首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoacoustic calorimetry has been utilized to probe the thermodynamics accompanying photodissociation of the CO mixed valence form of bovine heart cytochrome c oxidase (COMV CcO). At pH's below 9 photolysis of the COMV CcO results in three kinetic phases with the first phase occurring faster than the time resolution of the instrument (i.e., < approximately 50 ns), a second phase occurring with a lifetime of approximately 100 ns and a third phase occurring with a lifetime of approximately 2 micros. The corresponding volume and enthalpy changes for these processes are: DeltaH1, DeltaV1 = +79 +/- 10 kcal mol(-1), +9 +/- 1 mL mol(-1); DeltaH2, DeltaV2 = -79 +/- 5 kcal mol(-1), -9 +/- 2 mL mol(-1); DeltaH3, DeltaV3 = +54 +/- 7 kcal mol(-1), +8 +/- 1 mL mol(-1). At pH's above 9 only one phase is observed, a prompt phase occurring in < 50 ns. The overall volume change is negligible above pH 9 and the enthalpy change is +29 +/- 5 kcal mol(-1). The data are consistent with the prompt phase being associated with CO-Fe(a3) bond cleavage, CO-CuB+ bond formation, Fe(a3) low-spin to high-spin transition and fast electron transfer (ET) from heme a3 to heme a followed by proton transfer from Glu242 to Arg38 on an approximately 100 ns timescale. The slow phase is likely a combination of CO thermal dissociation from CuB and additional ET between heme a3 to heme a. Interestingly, this phase is not evident above pH 9 suggesting linkage between CO dissociation/ET and the protonation state of a group or groups near the binuclear center.  相似文献   

2.
Mokdad A  Nissen M  Satterlee JD  Larsen RW 《FEBS letters》2007,581(23):4512-4518
Here we report the results of transient absorption and photoacoustic calorimetry studies of CO photodissociation from the heme domain of the bacterial oxygen sensor HemAT-Bs. The results indicate that CO photolysis is accompanied by an overall DeltaH of -19 kcal mol(-1) and DeltaV of +4 ml mol(-1) as well as a red-shifted kinetic difference spectrum all occurring in <50 ns. Analysis of the DeltaH/DeltaV reveals that a conformational change takes place with a DeltaH(conf) of -40 kcal mol(-1) and DeltaV(conf) of -22 ml mol(-1). These thermodynamic changes are consistent with an increase in the solvent accessible surface area of the protein upon ligand dissociation, as observed in the X-ray structure of the ferric CN-bound and CN free forms of HemAT-Bs.  相似文献   

3.
The focus of this study is to examine volume and enthalpy profiles of ligand binding associated with CO-Fe(II) tetrakis-(4-sulfonato phenyl)-porphyrin (COFe(II)4SP) in aqueous solution. Temperature dependent photothermal beam deflection was employed to probe the overall enthalpy and volume changes associated with CO-photolysis and recombination. The analysis demonstrates that ligand recombination occurs with a pseudo first order rate constant of (2.5+/-0.2)x10(4) s(-1) (at 25 degrees C) with a corresponding volume decrease of 6+/-1 ml/mol. The activation enthalpy (DeltaH(double dagger)) and volume (DeltaV(double dagger)) change for CO recombination (determined from temperature/pressure dependent transient absorption spectroscopy) are found to be 3.9 kcal/mol and 8.2 ml/mol, respectively. These data are consistent with a mechanism in which photolysis yields a five-coordinate high spin (H(2)O)Fe(II)4SP complex that recombines in a single step to form the low spin (CO)(H(2)O)Fe(II)4SP complex. Base elimination, often associated with CO photolysis from hemes, is not observed in this system. The overall volume changes suggest a transition state with significant high spin character. Furthermore, these results demonstrate the utility of coupling photothermal techniques with variable pressure/temperature transient absorption spectroscopy to probe heme reaction dynamics.  相似文献   

