首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We employ a battery of 33 polymorphic microsatellite loci to describe geographical population structure of the mangrove killifish (Kryptolebias marmoratus), the only vertebrate species known to have a mixed-mating system of selfing and outcrossing. Significant population genetic structure was detected at spatial scales ranging from tens to hundreds of kilometres in Florida, Belize, and the Bahamas. The wealth of genotypic information, coupled with the highly inbred nature of most killifish lineages due to predominant selfing, also permitted treatments of individual fish as units of analysis. Genetic clustering algorithms, neighbour-joining trees, factorial correspondence, and related methods all earmarked particular killifish specimens as products of recent outcross events that could often be provisionally linked to specific migration events. Although mutation is the ultimate source of genetic diversity in K. marmoratus, our data indicate that interlocality dispersal and outcross-mediated genetic recombination (and probably genetic drift also) play key proximate roles in the local 'clonal' dynamics of this species.  相似文献   

2.
Population-level studies using the major histocompatibility complex (Mhc) have linked specific alleles with specific diseases, but data requirements are high and the power to detect disease association is low. A novel use of Mhc population surveys involves mapping allelic substitutions onto the inferred structural molecular model to show functional differentiation related to local selective pressures. In the estuarine fish Fundulus heteroclitus, populations experiencing strong differences in antigenic challenges show significant differences in amino acid substitution patterns that are reflected as variation in the structural location of changes between populations. Fish from a population genetically adapted to severe chemical pollution also show novel patterns of DNA substitution at a highly variable Mhc class II B locus including strong signals of positive selection at inferred antigen-binding sites and population-specific signatures of amino acid substitution. Heavily parasitized fish from an extreme PCB-contaminated (U.S. Environmental Protection Agency Superfund) site show enhanced population-specific substitutions in the a-helix portion of the inferred antigen-binding region. In contrast, fish from an unpolluted site show a significantly different pattern focused on the first strand of the B-pleated sheet. Whether Mhc population profile differences represent the direct effects of chemical toxicants or indirect parasite-mediated selection, the result is a composite habitat-specific signature of strong selection and evolution affecting the genetic repertoire of the major histocompatibility complex.  相似文献   

3.
Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks.  相似文献   

4.
Determining the genetic basis of inbreeding depression is important for understanding the role of selection in the evolution of mixed breeding systems. Here, we investigate how androdioecy (a breeding system characterized by partial selfing and outcrossing) and dioecy (characterized by obligatory outcrossing) influence the experimental evolution of inbreeding depression in Caenorhabditis elegans. We derived inbred lines from ancestral and evolved populations and found that the dioecious lineages underwent more extinction than androdioecious lineages. For both breeding systems, however, there was selection during inbreeding because the diversity patterns of 337 single-nucleotide polymorphisms (SNPs) among surviving inbred lines deviated from neutral expectations. In parallel, we also followed the evolution of embryo to adult viability, which revealed similar starting levels of inbreeding depression in both breeding systems, but also outbreeding depression. Under androdioecy, diversity at a neutral subset of 134 SNPs correlated well with the viability trajectories, showing that the population genetic structure imposed by partial selfing affected the opportunity for different forms of selection. Our findings suggest that the interplay between the disruptions of coevolved sets of loci by outcrossing, the efficient purging of deleterious recessive alleles with selfing and overdominant selection with outcrossing can help explain mixed breeding systems.  相似文献   

5.
Takami K  Figueroa F  Mayer WE  Klein J 《Genetics》2000,154(1):311-322
The T-complex protein 1, TCP1, gene codes for the CCT-alpha subunit of the group II chaperonins. The gene was first described in the house mouse, in which it is closely linked to the T locus at a distance of approximately 11 cM from the Mhc. In the zebrafish, Danio rerio, in which the T homolog is linked to the class I Mhc loci, the TCP1 locus segregates independently of both the T and the Mhc loci. Despite its conservation between species, the zebrafish TCP1 locus is highly polymorphic. In a sample of 15 individuals and the screening of a cDNA library, 12 different alleles were found, and some of the allelic pairs were found to differ by up to nine nucleotides in a 275-bp-long stretch of sequence. The substitutions occur in both translated and untranslated regions, but in the former they occur predominantly at synonymous codon sites. Phylogenetically, the alleles fall into two groups distinguished also by the presence or absence of a 10-bp insertion/deletion in the 3' untranslated region. The two groups may have diverged as long as 3.5 mya, and the polymorphic differences may have accumulated by genetic drift in geographically isolated populations.  相似文献   

6.
The killifish Rivulus marmoratus is the only known selfing hermaphroditic vertebrate, and males of the species are usually exceedingly rare or non-existent in nature. Collections on several Belize cays in 1988 and 1989 yielded 13.5–24% males. Factors responsible for this unusually high proportion of males are currently not understood. Likewise, the biological significance of males in populations which otherwise consist of selfing hermaphrodites (with internal fertilization) is problematic and awaits further study.  相似文献   

