首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure.  相似文献   

2.
Nutrient concentrations, chlorophyll-a, bacterial biomass and relative activity of denitrifying organisms were investigated from ice-core, brine and underlying water samples in February 1998 in the Gulf of Bothnia, Baltic Sea. Examined sea ice was typical for the Baltic Sea; ice bulk salinity varied from 0.1 to 1.6 psu, and in underlying water salinity was from 4.2 to 4.7 psu. In 2- to 3-months-old sea ice (thickness 0.4–0.6 m), sea-ice communities were at the winter stage; chl-a concentrations were generally below 1 mg m−3 and heterotrophic organisms composed 7–20% of organism assemblage. In 1-month-old ice (thickness 0.2–0.25 m), an ice spring bloom was already developing and chl-a concentrations were up to 5.6 mg m−3. In relation to low salinity, high concentrations of NH+ 4, NO 2, PO3+ 4 and SiOH4 were found in the ice column. The results suggest that the upper part of ice accumulates atmospheric nutrient load during the ice season, and nutrients in the upper 10–20 cm of ice are mainly of atmospheric origin. The most important biological processes controlling the sea-ice nutrient status are nutrient regeneration, nutrient uptake and nitrogen transformations. Nutrient regeneration is specially active in the middle parts of the 50- to 60-cm-thick ice and subsequent accumulation of nutrients probably enhances the ice spring bloom. Nitrite accumulation and denitrifying activity were located in the same ice layers with nutrient regeneration, which together with the observed significant correlation between the concentrations of nitrogenous nutrients points to active nitrogen transformations occurring in the interior layers of sea ice in the Baltic Sea. Accepted: 12 June 2000  相似文献   

3.
To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0 degrees C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the alpha- and gamma-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure.  相似文献   

4.
The phytoplankton community, carbon assimilation, chlorophylla (Chl a), pH, light and attenuation and inorganic nutrientswere monitored under the ice in the coastal Gulf of Finland,Baltic Sea. Maximum ice and snow thickness was 40 and 15 cm,respectively. Freshwater influence had created a halocline 1–2m below the ice–water interface, and above this halocline,a dense bloom of dinoflagellates developed (max: >300 µgChl a L–1). The photosynthetic uptake of carbon dioxideby this "red tide" increased the pH to a maximum of 9.0. Thesub-ice phytoplankton community was dominated by the dinoflagellateWoloszynskia halophila (max: 3.6 x 107 cells L–1). ThepH tolerance of this species was studied in a monoculture andthe results indicate that pH >8.5 limits growth of this speciesat ambient irradiance. This study shows that primary productivitymay raise the pH to growth limiting levels, even in marine,low-light environments where pH normally is not considered important.  相似文献   

5.
Coastal fast ice and underlying water of the northern Baltic Sea were sampled throughout the entire ice winter from January to late March in 2002 to study the succession of bacterial biomass, secondary production and community structure. Temperature gradient gel electrophoresis (TGGE) and sequencing of TGGE fragments were applied in the community structure analysis. Chlorophyll-a and composition of autotrophic and heterotrophic assemblages were also examined. Overall succession of ice organism assemblages consisted of a low-productive stage, the main algal bloom, and a heterotrophic post-bloom situation, as typical for the study area. The most important groups of organisms in ice in terms of biomass were dinoflagellates, plasticidic flagellates, rotifers and ciliates. Ice bacteria showed a specific succession not directly dependent on the overall succession events of ice organisms. Sequenced 16S rDNA fragments were mainly affiliated to α-, β-, and γ-proteobacterial phyla and Cytophaga–Flavobacterium–Bacteroides-group, and related to sequences from cold environments, also from the Baltic Sea. Temporal clustering of the TGGE fingerprints was stronger than spatial, although lower ice and underlying water communities always clustered together, pointing to the importance of ice maturity and ice–water interactions in shaping the bacterial communities.  相似文献   

