首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Somatic gene transfer offers a possible new approach for treatment of human genetic disease. Defects affecting blood-forming tissues are candidates for therapies involving transfer of genetic information into hematopoietic stem cells. Adenosine deaminase (ADA) deficiency is being used as a model disease for which gene transfer techniques can be developed and evaluated. We describe here the construction and testing of 20 retroviral vectors for their ability to transfer and express human ADA in vitro and in vivo via a mouse bone marrow transplantation model. After infection of primary bone marrow with one fo these vectors (p delta NN2ADA), human ADA was detected in 60-85% of spleen colonies at day 14 and maintained long term in the blood of fully reconstituted mice. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells.  相似文献   

3.
Retroviral-mediated gene transfer into mammalian cells   总被引:2,自引:0,他引:2  
Retroviruses may be used as genetic vectors to transfer genes into mammalian cells with high efficiency. We have shown that the N2 vector will transfer a functional bacterial gene for neomycin resistance (NeoR) into more than 80% of mouse spleen foci. A derivative of the N2 vector was constructed to study transfer and expression of the human gene for adenosine deaminase (ADA) in mammalian lymphoid and hematopoietic stem cells. This vector, termed SAX, contains the human ADA cDNA with an SV40 promoter in addition to the NeoR gene. The SAX vector was found to efficiently transfer and express the ADA gene in an ADA-deficient human T-cell line. Gene transfer by SAX using an autologous nonhuman primate bone marrow transplant model resulted in expression of the human ADA gene in peripheral blood cells of treated animals. Human bone marrow treated with SAX produced 1%-2% of colonies in vitro that were expressing the vector genes. Transfer of genes into circulating hematopoietic stem cells of fetal sheep in utero was most efficient; vector gene expression was evident in 20%-40% of hematopoietic colonies. Therefore, retroviral vectors are capable of transferring functional genes into a wide variety of mammalian lymphoid and hematopoietic cells. Such vectors may be useful for clinical trials of gene therapy, that is, the correction of genetic diseases by insertion of a normal gene into a patient's defective cells.  相似文献   

4.
Two significant barriers limit the use of amphotropic retrovirus for human gene transfer protocols: 1) low transduction efficiency in cells with low receptor expression and 2) safety concerns originating from the risk of formation and propagation of replication competent virus in vivo. In principle, if ecotropic retrovirus, which is incapable of infecting human cells, could be transiently modified to effectively transduce human cells, this safety risk could be alleviated. Here we demonstrate that formation of amphotropic retrovirus polylysine molecular conjugates (aMMLV-PL) enhanced gene transfer up to 10-fold in a variety of human cell lines over the equivalent of unconjugated vector (aMMLV). The polylysine modification and formation of ecotropic retrovirus molecular conjugates (eMMLV-PL) permitted effective and stable transduction of different human cell lines as well as primary human bone marrow stroma cells at frequencies of greater than 80%. It is conceivable that this novel ecotropic-based conjugate retrovirus vector could also potentially provide enhanced safety characteristics not only over amphotropic retrovirus vectors but also over genetically tropism-modified recombinant ecotropic vectors. In contrast to genetic modifications, physical or chemical modifications are not propagated. Thus, formation of replication competent eMMLV from conjugates would be self-limited and would not result in virus propagation in humans.  相似文献   

5.
6.
Tat-encoding human immunodeficiency virus type 1 (HIV-1) gene transfer vectors were evaluated in primary canine bone marrow mononuclear cells. Tat vectors provided higher levels of gene expression than vectors with internal promoters. The HIV-1 vector was also more efficient than Moloney murine leukemia virus (MoMLV) vectors for transduction of canine bone marrow mononuclear cells in vitro. Transplantation experiments in dogs with transduced autologous marrow cells confirmed the superiority of HIV-1 vectors over MoMLV vectors for gene transfer into canine bone marrow cells. Tat vectors may be useful not only for providing high levels of therapeutic gene expression in hematopoietic cells but also for study of the biological effects of Tat in those tissues in the canine model.  相似文献   