7.
A cDNA library screening using the conserved exon 4 of Atlantic salmon Mhc class I as probe provided the basis for a study on Mhc class I polymorphism in a breeding population. Twelve different alleles were identified in the 82 dams and sires studied. No individual expressed more than two alleles, which corresponded to the diploid segregation patterns of the polymorphic marker residing within the 3'-untranslated tail. Close linkage between the Sasa-UBA and Sasa-TAP2B loci strengthens the claim that Sasa-UBA is the major Mhc class I locus in Atlantic salmon. We found no evidence for a second expressed classical or non-classical Mhc class I locus in Atlantic salmon. A phylogenetic analysis of salmonid Mhc class I sequences showed domains conserved between rainbow trout, brown trout and Atlantic salmon. Evidence for shuffling of the alpha(1) domain was identified and lineages of the remaining alpha(2) through the cytoplasmic tail gene segment can be defined. The coding sequence of one allele was found associated with two different markers, suggesting recombination within the 3'-tail dinucleotide repeat itself. Protein modelling of several Sasa-UBA alleles shows distinct differences in their peptide binding domains and enables a further understanding of the functionality of the high polymorphism.  相似文献   

8.
Complex Mhc-based mate choice in a wild passerine   总被引:5,自引:0,他引:5  
The extreme polymorphism of the vertebrate major histocompatibility complex (Mhc) is famous for protecting hosts against constantly evolving pathogens. Mate choice is often evoked as a means of maintaining Mhc variability through avoidance of partners with similar Mhc alleles or preference for heterozygotes. Evidence for these two hypotheses mostly comes from studies on humans and laboratory mice. Here, we tested these hypotheses in a wild outbred population of house sparrows (Passer domesticus). Females were not more or less closely related to the males they paired with when considering neutral genetic variation. However, males failed to form breeding pairs when they had too few Mhc alleles and when they were too dissimilar from females at Mhc loci (i.e. had no common alleles). Furthermore, pairs did not form at random as Mhc diversity positively correlated in mating pairs. These results suggest that mate choice evolves in response to (i) benefits in terms of parasite resistance acquired from allelic diversity, and (ii) costs associated with the disruption of co-adapted genes.  相似文献   

9.
1. Aquatic invertebrates display a wide array of alternative reproductive modes from apomixis to hermaphroditism and cyclical parthenogenesis. These have important effects on genetic diversity and population structure. Populations of the 'living fossil' Triops cancriformis display a range of sex ratios, and various reproductive modes are thought to underlie this variation. Using sex ratio information and histological analyses European populations have been inferred to be gonochoric (with separate males and females), selfing hermaphroditic and androdioecious, a rare reproductive mode in which selfing hermaphrodites coexist with variable proportions of males. In addition, some populations have been described as meiotic parthenogens.
2. Here we use population genetic analysis using microsatellite loci in populations with a range of sex ratios including a gonochoric population, and marker segregation patterns in heterozygote individuals reared in isolation, to clarify the reproductive mode in this species.
3. Our data show that populations in general have very low levels of genetic diversity. Non-gonochoric populations show lower genetic diversity, more heterozygote deficiencies, higher inbreeding coefficients and stronger linkage disequilibria than the gonochoric population. The maintenance of some heterozygosity in populations is consistent with some male influence in T. cancriformis populations, as would be expected from an androdioecious reproductive system. Results of marker segregation in eggs produced in isolation from non-gonochoric populations indicate that meiosis occurs and are consistent with two reproductive modes: selfing hermaphroditism and a type of ameiotic parthenogenesis.
4. Overall, our data indicate that androdioecy and selfing hermaphroditism are the most likely reproductive modes of non-gonochoric European Triops populations. Triops populations are strongly structured, suggesting high genetic drift and low levels of gene flow.  相似文献   

10.
ABSTRACT: BACKGROUND: The critical role of Major Histocompatibility Complex (Mhc) genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. RESULTS: In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major) from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. CONCLUSIONS: We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help understanding how parasite-mediated and sexual selection shape and maintain host genetic variation in nature. We believe that study systems like ours can make important contributions to the field of evolutionary biology and emphasize the necessity of integrating long-term field-based studies with detailed genetic analysis to unravel complex evolutionary processes.  相似文献   