4.
Miksovská J  Horsa S  Davis MF  Franzen S 《Biochemistry》2008,47(44):11510-11517
Herein, we present photoacoustic calorimetry and transient absorption studies of the dynamics and energetics associated with dissociation of a ligand from Fe(2+) dehaloperoxidase (DHP) from Amphitrite ornata. Our data show that CO photodissociation is associated with an endothermic (DeltaH = 8 +/- 3 kcal mol(-1)) volume expansion (DeltaV = 9.4 +/- 0.6 mL mol(-1)) that occurs within 50 ns upon photodissociation. No additional thermodynamics were detected on slower time scales (up to 10 micros), suggesting that the dissociated ligand rapidly escapes from the heme-binding pocket into the surrounding solvent. Similar volume and enthalpy changes were observed for CO photodissociation in the presence of the substrate, 2,4-dichlorophenol or 4-bromophenol, indicating that either the substrate does not bind in the protein distal cavity at ambient temperature or its presence does not impact the thermodynamic profile associated with ligand dissociation. We attribute a fast ligand exchange between the protein active site and the surrounding solvent to the high flexibility of the distal histidine residue, His55, that provides a direct pathway between the heme-binding pocket and the protein exterior. The dynamics and energetics of conformational changes observed for dissociation of a ligand from DHP differ significantly from those measured previously for photodissociation of CO from the structural homologue myoglobin, suggesting that structural dynamics in DHP are fine-tuned to enhance the peroxidase function of this protein.  相似文献   

5.
Carbon monoxide binding to myoglobin was characterized using the photothermal beam deflection method. The volume and enthalpy changes coupled to CO dissociation were found to be 9.3+/-0.8 mL x mol(-1) and 7.4+/-2.8 kcal x mol(-1), respectively. The corresponding values observed for CO rebinding have the same magnitude but opposite sign: Delta V=-8.6+/-0.9 mL x mol(-1) and Delta H=-5.8+/-2.9 kcal x mol(-1). Ligand rebinding occurs as a single conformational step with a rate constant of 5 x 10(5) M(-1) s(-1) and with activation enthalpy of 7.1+/-0.8 kcal x mol(-1) and activation entropy of -22.4+/-2.8 cal x mol(-1) K(-1). Activation parameters for the ligand binding correspond to the activation parameters previously obtained using the transient absorption methods. Hence, at room temperature the CO binding to Mb can be described as a two-state model and the observed volume contraction occurs during CO-Fe bond formation. Comparing these results with CO dissociation reactions, for which two discrete intermediates were characterized, indicates differences in mechanism by which the protein modulates ligand association and dissociation.  相似文献   

6.
The stoichiometry of CO ligation to the dimer heme protein Rhodospirillum molischianum cytochrome c' is determined. We have recently measured the enthalpy change of CO ligation to this molecule by the van't Hoff method and found the value of -10.7 +/- 1.2 kcal/mol CO (aqueous) (Doyle, M. L., Weber, P. C., and Gill, S. J. (1985) Biochemistry 24, 1987-1991). In the present paper the enthalpy change of CO ligation, measured directly by titration calorimetry, is found to be -9.5 +/- 0.2 kcal/mol heme. Since the van't Hoff method gives the heat value in units/mole of CO and the calorimetric method gives the heat value in units/mole of heme, the stoichiometry of the reaction is given by the ratio of the two values and found to be 0.9 +/- 0.1, or within experimental error, one CO molecule bound per heme.  相似文献   

7.
Pressure is an effective modulator of protein structure and biological function. The influence of hydrostatic pressure (相似文献   

8.
Infrequent structural fluctuations of a globular protein is seldom detected and studied in detail. One tyrosine ring of HPr from Staphylococcus carnosus, an 88-residue phosphocarrier protein with no disulfide bonds, undergoes a very slow ring flip, the pressure and temperature dependence of which is studied in detail using the on-line cell high-pressure nuclear magnetic resonance technique in the pressure range from 3 MPa to 200 MPa and in the temperature range from 257 K to 313 K. The ring of Tyr6 is buried sandwiched between a beta-sheet and alpha-helices (the water-accessible area is less than 0.26 nm2), its hydroxyl proton being involved in an internal hydrogen bond. The ring flip rates 10(1)-10(5) s(-1) were determined from the line shape analysis of H(delta1, delta2) and H(epsilon1,epsilon2) of Tyr6, giving an activation volume DeltaV++ of 0.044 +/- 0.008 nm3 (27 mL mol(-1)), an activation enthalpy DeltaH++ of 89 +/- 10 kJ mol(-1), and an activation entropy DeltaS++ of 16 +/- 2 JK(-1) mol(-1). The DeltaV++) and DeltaH++ values for HPr found previously for Tyr and Phe ring flips of BPTI and cytochrome c fall within the range of DeltaV(double dagger) of 28 to 51 mL mol(-1) and DeltaH++ of 71 to 155 kJ mol(-1). The fairly common DeltaV++ and DeltaH++ values are considered to represent the extra space or cavity required for the ring flip and the extra energy required to create a cavity, respectively, in the core part of a globular protein. Nearly complete cold denaturation was found to take place at 200 MPa and 257 K independently from the ring reorientation process.  相似文献   