6.
The response of Baltic Sea ice communities to changing light climate was studied in three subsequent 3 week in situ experiments on the SW coast of Finland. The investigation covered three different winter periods, short day with low solar angles leading to limited light in the ice, late winter with deep snow cover and early spring with melting snow and increasing light availability. The experimental setup consisted of transparent (no snow) and completely darkened (heavy snow cover) plexiglass tubes in which the ice cores were incubated in situ from 1 to 2 weeks. Changes in the concentrations of inorganic nutrients (NO3-–N, PO43−-–P, SiO4-–Si) and chlorophyll-a concentration in the phytoplankton community composition were recorded as responses to different light manipulations. Changes in inner ice light intensity in untreated ice as well as the temperature both in air and ice were recorded over the entire study period. Increased irradiance in late winter/early spring and during meltdown affected the chlorophyll-a amount in the sea ice. During these periods the phytoplankton community in the top layers decreased possibly as a consequence of photo-acclimation. Closer to the bottom of the ice, however, the increased inner ice light intensity induced algal growth. Complete exclusion of light stopped the algal growth in the whole ice column. Darkening the ice cores also slowed down the ice melting opposite to accelerated melting caused by increased light. The significant differences found in nutrient concentrations between the light and dark treatments were mostly explicable by changes in algal biomass. No obvious changes were observed in the phytoplankton community composition due to light manipulation, diatoms and heterotrophic flagellates dominating throughout the study period.  相似文献   

7.
An abundant and diverse bacterial community was found within brine channels of annual sea ice and at the ice-seawater interface in McMurdo Sound, Antarctica, in 1980. The mean bacterial standing crop was 1.4 × 1011 cells m−2 (9.8 mg of C m−2); bacterial concentrations as high as 1.02 × 1012 cells m−3 were observed in ice core melt water. Vertical profiles of ice cores 1.3 to 2.5 m long showed that 47% of the bacterial numbers and 93% of the bacterial biomass were located in the bottom 20 cm of sea ice. Ice bacterial biomass concentration was more than 10 times higher than bacterioplankton from the water column. Scanning electron micrographs showed a variety of morphologically distinct cell types, including coccoid, rod, fusiform, filamentous, and prosthecate forms; dividing cells were commonly observed. Approximately 70% of the ice bacteria were free-living, whereas 30% were attached to either living algal cells or detritus. Interactions between ice bacteria and microalgae were suggested by a positive correlation between bacterial numbers and chlorophyll a content of the ice. Scanning and transmission electron microscopy revealed a close physical association between epibacteria and a dominant ice alga of the genus Amphiprora. We propose that sea ice microbial communities are not only sources of primary production but also sources of secondary microbial production in polar ecosystems. Furthermore, we propose that a detrital food web may be associated with polar sea ice.  相似文献   

8.
Variations in the concentrations of the sea ice diatom biomarker, IP25 (Ice Proxy with 25 carbon atoms), were measured in the bottom 10 cm of sea ice collected from the eastern Beaufort Sea and Amundsen Gulf from January to June 2008, as part of the International Polar Year–Circumpolar Flaw Lead system study. Temporal and vertical changes in IP25 concentrations were compared against other biomarkers and indicators of ice algal production. IP25 was not detected in sea ice samples collected from mid-winter to early spring, likely as a result of light-limiting conditions for algal growth and accumulation. From early March to mid-June, IP25 concentrations correlated well with those of fatty acids (r = 0.79; P < 0.001), less so with total sterols (r = 0.63; P < 0.001) and qualitatively with chlorophyll a concentrations and diatom cell abundances from adjacent sea ice cores. Approximately 90% of the total sea ice IP25 accumulation occurred from mid-March to late-May, coincident with the ice algal bloom period. The majority (ca. 87–93%) of IP25 was biosynthesised within the lower 5 cm of the sea ice where brine volume fractions were >5% which is consistent with the hypothesis that brine channel connectivity limits the internal colonisation of sea ice by diatoms. Maximum IP25 concentrations occurred at 1–3 cm from the ice–water interface providing further evidence for a selective sea ice diatom origin for this biomarker. In contrast, vertical concentration profiles for fatty acids and sterols indicated mixed sources for these biomarkers.  相似文献   

9.
Horizontal variation of first-year landfast sea ice properties was studied in the Gulf of Finland, the Baltic Sea. Several scales of variation were considered; a number of arrays with core spacings of 0.2, 2 and 20 m were sampled at different stages of the ice season for small-scale patchiness. Spacing between these arrays was from hundreds of meters to kilometers to study mesoscale variability, and once an onshore–offshore 40-km transect was sampled to study regional scale variability. Measured variables included salinity, stable oxygen isotopes (18O), chlorophyll a (chl-a), nutrients and dissolved organic carbon. On a large scale, a combination of variations in the under-ice water salinity (ice porosity), nutrient supply and the stage of ice development control the build-up of ice algal biomass. At scales of hundreds of meters to kilometers, there was significant variability in several parameters (salinity, chl-a, snow depth and ice thickness). Analyses of the data from the arrays did not show evidence of significant patchiness at scales <20 m for algal biomass. The results imply that the sampling effort in Baltic Sea ice studies should be concentrated on scales of hundreds of meters to kilometers. Using the variations observed in the study area, the estimate for depth-integrated algal biomass in landfast sea ice in the Gulf of Finland (March 2003) is 5.5±4.4 mg chl-a m–2.  相似文献   