11.
Laporte V  Cuguen J  Couvet D 《Genetics》2000,154(1):447-458
Equations are derived for the effective sizes of gynodioecious populations with respect to both nuclear and cytoplasmic genes (N(ec) and N(en), respectively). Compared to hermaphroditism, gynodioecy generally reduces effective population sizes for both kinds of loci to an extent depending on the frequency of females, the sex determination system, and the selfing rate of hermaphrodites. This reduction is due to fitness differences between the sexes and is highly influenced by the mode of inheritance of this fitness. In absence of selfing, nuclear gynodioecy results in a reduction of N(ec) that depends strongly on the dominance of male sterility alleles, while N(en) remains equal to the census number (N). With cytonuclear gynodioecy, both cytoplasmic and nuclear effective sizes are reduced, and at the extreme, dioecy results in the minimum N(ec) values and either minimum or maximum N(en) values (for low or high frequency of females, respectively). When selfing occurs, gynodioecy either increases or decreases N(en) as compared to hermaphroditism with the same selfing rate of hermaphrodites. Unexpectedly, N(ec) also varies with the selfing rate. Thus the genetic sex-determination system appears as a major factor for the nuclear and cytoplasmic genetic diversities of gynodioecious species.  相似文献   

12.
Allelic genealogy and human evolution   总被引:25,自引:7,他引:18  
Genetic variation at most loci examined in human populations indicates that the (effective) population size has been approximately 10(4) for the past 1 Myr and that individuals have been genetically united rather tightly. Also suggested is that the population size has never dropped to a few individuals, even in a single generation. These impose important requirements for the hypotheses for the origin of modern humans: a relatively large population size and frequent migration if populations were geographically subdivided. Any hypothesis that assumes a small number of founding individuals throughout the late Pleistocene can be rejected. Extraordinary polymorphism at some loci of the major histocompatibility complex (Mhc) rules out the past action of severe bottlenecks, or the so-called founder principle, which invokes only a small number of founding individuals when a new species emerges. This conclusion may be extended to the 35-Myr-old history of the human lineage, because some polymorphism at Mhc loci seems to have lasted that long. Furthermore, although the population structure prior to the late Pleistocene is less clear, owing to the insensitivity of Mhc alleles, even to low levels of migration, the nature of Mhc polymorphism suggests that the effective size of populations leading to humans was as large as 10(5). Hence, the effective population size of humans might have become somewhat smaller in most of the late Pleistocene. The reduction could be due either to the then adverse environment in the Old World and/or to the increased migration rate. It is also argued that population explosion fostered by the agriculture revolution has had significant effects on incorporating new alleles into human populations.   相似文献   

13.
Wright's gene fixation index F and two single-locus effective selfing rates—the selfing rate at loci with fixed alleles, and the selfing rate at loci without fixed alleles—were estimated in five populations of Mimulus guttatus. These two effective selfing rates describe the inbreeding observed at a single locus when both uniparental and biparental inbreeding are practiced. Estimates were made using progeny arrays assayed for six allozyme loci and two morphological loci exhibiting dominance. The average of the two selfing rates computed for subpopulations (ca. 10 m diameter) ranged from 24% to 59%, with a mean of 37%. When computed for populations (ca. 1 km diameter), average selfing rates were about 10% higher. In four populations, the selfing rate at loci with fixed alleles was higher than the selfing rate at loci without fixed alleles. Thus, the covariance of selfing with parental gene fixation was positive. In one of the populations, estimates for individual plants sampled along a transect gave positive correlations for selfing rates and for gene-fixation indices between adjacent plants. A highly positive correlation between selfing rate and gene fixation of individual plants was also observed. In another population, the covariance of selfing with gene fixation was higher for a locus causing leaf spots than for allozyme loci. This covariance is partially caused by 1) variation in homozygosity among neighborhoods and 2) biparental inbreeding within neighborhoods. The consequences of this covariance are discussed.  相似文献   

14.
The DNA sequences of four exons of the MHC (major histocompatibilty complex) were examined in chinook salmon ( Oncorhynchus tshawytscha ) from an interior (Nechako River) and a coastal (Harrison River) population in the Fraser River drainage of British Columbia. Mhc class I A1, A2 and A3 sequences and a class II B1 sequence were obtained by PCR from each of 16–20 salmon from each population. The class I A1 and a pair of linked A2–A3 exons were derived from two different classical salmonid class I genes, Sasa-A and Onmy-UA , respectively. Allelic variation for B1, A1 and A2 was characterized by the high levels of nonsynonymous substitution indicative of the effects of natural selection on Mhc domains that contain peptide binding regions. The number of alleles detected at each of the four exons ranged from three ( B1 ) to 22 ( A1 ), but levels of nucleotide sequence divergence at all four exons were low relative to classical mammalian Mhc genes. The nucleotide similarity among alleles ranged between 89 and 99% over all exons, and all four domains possessed only two major sequence motifs. Allelic distributions at B1, A1 and A3 confirmed the genetic distinctiveness of the Harrison and Nechako chinook salmon populations revealed in previous studies. The two major allelic motifs of B1 and A1 segregated strongly between the populations. In spite of evidence that allelic diversity at these chinook salmon Mhc exons has been generated by selection, the level and distribution of diversity in the two salmon populations strongly reflected the demographic history of the species, which has been characterized by repeated bottlenecks and isolation-by-distance in glacial refugia.  相似文献   