7.
BACKGROUND: Early clinical trials for gene therapy of human gliomas with retroviral packaging cells (PC) have been hampered by low transduction efficacy and lack of dissemination of PC within the tumor. In the current approach, these issues have been addressed by creating a stable packaging cell line for retroviral vectors pseudotyped with glycoproteins of lymphocytic choriomeningitis virus (LCMV) based on tumor-infiltrating progenitor cells. METHODS: Tumor-infiltrating progenitor cells, which had been isolated from adult rat bone marrow (BM-TIC), were modified to stably express Gag-Pol proteins of moloney murine leukemia virus (Mo-MLV) and glycoproteins of LCMV. Packaging of a retroviral vector was measured by titration experiments on human fibroblast cells as well as on mouse and human glioma cell lines. Additionally, gene transfer was tested in a rat glioma model in vivo. RESULTS: The BM-TIC-derived packaging cell line (BM-TIPC) produced retroviral vectors with titers between 2-8 x 10(3) transducing units (TU)/ml. Extended culturing of BM-TIPC over several weeks and freezing/thawing of cells did not affect vector titers. No replication-competent retrovirus was released from BM-TIPC. In a rat glioma model, BM-TIPC infiltrated the tumors extensively and with high specificity. Moreover, BM-TIPC mediated transduction of glioma cells in vivo. CONCLUSION: This proof-of-principle study shows that primary adult progenitor cells with tumor-infiltrating capacity can be genetically modified to stably produce retroviral LCMV pseudotype vectors. These BM-TIPC may be a useful tool to enhance specificity and efficacy of gene transfer to gliomas in patients.  相似文献   

8.
Gene therapy using anticancer drug-resistance genes   总被引:1,自引:0,他引:1  
Sugimoto Y 《Human cell》1999,12(3):115-123
Myelosuppression is a major dose-limiting factor in cancer chemotherapy. Introduction of drug-resistance genes into bone marrow cells of cancer patients has been proposed to overcome this limitation. In theory, any gene whose expression protects cells against the toxic effects of chemotherapy should be useful in vivo for this purpose. Among such genes, human multidrug-resistance gene (MDR1) has been studied most extensively for this purpose, and clinical trials of drug-resistance gene therapy have been started in the US for cancer patients who undergo high-dose chemotherapy with autologous hematopoietic stem cell transplantation. In Japan, our clinical protocol of MDR1 gene therapy "A clinical study of drug-resistance gene therapy to improve the efficacy and safety of chemotherapy against breast cancer" has been submitted to the government. To improve the efficacy and safety of this drug-resistance gene therapy, we have constructed a series of MDR1-bicistronic retrovirus vectors using a retrovirus backbone of Harvey murine sarcoma virus and internal ribosome entry site (IRES) from picornavirus to co-express a second gene with the MDR1 gene. MDR1-MGMT bicistronic vectors can be used to protect bone marrow cells of cancer patients from combination chemotherapy with MDR1-related anticancer agents and nitrosoureas. In addition, MDR1-bicistronic retrovirus vectors can be designed to use the MDR1 gene as an in vivo selectable marker to enrich the transduced cells which express therapeutic genes, if disease is curable by the expression of a single-peptide gene in any types of bone marrow cells or peripheral blood cells.  相似文献   

9.
A series of deletions and insertions utilizing the herpesvirus thymidine kinase gene (tk) were constructed in the murine retrovirus Friend spleen focus-forming virus (SFFV). In all cases, the coding region for the SFFV-specific glycoprotein (gp55), which is implicated in erythroleukemic transformation, was left intact. These SFFV-TK and SFFV deletion vectors were analyzed for expression of tk and gp55 after DNA-mediated gene transfer. In addition, virus rescued by cotransfection of these vectors with Moloney murine leukemia virus was analyzed for infectious TK-transducing virus, gp55 expression, and erythroleukemia-inducing ability. The experiments demonstrated that deletions or insertions within the intron for the gp55 env gene can interfere with expression of gp55 after both DNA-mediated gene transfer and virus infection. In contrast, the gene transfer efficiency of the tk gene was unaffected in the SFFV-TK vectors, and high-titer infectious TK virus could be recovered. Revertant viruses capable of inducing erythroleukemia and expressing gp55 were generated after cotransfection of the SFFV-TK vectors with murine leukemia virus. The revertant viruses lost both tk sequences and the ability to transduce TK- fibroblasts to a TK+ phenotype. These experiments demonstrate that segregation of the TK and erythroleukemia functions can occur in retrovirus vectors which initially carry both markers.  相似文献   