10.
The water activity and pH ranges for growth of Glaciecola punicea (a psychrophile) were extended when this organism was grown at suboptimal rather than optimal temperatures. No such extension was observed for Gelidibacter sp. strain IC158 (a psychrotolerant bacterium) at analogous temperatures. Salinity and pH may be primary physicochemical parameters controlling bacterial community development in sea ice.  相似文献   

11.
Benthic processes were measured at a coastal deposition area in the northern Baltic Sea, covering all seasons. The N2 production rates, 90–400 μmol N m−2 d−1, were highest in autumn-early winter and lowest in spring. Heterotrophic bacterial production peaked unexpectedly late in the year, indicating that in addition to the temperature, the availability of carbon compounds suitable for the heterotrophic bacteria also plays a major role in regulating the denitrification rate. Anaerobic ammonium oxidation (anammox) was measured in spring and autumn and contributed 10% and 15%, respectively, to the total N2 production. The low percentage did, however, result in a significant error in the total N2 production rate estimate, calculated using the isotope pairing technique. Anammox must be taken into account in the Gulf of Finland in future sediment nitrogen cycling research. Handling editor: J. Cole  相似文献   

12.
To evaluate the role of bacteria in the transformation of organic matter in subarctic waters, we investigated the effect of mineral nutrients (ammonia and phosphate) and organic carbon (glucose) enrichment on heterotrophic bacterial processes and community structure. Eight experiments were done in the Norwegian Sea during May and June 2008. The growth-limiting factor (carbon or mineral nutrient) for heterotrophic bacteria was inferred from the combination of nutrient additions that stimulated highest bacterial oxygen consumption, biomass, production, growth rate and bacterial efficiency. We conclude that heterotrophic bacteria were limited by organic carbon and co-limited by mineral nutrients during the prevailing early nano-phytoplankton (1–10 μm) bloom conditions. High nucleic acid (HNA) bacteria became dominant (>80%) only when labile carbon and mineral nutrient sources were available. Changes in bacterial community structure were investigated using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S ribosomal RNA genes. The bacterial community structure changed during incubation time, but neither carbon nor mineral nutrient amendment induced changes at the end of the experiments. The lack of labile organic carbon and the availability of mineral nutrients are key factors controlling bacterial activity and the role of the microbial food web in carbon sequestration.  相似文献   

13.
Summary Sea ice microbial communities (SIMCO) grow luxuriantly within several microhabitats of sea ice, indicating that the microorganisms comprising these communities are well adapted to the physicochemical gradients which characterize sea ice. We used SIMCO obtained from the bottom of congelation ice in McMurdo Sound, Antarctica, to test the hypothesis that low temperature limits microbial productivity in polar oceans and also to investigate the effect of salinity on rates of autotrophic and heterotrophic metablism. Substantial rates of carbon fixation, incorporation of thymidine, and uptake of glutamate occurred at the in situ temperatures of-1.9°C, with maximum rates at temperatures considerably warmer but below 15°C. Microalgae and bacteria of SIMCO are thus indicated to be psychrophiles. The relative rates of autotrophic and heterotrophic microbial growth (based on rates of fixation of 14CO2 by microalgae and incorporation of 3H-thymidine by bacteria, respectively) were similar and overlapped from 4° and 7°C. These data suggest that a recent hypothesis proposing the uncoupling of primary production and bacterial production in cold water, due to differential growth of phytoplankton and bacterioplankton at low temperatures, is refuted with respect to SIMCO. Maximum rates of carbon fixation by autotrophs of SIMCO occurred at salinities which characterized the ice from which the SIMCO were collected. In contrast, heterotrophs of SIMCO exhibited a more stenohaline response to variable salinity, with maximum incorporation of thymidine and uridine from 20 to 30. Adaptations by autotrophs and heterotrophs of SIMCO that permit substantial metabolism and growth at very low temperatures and variable salinities are significant when considering production and trophodynamics in polar oceans. Actively growing microorganisms in these unique communities contribute to overall production in polar oceans, provide carbon for food webs associated with sea ice, and upon release from melting ice may contribute to microbial blooms in marginal ice edge zones, which in turn support cryopelagic food webs.  相似文献   

