA-3' repeat. The similar structures of the junctions formed on the excised and donor molecules point to a central role for this dinucleotide in IES excision.  相似文献   

10.
E. Meyer  A. M. Keller 《Genetics》1996,143(1):191-202
In Paramecium tetraurelia, mating type is determined during the differentiation of the somatic macronucleus from a zygotic nucleus genetically competent for both types, O and E. Determination of the developing macronucleus is controlled by the parental macronucleus through an unknown mechanism resulting in the maternal inheritance of mating types. The pleiotropic mutation mtF(E) affects macronuclear differentiation. Determination for E is constitutive in mutant homozygotes; a number of unrelated mutant characters are also acquired during development. We have examined the possibility that the mutation causes a defect in the developmental rearrangements of the germ-line genome. We show that the excision of an IES (internal eliminated sequence) interrupting the coding sequence of a surface antigen gene is impaired in the mutant, resulting in an alternative macronuclear version of the gene. Once established, the excision defect is indefinitely transmitted across sexual generations in the cytoplasmic lineage, even in a wild-type genetic context. Thus, the processes of mating-type determination and excision of this IES, in addition to their common sensitivity to the mtF(E) mutation, show a similar maternal inheritance of developmental alternatives in wild-type cells, suggesting a molecular model for mating-type determination.  相似文献   

11.
Localization of genes for ribosomal RNA in the nuclei of Oxytricha fallax   总被引:1,自引:0,他引:1  
The location of ribosomal RNA (rRNA) genes in the nuclei of the ciliated protozoan, Oxytricha fallax, was analysed by in situ hybridization. The micronuclear genome of O. fallax has typical chromosomal DNA organization. Macronuclei, although derived from micronuclei, lack chromosomes and instead contain short pieces of DNA ranging from 500 to 20 000 base pairs in length. In situ hybridization was carried out to determine if specific DNA sequences are limited to certain locations within the macronucleus, or if sequences are randomly arranged. Cells were fixed, squashed and then hybridized with 3H-labelled RNA synthesized in vitro using cloned O. fallax rDNA as a template. After autoradiography, silver grains were found to be distributed uniformly over the entire macronucleus without any detectable localization to specific regions. The uniformity of hybridization indicates that rDNA molecules are randomly dispersed throughout the macronucleus and suggests that the macronuclear genetic apparatus lacks any substantial multimolecular organization. S phase macronuclei also showed a uniform distribution of rDNA molecules, irrespective of the position of the replication band at which DNA synthesis takes place. The micronuclei, in contrast, did not show any hybridization, even in cells in which macronuclei were heavily labelled. Macronuclear anlagen, in which the micronuclear chromosomes are polytenized, also do not hybridize. This absence of hybridization indicates a much lower concentration of rDNA in the micronucleus than in the macronucleus. The change in rDNA concentration of rRNA genes presumably occurs during the complicated process of development of a macronucleus from a micronucleus.  相似文献   

12.
The DNA in a micronucleus undergoes remarkable rearrangements when it develops into a macronucleus after cell mating in the hypotrichous ciliate. A Rab gene was isolated from the macronuclear plasmid mini-library of Euplotes octocarinatus. A micronuclear version of the Rab gene was amplified by polymerase chain reaction (PCR). The macronuclear DNA molecule carrying the Rab gene is 767 bp long and shows characteristics typical of macronuclear chromosomes of hypotrichous ciliates. Three of the five cysteines are encoded by the opal codon UGA. The deduced protein is a 207-amino acid (aa) with a molecular mass of 23 kDa. The protein shares 36% identity with Rab 1 protein of Plasmodium and yeast. Analysis of the sequences indicated that the micronuclear version of the Rab gene contains two internal eliminated sequences, internal eliminated sequence (IES)1 and IES2. IES1 is flanked by a pair of hepta-nucleotide 5'-AAATTTT-3' direct repeats, and IES2 is flanked by 5'-TA-3' direct repeats.  相似文献   