10.
11.
We report here on the development and characterization of a novel herpes simplex virus type 1 (HSV-1) amplicon-based vector system which takes advantage of the host range and retention properties of HSV-Epstein-Barr virus (EBV) hybrid amplicons to efficiently convert cells to retrovirus vector producer cells after single-step transduction. The retrovirus genes gag-pol and env (GPE) and retroviral vector sequences were modified to minimize sequence overlap and cloned into an HSV-EBV hybrid amplicon. Retrovirus expression cassettes were used to generate the HSV-EBV-retrovirus hybrid vectors, HERE and HERA, which code for the ecotropic and the amphotropic envelopes, respectively. Retrovirus vector sequences encoding lacZ were cloned downstream from the GPE expression unit. Transfection of 293T/17 cells with amplicon plasmids yielded retrovirus titers between 10(6) and 10(7) transducing units/ml, while infection of the same cells with amplicon vectors generated maximum titers 1 order of magnitude lower. Retrovirus titers were dependent on the extent of transduction by amplicon vectors for the same cell line, but different cell lines displayed varying capacities to produce retrovirus vectors even at the same transduction efficiencies. Infection of human and dog primary gliomas with this system resulted in the production of retrovirus vectors for more than 1 week and the long-term retention and increase in transgene activity over time in these cell populations. Although the efficiency of this system still has to be determined in vivo, many applications are foreseeable for this approach to gene delivery.  相似文献   

12.
Nonhuman primate model systems of autologous CD34+ cell transplant are the most effective means to assess the safety and capabilities of lentivirus vectors. Toward this end, we tested the efficiency of marking, gene expression, and transplant of bone marrow and peripheral blood CD34+ cells using a self-inactivating lentivirus vector (CS-Rh-MLV-E) bearing an internal murine leukemia virus long terminal repeat derived from a murine retrovirus adapted to replicate in rhesus macaques. In vitro cytokine stimulation was not required to achieve efficient transduction of CD34+ cells resulting in marking and gene expression of the reporter gene encoding enhanced green fluorescent protein (EGFP) following transplant of the CD34+ cells. Monkeys transplanted with mobilized peripheral blood CD34+ cells resulted in EGFP expression in 1 to 10% of multilineage peripheral blood cells, including red blood cells and platelets, stable for 15 months to date. The relative level of gene expression utilizing this vector is 2- to 10-fold greater than that utilizing a non-self-inactivating lentivirus vector bearing the cytomegalovirus immediate-early promoter. In contrast, in animals transplanted with autologous bone marrow CD34+ cells, multilineage EGFP expression was evident initially but diminished over time. We further tested our lentivirus vector system by demonstrating gene transfer of the human common gamma-chain cytokine receptor gene (gamma(c)), deficient in X-linked SCID patients and recently successfully used to treat disease. Marking was 0.42 and.001 HIV-1 vector DNA copy per 100 cells in two animals. To date, all EGFP- and gamma(c)-transplanted animals are healthy. This system may prove useful for expression of therapeutic genes in human hematopoietic cells.  相似文献   