9.
Bhuyan AK  Kumar R 《Biochemistry》2002,41(42):12821-12834
To determine the kinetic barrier in the folding of horse cytochrome c, a CO-liganded derivative of cytochrome c, called carbonmonoxycytochrome c, has been prepared by exploiting the thermodynamic reversibility of ferrocytochrome c unfolding induced by guanidinium hydrochloride (GdnHCl), pH 7. The CO binding properties of unfolded ferrocytochrome c, studied by 13C NMR and optical spectroscopy, are remarkably similar to those of native myoglobin and isolated chains of human hemoglobin. Equilibrium unfolding transitions of ferrocytochrome c in the presence and the absence of CO observed by both excitation energy transfer from the lone tryptophan to the ferrous heme and far-UV circular dichroism (CD) indicate no accumulation of structural intermediates to a detectable level. Values of thermodynamic parameters obtained by two-state analysis of fluorescence transitions are DeltaG(H2O) = 11.65(+/-1.13) kcal x mol(-1) and C(m) = 3.9(+/-0.1) M GdnHCl in the presence of CO, and DeltaG(H2O)=19.3(+/-0.5) kcal x mol(-1) and C(m) = 5.1(+/-0.1) M GdnHCl in the absence of CO, indicating destabilization of ferrocytochrome c by approximately 7.65 kcal x mol(-1) due to CO binding. The native states of ferrocytochrome c and carbonmonoxycytochrome c are nearly identical in terms of structure and conformation except for the Fe2+-M80 --> Fe2+-CO replacement. Folding and unfolding kinetics as a function of GdnHCl, studied by stopped-flow fluorescence, are significantly different for the two proteins. Both refold fast, but carbonmonoxycytochrome c refolds 2-fold faster (tau = 1092 micros at 10 degrees C) than ferrocytochrome c. Linear extrapolation of the folding rates to the ordinate of the chevron plot projects this value of tau to 407 micros. The unfolding rate of the former in water, estimated by extrapolation, is faster by more than 10 orders of magnitude. Significant differences are also observed in rate-denaturant gradients in the chevron. Formation and disruption of the Fe2+-M80 coordination contact clearly impose high-energy kinetic barriers to folding and unfolding of ferrocytochrome c. The unfolding barrier due to the Fe2+-M80 bond provides sufficient kinetic stability to the native state of ferrocytochrome c to perform its physiological function as an electron donor.  相似文献   

10.
The thermal inactivation of immobilized cholinesterase enzymes (ChE) in solid matrices where the protein unfolding is blocked was studied, thus enabling investigation of the kinetics of the inactivation process directly from the native structure to the inactivated state. The thermal inactivation of butyrylcholinesterase (BChE), recombinant human acetylcholinesterase (rHuAChE), and eel acetylcholinesterase (AChE) enzymes was studied in dry films composed of poly(vinyl pyrollidone) (PVP), bovine serum albumin (BSA) and trehalose at 60 degrees -120 degrees C. The kinetics follows a bi-exponential decay equation representing a combination of fast and slow processes. The activation enthalpy DeltaH(#) and the activation entropy DeltaS(#) for each of the three enzymes have been evaluated. The values of DeltaH(#) for the fast process and for the slow process of BChE are 33+/-3, and 28+/-2 kcal/mol, respectively, and the values of DeltaS(#) are 0.84+/-0.04, and -18.2+/-0.5 cal/deg, respectively. The appropriate value of DeltaH(#) for rHuAChE is 26+/-2 Kcal/mol, for both processes and the values of DeltaS(#) are -17.6+/-0.9, and -23.0+/-0.9 cal/deg, respectively. Similarly, the values of DeltaH(#) for eelAChE are 30+/-3, 31+/-1 kcal/mol, and the values of DeltaS(#) are -6.7+/-0.5, -9.1+/-0.2 cal/deg respectively.  相似文献   

