首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In the present study we investigated the effects of infantile/prepubertal chronic oestrogen treatment, chemical sympathectomy with guanethidine and combined sympathectomy and chronic oestrogen treatment on developing sensory nerves of the rat uterus. Changes in sensory innervation were assessed quantitatively on uterine cryostat tissue sections stained for calcitonin gene-related peptide (CGRP). Uterine levels of NGF protein, using immunohistochemistry and ELISA, and mRNA, using Northern blots and in situ hybridization, were also measured. Finally, levels of TrkA NGF receptor in sensory neurons of T13 and L1 dorsal root ganglia (DRG), which supply the uterus, were assessed using densitometric immunohistochemistry. These studies showed that: (1) chronic oestrogen treatment led to an 83% reduction in the intercept density of CGRP-immunoreactive nerves; (2) sympathectomy had no effect on the density of uterine sensory nerves or on the pattern of oestrogen-induced changes; (3) NGF mRNA and protein increased following sympathectomy or chronic oestrogen treatment; and (4) oestrogen produced increased intensity of labelling (28%) for TrkA receptors in small-diameter sensory neurons, but decreased labelling (13%) in medium-sized neurons, which represent the large majority of the DRG neurons supplying the upper part of the uterine horn. Contrary to expectations, increased levels of NGF after sympathectomy and oestrogen treatment did not lead to increased sensory innervation of the uterus. The possibility that alterations in neuronal levels of TrkA contribute to the lack of response of uterine sensory nerves to the oestrogen-induced increase in NGF levels is discussed.This work was supported by The Wellcome Trust, UK (CRIG Grant 058122/Z/99/Z/JC/KO), and PEDECIBA, Universidad de la República, Montevideo, Uruguay  相似文献   

2.
The innervation of the uterus is remarkable in that it exhibits physiological changes in response to altered levels in the circulating levels of sex hormones. Previous studies by our group showed that chronic administration of estrogen to rats during the infantile/prepubertal period provoked, at 28 days of age, an almost complete loss of norepinephrine-labeled sympathetic nerves, similar to that observed in late pregnancy. It is not known, however, whether early exposure to estrogen affects uterine cholinergic nerves. Similarly, it is not known to what extent development and estrogen-induced responses in the uterine cholinergic innervation are affected by the absence of sympathetic nerves. To address this question, in this study we analyzed the effects of infantile/prepubertal chronic estrogen treatment, chronic chemical sympathectomy with guanethidine, and combined sympathectomy and chronic estrogen treatment on developing cholinergic nerves of the rat uterus. Cholinergic nerves were visualized using a combination of acetylcholinesterase histochemistry and the immunohistochemical demonstration of the vesicular acetylcholine transporter (VAChT). After chronic estrogen treatment, a well-developed plexus of cholinergic nerves was observed in the uterus. Quantitative studies showed that chronic exposure to estrogen induced contrasting responses in uterine cholinergic nerves, increasing the density of large and medium-sized nerve bundles and reducing the intercept density of fine fibers providing myometrial and perivascular innervation. Estrogen-induced changes in the uterine cholinergic innervation did not appear to result from the absence/impairment of sympathetic nerves, because sympathectomy did not mimic the effects produced by estrogen. Estrogen-induced responses in parasympathetic nerves are discussed, considering the direct effects of estrogen on neurons and on changes in neuron-target interactions.  相似文献   

3.
Uterine innervation undergoes substantial reorganization associated with changes in reproductive status. Nerves innervating the uterus are decreased in pregnancy and puberty, and even the normal rodent estrous cycle is characterized by fluctuations in numbers of myometrial nerve fibers. During the follicular (proestrus/estrous) phase of the estrous cycle, intact nerves are rapidly depleted and then return over the next 2-3 days in the luteal (metestrus/diestrus) phase. We hypothesize that uterine nerve depletion is initiated by increased circulating estrogen in the follicular phase. However, studies have not shown whether estrogen can reduce uterine innervation and, if so, whether the time course is compatible with the rapid changes observed in the estrous cycle. These questions were addressed in the present study. Mature ovariectomized virgin rats received 17-beta-estradiol as a single injection (10 microg/kg s.c.) or chronically from timed-release pellets (0.1 microg/pellet for 3 weeks sustained release). Total (protein gene-product 9.5-immunoreactive) and sympathetic (dopamine beta-hydroxylase-immunoreactive) uterine innervation was assessed quantitatively. Both total and sympathetic innervation was abundant in uterine longitudinal smooth muscle of ovariectomized rats. However, following acute or chronic estrogen administration, total and sympathetic fiber numbers were markedly decreased. This was not due to altered uterine size, as reductions persisted after correcting for size differences. Our results indicate that sympathetic nerves are lost from uterine smooth muscle after estradiol treatment in a manner similar to that seen in the intact animal during estrus and pregnancy. This suggests that the rise in estradiol prior to estrus is sufficient to deplete uterine sympathetic innervation.  相似文献   