13.
Genomic exclusion is an aberrant form of conjugation of Tetrahymena thermophila in which the genome of a defective conjugant is excluded from the genotype of the exconjugant progeny. This paper is concerned with the cytogenetic and nucleocytoplasmic events of genomic exclusion in senescent clones A*III and C*. In crosses between A*III or C* and strain B, functional, haploid gametic nuclei are formed only in the strain B cell. In some instances one of the gametic nuclei divides prior to transfer of the migratory gametic nucleus, and both products then undergo DNA synthesis. Two alternative cytogenetic pathways are followed after transfer of the migratory nucleus. In the first, the conjugants separate without further micronuclear divisions. This pathway was most common in A*III genomic exclusion. In exconjugants the former gametic nuclei undergo both DNA synthesis and (presumably) intranuclear separation of centromeres to restore micronuclear diploidy. The old macronucleus of each exconjugant is retained without autolysis. This class of exconjugant survives and contributes genes to future sexual progeny. In the second cytogenetic pathway the gametic nuclei divide and macronuclear anlagen are formed, as in normal conjugation. This pathway was more common in C* genomic exclusion. The initial DNA content of the anlagen ranges from haploid to diploid. Following two to three rounds of DNA synthesis, further macronuclear development ceases and the anlagen appear to undergo autolysis. The old macronucleus condenses and also undergoes autolysis, as in normal conjugation. Except for rare C* exconjugants, in which macronuclear development is completed, anlagen-bearing genomic exclusion exconjugants die. Death may be caused by aneuploidy, errors in the timing or receptivity to signals for autolysis, or the inability of anlagen-bearing exconjugants to feed. Anlagenbearing conjugants are frequently abnormal with respect to the number of anlagen and micronuclei. Most of the anomalies can be explained by postulating errors in the timing of both developmental signals and nuclear divisions. Rare conjugants in which gametic nuclei divide but do not give rise to macronuclear anlagen are also observed. In these instances, the old macronuclei condense and undergo autolysis. Destruction of the old macronucleus therefore is independent of the presence of macronuclear anlagen and requires cell pairing in order to be initiated.  相似文献   

14.
The ciliated protozoa exhibit nuclear dimorphism. The genome of the somatic macronucleus arises from the germ-line genome of the micronucleus following conjugation. We have studied the fates of highly repetitious sequences in this process. Two cloned, tandemly repeated sequences from the micronucleus of Oxytricha fallax were used as probes in hybridizations to micronuclear and macronuclear DNA. The results of these experiments show: (1) the cloned repeats are members of two apparently unrelated repetitious sequence families, which each appear to comprise a few percent of the micronuclear genome, and (2) the amount of either family in the macronuclei from which our DNA was prepared is about 1/15 that found in an equal number of diploid micronuclei. Most, if not all, of the apparent macronuclear copies of these repeats can be accounted for by micronuclear contamination, which strongly suggests that these sequences are eliminated from the macronuclei and have no vegetiative function.  相似文献   

15.
In conjugating pairs of Paramecium caudatum, the micronuclear events occur synchronously in both members of the pair. To find out whether micronuclear behavior is controlled by the somatic macronucleus or by the germinal micronucleus, and whether or not synchronization of micronuclear behavior is due to intercellular communication between conjugating cells, the behavior of the micronucleus was examined after removal of the macronuclei from either or both cells of a mating pair at various stages of conjugation. When macronuclei were removed from both cells of a pair, micronuclear development was arrested 1 to 1.5 hr after macronuclear removal. When the macronucleus of a micronucleate cell mating with an amicronucleate cell was removed later than 3 to 3.5 hr of conjugation, that is, an early stage of meiotic prophase of the micronucleus, micronuclear events occurred normally in the operated cell. These results suggest that most micronuclear events are under the control of the macronucleus and that the gene products provided by the macronucleus are transferable between mating cells. One such product is required for induction of micronuclear division and is provided just before metaphase of the first meiotic division of the micronucleus. This factor is effective at a lower concentration in the cytoplasm and/or is more transferable between mating cells than the factors required for other stages. This factor, which seems to be present at least until the stage of micronuclear disintegration, is able to induce repeated micronuclear division as long as it remains active. The factor can act on a micronucleus which has not passed through a meiotic prophase. Moreover, the results suggest the existence of a second factor which is provided by the macronucleus after the first meiotic division that inhibits further micronuclear division.  相似文献   