11.
Snider MJ  Wolfenden R 《Biochemistry》2001,40(38):11364-11371
Kinetic measurements have shown that substantial enthalpy changes accompany substrate binding by cytidine deaminase, increasing markedly as the reaction proceeds from the ground state (1/K(m), DeltaH = -13 kcal/mol) to the transition state (1/K(tx), DeltaH = -20 kcal/mol) [Snider, M. J., et al. (2000) Biochemistry 39, 9746-9753]. In the present work, we determined the thermodynamic changes associated with the equilibrium binding of inhibitors by cytidine deaminase by isothermal titration calorimetry and van't Hoff analysis of the temperature dependence of their inhibition constants. The results indicate that the binding of the transition state analogue 3,4-dihydrouridine DeltaH = -21 kcal/mol), like that of the transition state itself (DeltaH = -20 kcal/mol), is associated with a large favorable change in enthalpy. The significantly smaller enthalpy change that accompanies the binding of 3,4-dihydrozebularine (DeltaH = -10 kcal/mol), an analogue of 3,4-dihydrouridine in which a hydrogen atom replaces this inhibitor's 4-OH group, is consistent with the view that polar interactions with the substrate at the site of its chemical transformation play a critical role in reducing the enthalpy of activation for substrate hydrolysis. The entropic shortcomings of 3,4-dihydrouridine, in capturing all of the free energy involved in binding the actual transition state, may arise from its inability to displace a water molecule that occupies the binding site normally occupied by product ammonia.  相似文献   

12.
Guanosine triphosphate nucleotide analogues such as GppNHp (also named GMPPNP) or GTPgammaS are widely used to stabilize rapidly hydrolyzing protein-nucleotide complexes and to investigate biochemical reaction pathways. Here we describe the chemical synthesis of guanosine 5'-O-(gamma-amidotriphosphate) (GTPgammaNH(2)) and a new synthesis of guanosine 5'-O-(gamma-fluorotriphosphate) (GTPgammaF). The two nucleotides were characterized using NMR spectroscopy and isothermal titration calorimetry. Chemical shift data on (31)P, (19)F and (1)H NMR resonances are tabulated. For GTPgammaNH(2) the enthalpy of magnesium coordination is DeltaH degrees = 3.9 kcal.mol(-1) and the association constant K(a) is 0.82 mm(-1). The activation energy for GTPgammaNH(2).Mg2+ complex formation is DeltaH++ = 7.8 +/- 0.15 kcal.mol(-1), similar to that for the natural substrate GTP. For GTPgammaF we obtained a similar enthalpy of DeltaH degrees = 3.9 kcal.mol(-1) while the magnesium association constant is only K(a) = 0.2 mm(-1). The application of both guanine nucleotide analogues to the GTP-binding protein Ras was investigated. The rate of hydrolysis of GTPgammaNH(2) bound to Ras protein lay between the rates found for Ras-bound GTPgammaS and GppNHp, while Ras-catalysed hydrolysis of GTPgammaF was almost as fast as for GTP. The two compounds extend the variety of nucleotide analogues and may prove useful in structural, kinetic and cellular studies.  相似文献   

13.
The thermodynamic parameters for carbon binding to monomeric Rhodopseudomonas palustris cytochrome c' are determined. An enthalpy change for CO(aq) binding to the cytochrome is measured directly by titration calorimetry as -6.7 +/- 0.2 kcal/mol of heme, the CO binding equilibrium constant is measured at 35 degrees C as (1.96 +/- 0.05) X 10(5) M-1, and the binding equilibrium constant at 25 degrees C is calculated from the van't Hoff equation as (2.8 +/- 0.1) X 10(5) M-1. Comparison of the results to the known energetics of CO binding to dimeric cytochrome c', where the CO binding site is buried in the protein interior, indicates that the heme binding site on the monomer form is, in contrast, more exposed.  相似文献   

14.
The formal equilibrium reduction potentials of recombinant electron transport protein, rubredoxin (MW = 7500 Da), from both the mesophilic Clostridium pasteurianum (Topt = 37 degrees C) and hyperthermophilic Pyrococcus furiosus (Topt = 95 degrees C) were recorded as a function of pressure and temperature. Measurements were made utilizing a specially designed stainless steel electrochemical cell that easily maintains pressures between 1 and 600 atm and a temperature-controlled cell that maintains temperatures between 4 and 100 degrees C. The reduction potential of P. furiosus rubredoxin was determined to be 31 mV at 25 degrees C and 1 atm, -93 mV at 95 degrees C and 1 atm, and 44 mV at 25 degrees C and 400 atm. Thus, the reduction potential of P. furiosus rubredoxin obtained under standard conditions is likely to be dramatically different from the reduction potential obtained under its normal operating conditions. Thermodynamic parameters associated with electron transfer were determined for both rubredoxins (for C. pasteurianum, DeltaV degrees = -27 mL/mol, DeltaS degrees = -36 cal K-1 mol-1, and DeltaH degrees = -10 kcal/mol, and for P. furiosus, DeltaV degrees = -31 mL/mol, DeltaS degrees = -41 cal K-1 mol-1, and DeltaH degrees = -13 kcal/mol) from its pressure- and temperature-reduction potential profiles. The thermodynamic parameters for electron transfer (DeltaV degrees, DeltaS degrees, and DeltaH degrees ) for both proteins were very similar, which is not surprising considering their structural similarities and sequence homology. Despite the fact that these two proteins exhibit dramatic differences in thermostability, it appears that structural changes that confer dramatic differences in thermostability do not significantly alter electron transfer reactivity. The experimental changes in reduction potential as a function of pressure and temperature were simulated using a continuum dielectric electrostatic model (DELPHI). A reasonable estimate of the protein dielectric constant (epsilonprotein) of 6 for both rubredoxins was determined from these simulations. A discussion is presented regarding the analysis of electrostatic interaction energies of biomolecules through pressure- and temperature-controlled electrochemical studies.  相似文献   