4.
Estrogen and glucocorticoids are known to evoke opposing effects on the uterus. We analyzed the effects of dexamethasone (DEX) on uterine sympathetic denervation elicited by short- and long-term exposure to estrogen of intact prepubertal rats. We also studied the effects of DEX on the physiological degeneration of uterine sympathetic nerves at term pregnancy. Changes in innervation were assessed quantitatively by using computer-assisted methods on uterine cryostat tissue sections stained for tyrosine hydroxylase. At 24 h following treatment of prepubertal rats (25 days of age) with 1 μg or 2.5 μg estrogen, marked increases in uterine size and reductions in the percentage nerve area were observed. Co-administration of DEX (4 mg/kg) attenuated both these short-term estrogen-induced effects. Treatment of 19-day-old rats with a single dose of 25 μg estrogen provoked, at 26 days of age, a 54% reduction in the total nerve area. This reduction was abolished by the co-administration of nine doses of DEX (0.5 mg/kg) at 18–26 days of age. Treatment of rats with the same regime of DEX alone increased the total nerve area by 46% of the control values. Studies of control pregnant rats revealed the unexpected presence of intrauterine nerve fibers at term. Treatment of pregnant rats with six doses of DEX (4 mg/kg) at 16–21 days of age had no effects on the density of uterine sympathetic nerves. These results suggest that DEX has growth-promoting effects on immature uterine sympathetic nerves and may antagonize the degenerative effects elicited by long-term exposure to estrogen. This work was partially supported by PEDECIBA, Universidad de la República, Montevideo, Uruguay. The Third World Academy of Sciences (TWAS) supported the visit of A.I. Frías to the Laboratorio de Biología Celular (IIBCE, Montevideo, Uruguay).  相似文献   

5.
Summary The distribution and density of the noradrenergic and acetylcholinesterase-positive nerve fibres were histochemically studied in different uterine regions of prepubertal and cycling rats in dioestrus and oestrus. Besides the rich and double innervation of blood vessels, both types of nerve fibre were found in the myometrium and cervical musculature. The non-vascular noradrenergic network looked denser at the tubal end of the horns and at the cervix, whereas the acetylcholinesterase-positive innervation was poor at the tubal end, increasing toward the cervix. Contrasting with the middle third of the uterine horn, at the tubal end, the myometrial longitudinal layer was much more innervated than the circular one, especially by the noradrenergic nerve fibres. The prepubertal rats presented an adult pattern of uterine autonomic innervation. In the cycling animals, this innervation was nearly the same during oestrus and dioestrus regarding both the density of nerve fibres and intensity of the histochemical reactions.  相似文献   

6.
Most mammalian sympathetic neurons are noradrenergic, and their dependence upon nerve growth factor (NGF) for survival during development is well established. A minor population of sympathetic neurons, including those that innervate sweat glands, is cholinergic. To determine whether cholinergic sympathetic neurons, like their noradrenergic counterparts, require NGF during development, neonatal rats were treated with NGF-antiserum and 3 weeks later their sweat glands were examined for the presence of innervation. Acetylcholinesterase (AChE) staining and vasoactive intestinal polypeptide-like immunoreactivity (VIP-IR) which mark the mature sweat gland innervation were absent from the sweat glands of the anti-NGF treated animals. Further, when the glands were examined with the electron microscope, no axons or nerve terminals were evident. These observations indicate that the elaboration of the sweat gland plexus is NGF-dependent and suggest that at least one population of cholinergic sympathetic neurons in the rat requires NGF for survival. Our findings are consistent with the idea that during development NGF is a required trophic factor not only for noradrenergic sympathetic but also for cholinergic sympathetic neurons.  相似文献   