16.
侯连生  庞延斌 《动物学报》1991,37(3):325-331
冠突伪尾柱虫(Pseudvurostyla cristata) 含约70枚大核。我们用显微手术横切G1期细胞,得前后两块相等断片;分别培养。60小时后,断片再生完成。在再生过程中,随细胞体积增大,大核数目也增加。大核的数目和细胞体积存在着一定的均衡关系。在细胞无性分裂过程中,许多大核改组后,融合成一个融合大核。这个融合大核具两个仔虫的大核数目和DNA量。我们用显微手术得到含融合大核的后断片。在后断片再生后恢复的虫体内,我们发现本应分配到两个仔虫中去的大核数目,被限制在一个虫体的大核数目上。这说明了细胞质可以影响和调节大核的数目。并还证明了这种虫体大核DNA量较正常虫的大核DNA量约多一倍。其中大部分虫体分裂时,大核不经改组就开始融合和分裂;从而使DNA量回复正常。同讨还发现小部分虫体通过排出大核多余核物质方式来调节大核DNA量。这些现象说明了细胞核质之间存在着一种调节相对平衡和相互协调的机制。  相似文献   

17.
Ciliates are unicellular eukaryotic organisms containing two types of nuclei: macronuclei and micronuclei. After the sexual pathway takes place, a new macronucleus is formed from a zygote nucleus, whereas the old macronucleus is degraded and resorbed. In the course of macronuclear differentiation, polytene chromosomes are synthesized that become degraded again after some hours. Most of the DNA is eliminated, and the remaining DNA is fragmented into small DNA molecules that are amplified to a high copy number in the new macronucleus. The protein Pdd1p (programmed DNA degradation protein 1) from Tetrahymena has been shown to be present in macronuclear anlagen in the DNA degradation stage and also in the old macronuclei, which are resorbed during the formation of the new macronucleus. In this study the identification and localization of a Pdd1p homologous protein in Stylonychia (Spdd1p) is described. Spdd1p is localized in the precursor nuclei in the DNA elimination stage and in the old macronuclei during their degradation, but also in macronuclei and micronuclei of starved cells. In all of these nuclei, apoptotic-like DNA breakdown was detected. These data suggest that Spdd1p is a general factor involved in programmed DNA degradation in Stylonychia.  相似文献   

18.
During conjugation, the micronucleus of Tetrahymena thermophila undergoes five consecutive nuclear divisions: meiosis, third prezygotic division (pregamic mitosis) and two postzygotic mitoses of the synkaryon. The four products of the synkaryon differentiate into macronuclear anlagen and new micronuclei and the old macronucleus is resorbed. The protein synthesis inhibitor cycloheximide, applied during conjugation, induced several developmental blocks. Pairs shifted to the drug during early meiotic prophase (stages I–III) were arrested at prophase. Cycloheximide applied to cells at pachytene (stages IV-VI) to metaphase arrested the conjugants at the stage of modified prometaphase/metaphase with overcondensed, swollen bivalents. In contrast to other systems, in the presence of cycloheximide, separation of chromatids, decondensation of chromosomes and exit from metaphase I were inhibited in both diploid and haploid cells. Pairs shifted to the drug after metaphase I were arrested at postmeiotic interphase after completing one nuclear cycle. The same rule applied to the subsequent cycle; then cells were arrested at the stage of pronuclei, and those pairs with functional pronuclei and synkarya were arrested at the stage of two products of the first postzygotic division (pronuclei were not arrested in nuclear transfer and karyogamy). Only pairs with two products of the first postzygotic division were arrested at the same stage after the cycloheximide treatment. Pairs shifted to cycloheximide during the second postzygotic division were arrested in development of macronuclear anlagen and resorption of old macronuclei. The postmeiotic conjugants pulse-treated with cycloheximide (2 h) yielded heterokaryons retaining parental macronuclei (i.e. they exhibited macronuclear retention).  相似文献   

19.
20.
We obtained a monoclonal antibody (MA-1) specific for macronuclei of the ciliate Paramecium caudatum and P. dubosqui. Immunoblotting showed that the antigen was a polypeptide of 50 kilodalton (kDa). During the process of nuclear differentiation in P. caudatum, the MA-1 antigens appeared in the macronuclear anlagen immediately after four out of eight post zygotic nuclei differentiated morphologically into the macronuclear anlagen. Afterwards, the antigens could be detected in the macronucleus through the cell cycle, and disappeared when the macronucleus began to degenerate in exconjugant cells. These results suggest that the antigens may play a role in the differentiation and function of the macronucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号