13.
14.
15.
M L Liu  B L Winther    M A Kay 《Journal of virology》1996,70(4):2497-2502
Recombinant retrovirus vectors are widely used for gene transfer studies. The recent development of a pseudotyped Moloney murine leukemia virus vector that contains the G envelope protein from the vesicular stomatitis virus allows for efficient concentration of vector and offers hope for potential use of these vectors for gene expression in vivo. A standard amphotropic vector expressing a serum marker protein, human alpha 1-antitrypsin, was infused into regenerating mouse liver and was 10-fold more efficient at achieving stable gene expression than was an equivalent pseudotyped vector. Discrepant results were obtained with cultured hepatocytes infected with an Escherichia coli beta-galactosidase-producing pseudotype and amphotropic vector. High rates of beta-galactosidase-positive cells were detected with the vesicular stomatitis virus G glycoprotein vector under culture conditions known to be relatively nonpermissive for retrovirus-mediated gene transfer. Subsequent studies demonstrated that beta-galactosidase protein was concentrated and copurified during pseudotype vector preparation, resulting in high rates of protein transfer rather than stable gene transfer, a process referred to as pseudotransduction. The cotransfer of protein with concentrated pseudotyped retroviruses indicates that caution must be used when interpreting gene transduction efficiencies in gene therapy experiments.  相似文献   

16.
Kung SK  An DS  Chen IS 《Journal of virology》2000,74(8):3668-3681
We constructed human immunodeficiency virus type 1 (HIV-1) vectors that will allow higher levels of gene expression in T cells. Gene expression under the control of an internal cytomegalovirus (CMV) immediate-early promoter in a self-inactivating lentiviral vector (CSCG) is 4- to 15-fold lower in T-cell lines (SUPT1 and CEMX174) than in non-lymphoid-cell lines (HeLa and 293T). This is in contrast to a Moloney murine leukemia virus (MoMLV)-based retrovirus vector (SRalphaLEGFP). We therefore replaced the internal CMV promoter of CSCG with three different murine oncoretroviral long terminal repeat (LTR) promoters-murine sarcoma virus (MSV), MoMLV (MLV), and the LTR (termed Rh-MLV) that is derived from the ampho-mink cell focus-forming (AMP/MCF) retrovirus in the serum of one rhesus macaque monkey that developed T-cell lymphoma following autologous transplantation of enriched bone marrow stem cells transduced with a retrovirus vector preparation containing replication-competent viruses (E. F. Vanin, M. Kaloss, C. Broscius, and A. W. Nienhuis, J. Virol. 68:4241-4250, 1994). We found that the combination of Rh-MLV LTR and a partial gag sequence of MoMLV (Deltagag(871-1612)) in CS-Rh-MLV-E gave the highest level of enhanced green fluorescent protein (EGFP) gene expression compared with MLV, MSV LTR, phosphoglycerate kinase, and CMV promoters in T-cell lines, as well as activated primary T cells. Interestingly, there was a further two- to threefold increase in EGFP expression (thus, 10-fold-higher expression than with CMV) when the Rh-MLV promoter and Deltagag(871-1612) were used in a self-inactivating-vector setting that has a further deletion in the U3 region of the HIV-1 LTR. These hybrid vectors should prove useful in gene therapy applications for T cells.  相似文献   

17.
An atypical syncytial variant of a high-grade Burkitt's-type B-cell lymphoma from a patient with AIDS who was seropositive for human immunodeficiency virus type 1 was studied. A productive type D retrovirus infection was identified in early-passage cell lines derived from two lymphomas from this patient. Nucleotide and amino acid sequence analysis as well as immunologic reactivity indicated that the isolated virus was highly related to Mason-Pfizer monkey virus (MPMV). MPMV is an immunosuppressive type D retrovirus that causes an AIDS-like syndrome in rhesus macaques. Amplification of DNA from the patient's diagnostic bone marrow biopsy specimen by polymerase chain reaction generated the appropriate MPMV-specific fragments and indicated that the patient was infected with the MPMV-like retrovirus. In addition, the patient's serum contained antibodies which recognized type D viral env proteins (gp70 and gp20) and gag proteins (p27 and p14). Although there have been reports of human cell lines infected with type D retroviruses and of type D-reactive human sera, this is the first evidence of a type D retrovirus infection in a human confirmed by virus isolation, serum reactivity, and viral DNA identification in tumor tissue.  相似文献   