7.
Summary The extrinsic innervation of the guinea pig uterus was studied by immunohistochemical, ultrastructural and enzyme histochemical methods.The extrinsic innervation was organized in two major ways. One consisted of nerve trunks and non-varicose nerve fibres running in the suspensory ligament, and the other of a plexus of varicose nerve fibres surrounding vessels, and non-vessel-related non-varicose nerve fibres in the mesouterus. The use of different neuronal and Schwann cell markers showed that the extrinsic innervation was predominantly adrenergic and contained only few peptidergic nerves. Acetylcholinesterase-positive (cholinergic) nerves were only found around the uterine artery.In late pregnancy, the extrinsic nerves of the mesouterus adjacent to foetus-containing uterine horns underwent pronounced degenerative changes comprising both Schwann cell and axonal structures. In comparison, no changes were found in extrinsic nerves of mesouteri adjacent to non-foetus-bearing uterine horns or in extrinsic nerves in the suspensory ligaments. Further, chemical sympathectomy produced axonal degeneration but no changes in the Schwann cells.In conclusion, the pregnancy-induced nerve degeneration is of a very special type different from that following chemical sympathectomy and represents a local phenomenon related to the conceptus. Hypothetically, this could be of importance for counteracting disturbances in placental blood flow.  相似文献   

8.
Summary The sympathetic innervation of the urinary tract of young adult (4 months) and aged (24+ months) rats has been examined by glyoxylic acid-induced fluorescence for the detection of noradrenaline and by immunofluorescence using antisera against tyrosine hydroxylase (TH) and neuropeptide Y (NPY). Immunostaining for calcitonin gene-related peptide (CGRP), known to be present in pelvic sensory nerves, was also performed. Semi-quantitative estimations of nerve densities were made of noradrenergic and peptidergic fibres innervating the smooth musculature of the ureter, bladder and urethra, and of the urinary tract vasculature. In the aged rats the overall patterns of innervation remained unchanged. However, with the exception of the vesical vasculature, the density of noradrenergic innervation decreased as did the intensity of histofluorescence. A similar pattern of results was observed by TH and NPY immunofluorescence. The results present evidence for a diminution in the sympathetic control of the urinary tract in aged rats. The pattern and density of CGRP-immunoreactive nerves was unchanged in the aged animals suggesting that pelvic visceral sensory innervation is more resistant to the effects of advancing age.  相似文献   

9.
Neonatal Sprague-Dawley rats were injected with the antioestrogens nafoxidine or CI-628 on Day 3 of life alone or in combination with oestradiol benzoate 24 h later. Oestrogen-stimulated glucose oxidation and cytoplasmic oestrogen binding sites of the uteri were assessed at 21-23 days of age. Neither antioestrogen antagonized the prepubertal uterine impairments produced by neonatal oestradiol treatment. Both antioestrogens administered alone produced deficits which mimicked those produced by neonatal oestrogenization. However, the agonist property of each antioestrogen was differentially expressed: treatment with CI-628 reduced prepubertal oestrogen binding sites in the uterus, but nafoxidine exposure decreased the sensitivity of the uterus to oestradiol stimulation of glucose oxidation. It is postulated that CI-628 directly affects the uterus to reduce production of oestrogen receptor protein, while nafoxidine affects the development of the uterine phosphogluconate oxidative pathway indirectly through impaired ovarian function. However, antioestrogens blocked the neonatal oestradiol-induced reduction in the oestrogen-stimulated production of actomyosin in the adult uterus. Therefore, while both CI-628 and nafoxidine are clearly agonists in the neonatal rat, each appears to exhibit cell-specific agonist and antagonist properties.  相似文献   