15.
The DRB family of human class II major histocompatibility complex (Mhc) loci is unusual in that individuals differ in the number and combination of genes (haplotypes) they carry. Indications are that both the allelic and haplotype polymorphisms of the DRB loci predate speciation. Searching for the evolutionary origins of these polymorphisms, we have sequenced five DRB clones isolated from a cDNA library of a pigtail macaque (Macaca nemestrina) B lymphocyte line. The clones represent five different genes which we designate Mane-DRB*01-Mane-DRB*05. The genes appears to be approximately equidistant from each other, so that allelic relationships between them cannot be established on the basis of the sequence data alone. If positions coding for the peptide-binding region of the class II beta chains are eliminated from sequence comparisons, the Mane-DRB genes appear to be most closely related to the human (HLA) DRB1 genes of the DRw52 group. We interpret this finding to indicate that the ancestral gene of the DRw52 group of human DRB1 alleles separated from the rest of the HLA-DRB1 alleles before the separation of the Old World monkeys (Cercopithecoidea) from the apes (Hominoidea) in the early Oligocene. After this separation, the ancestral DRB1 gene of the DRw52 group duplicated in the Old World monkey lineage to give rise to genes at three loci at least, while in the ape lineage this gene may have remained single and diverged into a number of alleles instead. These findings suggest that some of the polymorphism currently present at the DRB1 locus is greater than 35 Myr old.  相似文献   

16.

Background and Aims

Evolutionary transitions between separate and combined sexes have frequently occurred across various plant lineages. In mosses, which are haploid-dominant, evolutionary transitions from separate to combined sexes are often associated with genome doubling. Polyploidy and hermaphroditism have strong effects on the inbreeding depression of a population, and are subsequently predicted to affect the mating system.

Methods

We tested the association between ploidy (haploid, diploid or triploid gametophytes) and mating system in 21 populations of Atrichum undulatum sensu lato, where sex ratios vary widely. For each population, we measured the sex ratio, estimated selfing rates using allozyme markers and determined the level of ploidy through flow cytometry.

Key Results

Hermaphrodites in A. undulatum were either diploid or triploid. However, many diploid populations were strictly separate-sexed, suggesting that hermaphroditism is not a necessary result of genome doubling. Levels of selfing were strongly supported as being greater than zero in one population with strictly separate-sexed individuals, and one-third of populations with hermaphrodites.

Conclusions

Although hermaphrodites are associated with triploidy, hermaphroditism is not a necessary outcome of genome duplication. Hermaphroditism, but not genome duplication alone, increased estimated selfing rates, probably due to the occurrence of selfing within a gametophyte. Thus, genome duplication can influence the mating system and the associated evolution and maintenance of reproductive traits.  相似文献   

17.
18.
Preliminary observations were conducted to identify conspicuous body postures and movements of males and hermaphrodites in the mangrove killifish Kryptolebias marmoratus . These behaviours were used quantitatively to examine the social interactions for experimental pairings of K. marmoratus of different sexual states ( i.e. simultaneous hermaphrodite and male) in an aquarium with an open-water area and simulated crab burrows. This allowed observation of behaviours that could not be observed in the field. Kryptolebias marmoratus , regardless of sexual state and experimental treatment, spent 40% of the time in the burrow. Hermaphrodites exhibited a preference for associating with males rather than other hermaphrodites. The observed complexity of displayed behaviours and interactions between paired conspecifics indicate that K. marmoratus has a rich repertoire of social behaviour not predicted for a strictly selfing species. Also, land crab burrows play an important role in their social interactions.  相似文献   

19.
The amounts of inbreeding depression upon selfing and of heterosis upon outcrossing determine the strength of selection on the selfing rate in a population when this evolves polygenically by small steps. Genetic models are constructed which allow inbreeding depression to change with the mean selfing rate in a population by incorporating both mutation to recessive and partially dominant lethal and sublethal alleles at many loci and mutation in quantitative characters under stabilizing selection. The models help to explain observations of high inbreeding depression (> 50%) upon selfing in primarily outcrossing populations, as well as considerable heterosis upon outcrossing in primarily selfing populations. Predominant selfing and predominant outcrossing are found to be alternative stable states of the mating system in most plant populations. Which of these stable states a species approaches depends on the history of its population structure and the magnitude of effect of genes influencing the selfing rate.  相似文献   

20.
The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non‐neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号