14.
The water activity and pH ranges for growth of Glaciecola punicea (a psychrophile) were extended when this organism was grown at suboptimal rather than optimal temperatures. No such extension was observed for Gelidibacter sp. strain IC158 (a psychrotolerant bacterium) at analogous temperatures. Salinity and pH may be primary physicochemical parameters controlling bacterial community development in sea ice.  相似文献   

15.
Four experiments were conducted to assess the effect of foliar applications of various nutrient solutions on the phylloplane yeast community of tall fescue (Festuca arundinacea Schreb.). In the first three experiments, increasing concentrations of sucrose (2–16%), yeast extract (0.5–2.5%), and sucrose plus yeast extract (2.5–18.5% total) were applied and the yeast colony forming units (cfu) enumerated 14 h later by dilution plating. Significant positive linear relationships were observed between the number of yeast cfu and applications of both yeast extract and sucrose plus yeast extract. Foliar applications of sucrose alone had no significant effect on yeast community abundance, indicating that phylloplane yeasts of turfgrass are not limited by the amount or availability of carbohydrates. In the fourth experiment, five different solutions were applied to tall fescue to investigate the response of the yeast community to organic and inorganic nitrogen sources. Tryptone or yeast extract, both with considerable amino acid composition, significantly increased the yeast population, while yeast nitrogen base (with or without amino acids) and ammonium sulfate had no affect on yeast abundance. These results suggest that organic nitrogen stimulate yeast community growth and development on the phylloplane of tall fescue, while carbohydrates, inorganic nitrogen, and non-nitrogenous nutrients have little positive effect.  相似文献   

16.
Model experiments on a possibility that pathogenic enterobacteria Salmonella enteritidis (Gartneri) can grow on decaying algal mats with prevalence of the filamentous algae Cladophora glomerata (L.) Kütz were carried out. Samples of algal mats have been collected in the eastern part of the Gulf of Finland in the Baltic Sea. A bacterial culture of Salmonella enteritidis was placed into tubes containing samples of mats. The intensive growth of salmonella was noted in alga samples collected in the freshwater zone (salinity 0.2–1.5‰); growth was practically absent in the samples of algae collected in a zone with salinity 2–3‰, while salmonella remained viable in the control tubes with water without algae. The growth of coliform enterobacteria initially inhabited in the algal mats was discovered in all experiments. Studies carried out in 2009 show that the thickness of the algal mats in the costal zones of the Gulf of Finland reached 20 cm and their biomass reached a few tons per 1 km2. These experiments showed that dead algal mats stimulate the growth of enterobacteria in the littoral zone of the Baltic Sea, especially in the freshwater part, and can promote the development of these pathogenic microorganisms.  相似文献   

17.
T. Sörlin 《Aquatic Ecology》1982,16(2-3):287-288
Summary The Baltic Sea, one of the largest brackish water areas in the world, can be characterized as a young, cold sea containing an impoverished ecosystem due to salinity stress. The present Baltic Sea was formed as late as 2000 to 2500 years ago when the Danish sounds became more narrow and shallow. The inflow of freshwater from the surrounding land areas caused the Baltic to gradually attain its brackish character. Today the Baltic covers an area of some 366,000 km2 as a series of basins separated by shallower areas and filled with about 22,000 km3 of brackish water. These basins are, from north to south, the Gulf of Bothnia, the Gulf of Finland, the Gotland Sea and the Bornholm Sea. The climate gradient ranges from almost arctic conditions in the extreme north to a more maritime climate in the southern parts. The North Sea salt water is connected to the Baltic through the shallow Kattegat and the sills in the Danish sounds. The inflow of salt water occurs in two different ways,viz. as a continuous flow along the bottom due to the salinity gradient and as pulses of salt water generated by the distribution of air pressure and the direction of the wind. The freshwater input (500 km3) from mainly the large rivers equals roughly the net outflow and stresses the south-bound current along the Swedish coast that also compensates for the salt water inflow. Tidal movements can be seen in the southern Baltic, but are of minor importance for the system. The residence time of the total water mass is 25 years and the hydrographical conditions within the different basins are stable and dominated by a permanent halocline, and a thermocline developing every spring. The salinity ranges from about 1–2 per mille in the innermost part of the Gulf of Bothnia to 10–15 per mille in the Bornholm Sea. Total vertical mixing takes place during winter in at least the northern parts of the sea. Due to the climate-gradient, the ice condition differs from about four months of total ice-cover in the inner parts of the Gulf of Bothnia to one month or less of coastal ice in the southern part of the Baltic. Thus, the seasonal effect is more pronounced in the northern parts.The living systems of the Baltic are reduced and adapted to these varying conditions. When comparing the deeper soft bottoms of the Gulf of Bothnia to the rest of the Baltic, the following pattern can be seen. The pelagic primary productivity increases by a factor 6 from north to south. The southern parts of the sea show a pronounced spring peak, while in the north the spring development is delayed or replaced by a summer maximum. The total increase of the macrofauna biomass is striking, from about 1 g.m–2 (w.wt) in the north to 100 g.m–2 (w.wt) or more in the south. The meiofauna and the zooplankton biomasses show less variability. The meiofauna increases by a factor of 2–4, giving a biomass of about twice that of the macrofauna in the northernmost part. The extremely low salinity of this area causes the exclusion of bivalves (filter-feeders) from the fauna. Available data, pooled with the high metabolic rate of the meiofauna, roughly follow the changes in primary productivity within the Baltic Sea. The changing ratio of macro- to meiofauna, as well as results from intensive studies of the macrobenthic amphipodPontoporeia affinis (Lindström), suggest that the macrofauna is regulated mainly by food limitation and that the benthic and pelagic systems are closely coupled.  相似文献   