10.
The innervation of the bovine tubouterine junction was studied in sexually mature heifers using antisera against various neuronal markers and a modified acetylcholinesterase method. The vast majority of the nerve fibres in the bovine tubouterine junction belongs to the sympathetic nervous system; peptidergic and cholinergic fibers are restricted to characteristic locations. The endosalpinx in the adovarian portion of the terminal tubal segment is poorly innervated. The mucosa of the aduterine portion and of the tubouterine transitinal region proper receives a strikingly dense innervation, which is observed mainly in combination with a strong vascularisation of specialised mucosal structures. In the endometrium, perivascular nerves accompany the ascending spiral arteries but sporadic contacts between nerve fibres and uterine glands are also observed. From the muscular coat the inner longitudinal layer of the terminal tubal segment is more richly supplied by nerve fibres than the intermediate circular and outer longitudinal layers of the tubouterine junction. No changes in the innervation pattern were seen during the different stages of the sexual cycle.  相似文献   

11.
Testosterone propionate (50 mg/kg), administered together with oestradiol, inhibited the oestrogen-induced uterine eosinophilia, deep endometrial oedema and the increase in uterine wet weight, 6 h after treatment. The same dose of the androgen decreased the number of eosinophils in the blood and increased their degranulation, explaining the effect of testosterone in the uterus. The high doses of the androgen used were in the range of the doses reported by others to block selectively the oestrogen-induced increase in uterine peroxidase content but not other responses to oestrogen or the cytosolic oestrogen receptor translocation to the nucleus. The dissociation by high doses of testosterone of the oestrogen-induced uterine eosinophilia, wet weight increase and oedema from other responses to oestrogen in the absence of any measurable effect of testosterone upon cytosolic-nuclear oestrogen receptors supports the idea that uterine eosinophilia and oedema are oestrogenic responses regulated by mechanisms different from those of the genomic responses, and is in agreement with the hypothesis of the mediation of uterine oedema by eosinophils.  相似文献   

12.
Previous anatomical studies demonstrated vagal innervation to the ovary and distal colon and suggested the vagus nerve has uterine inputs. Recent behavioral and physiological evidence indicated that the vagus nerves conduct sensory information from the uterus to the brainstem. The present study was undertaken to identify vagal sensory connections to the uterus. Retrograde tracers, Fluorogold and pseudorabies virus were injected into the uterus and cervix. DiI, an anterograde tracer, was injected into the nodose ganglia. Neurectomies involving the pelvic, hypogastric, ovarian and abdominal vagus nerves were performed, and then uterine whole-mounts examined for sensory nerves containing calcitonin gene-related peptide. Nodose ganglia and caudal brainstem sections were examined for the presence of estrogen receptor-containing neurons in ”vagal locales." Labeling of uterine-related neurons in the nodose ganglia (Fluorogold and pseudorabies virus) and in the brainstem nuclei (pseudorabies virus) was obtained. DiI-labeled nerve fibers occurred near uterine horn and uterine cervical blood vessels, in the myometrium, and in paracervical ganglia. Rats with vagal, pelvic, hypogastric and ovarian neurectomies exhibited a marked decrease in calcitonin gene-related peptide-immunoreactive nerves in the uterus relative to rats with pelvic, hypogastric, and ovarian neurectomies with intact vagus nerves. Neurons in the nodose ganglia and nucleus tractus solitarius were immunoreactive for estrogen receptors. These results demonstrated: (1) the vagus nerves serve as connections between the uterus and CNS, (2) the nodose ganglia contain uterine-related vagal afferent neuron cell bodies, and (3) neurons in vagal locales contain estrogen receptors.  相似文献   