15.
A prokaryotic protein, YtvA from Bacillus subtilis, was found to possess a light, oxygen, voltage (LOV) domain sharing high homology with the photoactive, flavin mononucleotide (FMN)-binding LOV domains of phototropins (phot), blue-light photoreceptors for phototropism in higher plants. Computer-based three-dimensional modeling suggests that YtvA-LOV binds FMN in a similar pocket as phot-LOVs. Recombinant YtvA indeed exhibits the same spectroscopical features and blue-light-induced photochemistry as phot-LOVs, with the reversible formation of a blue-shifted photoproduct, assigned to an FMN-cysteine thiol adduct (Thio383). By means of laser-flash photolysis and time-resolved optoacoustic experiments, we measured the quantum yield of formation for Thio383, Phi(Thio) = 0.49, and the enthalpy change, DeltaH(Thio) = 135 kJ/mol, with respect to the parent state. The formation of Thio383 is accompanied by a considerable volume contraction, DeltaV(Thio) = -13.5 ml/mol. Similar to phot-LOVs, Thio383 is formed from the decay of a red-shifted transient species, T650, within 2 micros. In both YtvA and free FMN, this transient has an enthalpy content of approximately 200 kJ/mol, and its formation is accompanied by a small contraction, DeltaV(T) approximately -1.5 ml/mol, supporting the assignment of T650 to the FMN triplet state, as suggested by spectroscopical evidences. These are the first studies indicating that phototropin-related, blue-light receptors may exist also in prokaryotes, besides constituting a steadily growing family in plants.  相似文献   

16.
Miksovská J  Gennis RB  Larsen RW 《FEBS letters》2005,579(14):3014-3018
Here, we report the volume and enthalpy changes accompanying CO photodissociation from the mixed valence form of cytochrome bo3 oxidase from Escherichia coli. The results of photoacoustic calorimetry indicate two kinetic phases with distinct volume and enthalpy changes accompanying CO photodissociation from heme o3 and its transfer to CuB. The first phase occurring on a timescale of <50 ns is characterized by a volume decrease of -1.3+/-0.3 mL mol-1 and enthalpy change of 32+/-1.6 kcal mol-1. Subsequently, a volume increase of 2.9 mL mol-1 with an enthalpy change of -5.3+/-2.5 kcal mol-1 is observed with the lifetime of approximately 250 ns (this phase has not been detected in previous optical studies). These volume and enthalpy changes differ from the volume and enthalpy changes observed for CO dissociation from fully reduced cytochrome bo3 oxidase indicating that the heme o3/CuB active site dynamics are affected by the redox state of heme b.  相似文献   