18.
Net growth of ice algae in response to changes in overlying snow cover was studied after manipulating snow thickness on land-fast, Arctic sea ice. Parallel laboratory experiments measured the effect of changing irradiance on growth rate of the ice diatom, Nitzschia frigida. After complete removal of thick snow (≥9 cm), in situ ice algae biomass declined (over 7–12 days), while removal of thin snow layers (4–5 cm), or partial snow removal, increased net algal growth. Ice bottom ablation sometimes followed snow removal, but did not always result in net loss of algae. Similarly, in laboratory experiments, small increases in irradiance increased algal growth rate, while greater light shifts suppressed growth for 3–6 days. However, N. frigida could acclimate to relatively high irradiance (110 μmol photons m2 s−1). The results suggest that algal loss following removal of a thick snow layer was due to the combination of photoinhibition and bottom ablation. The smaller relative increase in irradiance after removal of thin or partial snow layers allowed algae to maintain high specific-growth rates that compensated for loss from physical mechanisms. Thus, the response of ice algae to snow loss depends both on the amount of change in snow depth and algal photophysiology. The complex response of ice algae growth and export loss to frequently changing snow fields may contribute to horizontal and temporal patchiness of ecologically and biogeochemically important variables in sea ice and should be considered in predictions of how climate change will affect Arctic marine ecosystems.  相似文献   

19.
The sea growth of two whitefish forms, anadromous (Coregonus lavaretus lavaretus) and sea‐spawning (Coregonus lavaretus widegreni), was analysed using samples collected from the commercial sea catch in the Gulf of Bothnia (GoB) in the northern Baltic Sea during 1998–2014. In the GoB area, these two forms are possible to identify because the gill‐raker number and size at maturity vary between forms. The growth rate of the forms is linked to their feeding area. Sea‐spawning whitefish, which has a feeding migration near its home site, was shorter in the northern GoB (66°N–64°N) at the ages of 3–11 than those in the southern GoB (64°N–60°30′N). In the data, most whitefish were caught with gill nets in the GoB. The mesh sizes of gill nets capturing the anadromous form were mostly 35–45 mm, while those capturing the sea‐spawning form were <35 mm in the northern GoB. It is likely that the different growth trends for small and large whitefish were connected with differences in their recruitment for fishing. The length of anadromous females at the age of four sea years increased significantly, but the length of six‐year‐old anadromous female whitefish decreased over the catch years from 1998–2014. In contrast, the length of slow‐growing sea‐spawning whitefish of six years or older increased significantly in relation to the catch year in the gill‐net catch. The increase in the growth of young age groups in both forms was probably associated with the increasing temperature and the low fishing pressure on small fish. The decreasing age at capture for both forms and the depression of the mean size of old anadromous whitefish are signs of high fishing pressure with a high gill‐net effort that selectively removes the largest and oldest individuals of both forms.  相似文献   

20.
Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice–water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 μg C l−1 d−1. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 μg C l−1 d−1. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r = 0.97, < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号