13.
The proximal urethra plays a central role in maintaining urinary continence, and sympathetic excitatory innervation to urethral smooth muscle is a major factor in promoting tonic contraction of this organ. Elevated estrogen levels are often associated with incontinence in humans. Because elevated estrogen levels result in degeneration of sympathetic nerves from the closely related uterine smooth muscle, we examined the effects of chronic estrogen administration on proximal urethral innervation. Ovariectomized virgin female rats received either vehicle or 17 beta-estradiol for 1 week, and smooth muscle size and parasympathetic, sensory and sympathetic nerve densities were assessed quantitatively throughout the first 3 mm of the proximal urethral smooth muscle. In vehicle-infused ovariectomized rats, parasympathetic nerves immunoreactive for vesicular acetylcholine transporter were most abundant, while calcitonin gene-related peptide-immunoreactive sensory nerves and tyrosine hydroxylase-immunoreactive sympathetic nerves were less numerous. The densities of parasympathetic and sensory nerves remained constant along the proximal urethra, while sympathetic nerves showed a significant increase along a proximal-distal gradient. Administration of 17beta-estradiol for 7 days via subcutaneous osmotic pump did not change smooth muscle area in sections, and neither densities nor total innervation of any nerve population was altered. These findings reveal a rich cholinergic innervation of the proximal urethra, and a pronounced gradient in sympathetic innervation. Unlike the embryologically similar uterine smooth muscle, estrogen does not influence muscle size or composition of innervation, indicating that estrogen's actions on innervation are highly target-specific. Thus, estrogen's effects on urinary continence apparently occur independently of any significant remodeling of smooth muscle or resident innervation.  相似文献   

14.
In order to evaluate the contribution of substrate-bound factors to the extent and patterning of the sympathetic innervation of rat uterus following estrogen treatment, superior cervical ganglion explants from neonatal and adult ovariectomized rats were cultured on tissue sections of fresh frozen uterus from adult ovariectomized rats treated with estrogen or a vehicle. The main findings were: (1) neurite growth was greatly influenced by histological features of the underlying section; (2) on myometrial sections, neurites followed the orientation of the main axis of the longitudinally sectioned muscle cells; (3) neurites showed limited growth on transversally sectioned smooth muscle; (4) neuritic patterning was unaffected by a reduction in migrating ganglionic non-neuronal cells; (5) neurite outgrowth, but not non-neural cell migration, was markedly reduced on myometrial sections from rats treated with estrogen. These results suggest that adult myometrium continues to provide signals allowing the organotypic patterning and growth of sympathetic axons, that estrogen treatment modifies myometrial substrate properties so that it is less supportive for sympathetic neurite growth, and that adult sympathetic neurons retain their ability to recognize substrate-bound cues present in the myometrium. On endometrial sections, neurites formed radially symmetric halos, which were reduced in size on estrogen-treated endometrial substrates. Thus, changes in the neuritogenic capacity of the uterus underlie plasticity in uterine sympathetic nerves, and alterations in substrate-bound factors contribute to the diminished receptivity of the estrogenized uterus to its sympathetic innervation.  相似文献   

15.
Neuropeptide Y (NPY) is a recently discovered neuropeptide with vasoconstrictor effects when given in vivo. It occurs in many sympathetic neurons, where it appears to coexist with noradrenaline (NA). It is wellknown that profound changes in the levels of uterine NA occur in many species during pregnancy. Therefore we have investigated the distribution of catecholamine neurons and NPY by immunohistochemistry in the pregnant and nonpregnant guinea pig uterus. In the virgin uterus NPY-like immunoreactivity was present in nerve fibres and terminals in the smooth muscle layers of the uterine horns and around blood vessels. The distribution of NPY fibres was very similar to that of noradrenergic nerves visualized with antibodies against the catecholamine synthesizing enzyme tyrosine hydroxylase (TH). In the pregnant uterus, NPY- and TH-like immunoreactivity disappeared almost completely. In the cervix, a slight decrease of immunoreactivity was observed, whereas in the ovaries no changes were noted between the pregnant and nonpregnant condition. The results indicate that NPY and catecholamines coexists in the adrenergic neurons of the guinea pig uterus, cervix and ovary and that they vary together in the myometrium during pregnancy. We suggest that NPY may be of functional importance for the pregnant uterus.  相似文献   

16.
Summary Neuropeptide Y (NPY) is a recently discovered neuropeptide with vasoconstrictor effects when given in vivo. It occurs in many sympathetic neurons, where it appears to coexist with noradrenaline (NA). It is wellknown that profound changes in the levels of uterine NA occur in many species during pregnancy. Therefore we have investigated the distribution of catecholamine neurons and NPY by immunohistochemistry in the pregnant and nonpregnant guinea pig uterus. In the virgin uterus NPY-like immunoreactivity was present in nerve fibres and terminals in the smooth muscle layers of the uterine horns and around blood vessels. The distribution of NPY fibres was very similar to that of noradrenergic nerves visualized with antibodies against the catecholamine synthesizing enzyme tyrosine hydroxylase (TH). In the pregnant uterus, NPY- and TH-like immunoreactivity disappeared almost completely. In the cervix, a slight decrease of immunoreactivity was observed, whereas in the ovaries no changes were noted between the pregnant and nonpregnant condition. The results indicate that NPY and catecholamines coexists in the adrenergic neurons of the guinea pig uterus, cervix and ovary and that they vary together in the myometrium during pregnancy. We suggest that NPY may be of functional importance for the pregnant uterus.  相似文献   