18.
Recombinant retroviral vectors producing multicistronic mRNAs were constructed. Picornavirus putative internal ribosome entry sites (IRES) were used to confer cap-independent translation of an internal cistron. Internal cistrons were engineered by ligation of various lengths of the IRES of encephalomyocarditis (EMC) virus or polio virus to the E. coli chloramphenicol acetyltransferase (CAT) gene. The IRES/CAT fusions were introduced into retroviral vectors 3' to the translation stop codon of the neomycin phosphotransferase (NEO) gene, and the molecular constructs transfected into retroviral vector packaging lines. Retroviral vector producer cells efficiently express the internal CAT gene product only when the full length IRES is used. Both the EMC/CAT and polio/CAT retroviral vectors produced high titer vector supernatant capable of productive transduction of target cells. To test the generality of this gene transfer system, a retroviral vector containing an IRES fusion to the human adenosine deaminase (ADA) gene was constructed. Producer cell supernatant was used to transduce NIH/3T3 cells, and transduced cells were shown to express NEO, and ADA. Novel three-gene-containing retroviral vectors were constructed by introducing the EMC/ADA fusion into either an existing internal-promoter-containing vector, or a polio/CAT bicistronic vector. Producer cell clones of the three-gene vectors synthesize all three gene products, were of high titer, and could productively transduce NIH/3T3 cells. By utilizing cap-independent translation units, IRES vectors can produce polycistronic mRNAs which enhance the ability of retroviral-mediated gene transfer to engineer cells to produce multiple foreign proteins.  相似文献   

19.
The human multiple drug resistance (MDR) gene has been used as a model for human gene transfer which could lead to human gene therapy. MDR is a transmembrane protein which pumps a number of toxic substances out of cells including several drugs used in cancer chemotherapy. Normal bone marrow cells express low levels of MDR and are particularly sensitive to the toxic effects of these drugs. There are two general applications of MDR gene therapy: (1) to provide drug-resistance to the marrow of cancer patients receiving chemotherapy, and (2) as a selectable marker which when co-transferred with a non-selectable gene such as the human beta globin gene can be used to enrich the marrow for cells containing both genes. We demonstrate efficient transfer and expression of the human MDR gene in a retroviral vector into live mice and human marrow cells including CD34+ cells isolated from marrow and containing the bulk of human hematopoietic progenitors. MDR gene transduction corrects the sensitivity of CD34+ cells to taxol, an MDR drug substrate, and enriches the marrow for MDR-transduced cells. The MDR gene-containing retroviral supernatant used has been shown to be safe and free of replication-competent retrovirus. Because of the safety of the MDR retroviral supernatant, and efficient gene transfer into mouse and human marrow cells, a phase 1 clinical protocol for MDR gene transfer into cancer patients has been approved to evaluate MDR gene transfer and expression in human marrow.  相似文献   

20.
Retroviral-mediated gene transfer has been used in an attempt to efficiently and stably express functional cell-surface molecules in lymphoid and myeloid cells. The human CD8 molecule is a T cell-specific surface receptor that is intimately involved in class I MHC-restricted Ag recognition and subsequent T cell activation. After infection with a recombinant, replication-defective retrovirus containing the human CD8 alpha cDNA, bone marrow cells were transplanted into lethally irradiated recipients. The majority of lymphoid and myeloid cells of reconstituted animals expressed high levels of human CD8 for at least 8 months after transplantation. Transfer of bone marrow and spleen cells from these recipients 100 days after transplantation into secondary recipients also resulted in long term expression of CD8 in lymphoid and myeloid cells. CD8 expressed in splenic T cells associated with the lymphoid-specific tyrosine protein kinase p56lck, participated in T cell activation and conferred an increased xenogeneic response to human MHC class I Ag. Thus, retroviral-mediated gene transfer allows the long term, functional expression of cell-surface molecules in normal murine lymphoid and myeloid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号