17.
Mechanical activities of the uterus, cervix, and bladder were recorded in vivo in anesthetized rats during electrical stimulation of either the hypogastric or pelvic nerve. Ovariectomized controls and hormone-treated groups were used as well as pregnant and postpartum rats. Stimulation of either hypogastric or pelvic nerve produced voltage- and frequency-dependent contractions of the three organs with no evidence of apparent inhibition. All evoked responses were completely abolished by tetrodotoxin, suggesting that these nerves are common pathways of innervation to the three organs. Atropine abolished uterine and cervical responses to both hypogastric and pelvic nerve stimulation, whereas bladder responses were only partly reduced. Hexamethonium almost totally blocked the evoked responses of the uterus and cervix. Phentolamine partly blocked uterine and cervical responses, and propranolol or physostigmine enhanced uterine and cervical responses to both hypogastric and pelvic nerve stimulation. These results suggest that motor innervation to the rat uterus and cervix is predominantly postganglionic cholinergic, with some alpha- and beta-adrenergic components, and that the bladder is innervated by mainly cholinergic and also noncholinergic nerves. Estrogen and estrogen-plus-progesterone pretreatment significantly increased the responses of uterus and cervix but not bladder. Uterine and cervical responses to either hypogastric or pelvic nerve stimulation were markedly reduced late in pregnancy and reappeared within 7 days after delivery.  相似文献   

18.
Summary This study was designed to investigate the effects of multiple denervation procedures on calcitonin gene-related peptide- and substance P-immunoreactive neurons in sympathetic and sensory cranial ganglia and in selected targets. Sympathectomy by long-term guanethidine treatment induced a pronounced increase in calcitonin gene-related peptide-immunoreactive and substance P-immunoreactive nerve fibres in all the tissues investigated, in contrast to a significant reduction of immunoreactive cell bodies. Neonatal capasaicin treatment abolished substance P immunoreactivity in many targets and caused a dramatic reduction of substance P-immunoreactive sensory nerve cell bodies; calcitonin gene-related peptide-immunoreactive nerve density was decreased, but the number of immunoreactive nerve cell bodies was unchanged. Guanethidine treatment of capsaicin-injected rats reversed the loss of calcitonin gene-related peptide-immunoreactive nerves, but not that of substance P-immunoreactive neurons. In the iris, capsaicin treatment had little effect on calcitonin gene-related peptide- and substance P-immunoreactive nerves, suggesting that in rats the majority of these fibres originate from capsaicin-insensitive neurons. The results suggest that the denervation procedures used in this study alter the synthesis and transport of neuropeptides in sensory neurons in conjunction with changes in the number of nerve fibres.  相似文献   

19.
To investigase the role of the eosinophil leukocytes in the early oestrogenic responses in the uterus, the kinetics of oestrogen-induced uterine eosinophilia and other parameters of oestrogen stimulation were studied at very early times. Uterine eosinophils increase as early as 5 min after an intravenous injection of oestradiol to immature rats, much earlier than several other changes in the early parameters of oestrogen stimulation. Large number of uterine eosinophils are found attached to the wall of small uterine blood vessels at early times. To elucidate the mechanisms involved in the specific attraction of eosinophils to the uterus in the presence of oestrogens, the in vivo localisation of oestrogens in the rat uterus at early times was studied using a radioautographic technique. Oestrogen receptors were found in the surface of eosinophils and in the wall of small uterine blood vessels. This simultaneous presence of both oestrogen receptors is proposed to explain the specific attachment of eosinophils to uterine blood vessels in the presence of oestrogens, which is the initial step toward eosinophil penetration into the uterus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号