17.
We have shown that diphenlacetaldehyde (DPAA) is able to promote mitochondrial DeltaPsi disruption accompanied by damage in mitochondrial DNA, lipids, and proteins [Almeida, A. M.; Bechara, E. J. H.; Vercesi, A. E.; Nantes, I. L. Free Radic. Biol. Med. 27:744-747; 1999]. In this work, DPAA was used as a model of carbonyl reagent for cytochrome c. The results suggest that DPAA is a redox cytochrome c modifier. Conversion of Fe(III) to Fe(II) cytochrome c promoted by DPAA is pH dependent. The second-order rate determined for heme iron reduction (k2) is 698 M(-1) s(-1) and this process occurs with an activation energy of 8.5 +/- 0.8 kcal/mol. Analysis of the pH profile suggests the presence of two ionizable cytochrome c groups (pKa1 = 8.9 and pKa2 = 11.4) related to the electron transfer from DPAA to heme iron. The heats of ionization of the two prototropic groups, pKa1 (DeltaH(ion) = 6.5 kcal/mol, DeltaS(ion) = -29.0 cal/mol.K), and pKa2 (DeltaH(ion) = 5.0 kcal/mol, DeltaS(ion) = -24.0 cal/mol.K), suggest involvement of two tyrosine residues, probably Y67 and Y74, related to DPAA-promoted heme iron reduction. The cytochrome c chemical modification by iodination of tyrosine groups significantly decreased the reduction rate promoted by DPAA, and shifted the pH(opt) value from 10.0 to 9.25. The cytochrome c-promoted DPAA electron abstraction quickly produces the expected enol-derived radical, as indicated by 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS) spin trapping EPR measurements. This radical reacts with molecular oxygen, producing a peroxyl intermediate radical that, via a putative dioxetane intermediate, promotes formation of benzophenone as the main final product of this reaction, detected by high-performance liquid chromatography coupled with tandem mass spectrometry.  相似文献   

18.
The dynamics of the enthalpy and volume changes related to the photo-dissociation of oxygen from human and bovine oxyhemoglobin are investigated by nanosecond time-resolved photoacoustic calorimetry (PAC). The values of enthalpy and volume change associated with the above process are deltaH = 37.8 +/- 3 kcal/mol, deltaV = 5.0 +/- 1 ml/mol for human HbO(2); and deltaH = 35.7 +/- 3.5 kcal/mol, deltaV = 4.8 +/- 1 ml/mol for bovine HbO(2), respectively. A possible explanation for the similar values between both human and bovine oxyhemoglobin is proposed. In addition, the PAC results for human HbO(2) and HbCO are compared and discussed.  相似文献   

19.
Sharrow SD  Novotny MV  Stone MJ 《Biochemistry》2003,42(20):6302-6309
The mouse pheromone 2-sec-butyl-4,5-dihydrothiazole (SBT) binds to an occluded, nonpolar cavity in the mouse major urinary protein-I (MUP-I). The thermodynamics of this interaction have been characterized using isothermal titration calorimetry (ITC). MUP-I-SBT binding is accompanied by a large favorable enthalpy change (DeltaH = -11.2 kcal/mol at 25 degrees C), an unfavorable entropy change (-TDeltaS = 2.8 kcal/mol at 25 degrees C), and a negative heat capacity change [DeltaC(p)() = -165 cal/(mol K)]. Thermodynamic analysis of binding between MUP-I and several 2-alkyl-4,5-dihydrothiazole ligands indicated that the alkyl chain contributes more favorably to the enthalpy and less favorably to the entropy of binding than would be expected on the basis of the hydrophobic desolvation of short-chain alcohols. However, solvent transfer experiments indicated that desolvation of SBT is accompanied by a net unfavorable change in enthalpy (DeltaH = +1.0 kcal/mol) and favorable change in entropy (-TDeltaS = -1.8 kcal/mol). These results are discussed in terms of the possible physical origins of the binding thermodynamics, including (1) hydrophobic desolvation of both the protein and the ligand, (2) formation of a buried water-mediated hydrogen bond network between the protein and ligand, (3) formation of strong van der Waals interactions, and (4) changes in the structure, dynamics, and/or hydration of the protein upon binding.  相似文献   

20.
Pressure-induced unfolding of 23-kDa protein from spinach photosystem II has been systematically investigated at various experimental conditions. Thermodynamic equilibrium studies indicate that the protein is very sensitive to pressure. At 20 degrees C and pH 5.5, 23-kDa protein shows a reversible two-state unfolding transition under pressure with a midpoint near 160 MPa, which is much lower than most natural proteins studied to date. The free energy (DeltaG(u)) and volume change (DeltaV(u)) for the unfolding are 5.9 kcal/mol and -160 ml/mol, respectively. It was found that NaCl and sucrose significantly stabilize the protein from unfolding and the stabilization is associated not only with an increase in DeltaG(u) but also with a decrease in DeltaV(u). The pressure-jump studies of 23-kDa protein reveal a negative activation volume for unfolding (-66.2 ml/mol) and a positive activation volume for refolding (84.1 ml/mol), indicating that, in terms of system volume, the protein transition state lies between the folded and unfolded states. Examination of the temperature effect on the unfolding kinetics indicates that the thermal expansibility of the transition state and the unfolded state of 23-kDa protein are closer to each other and they are larger than that of the native state. The diverse pressure-refolding pathways of 23-kDa protein in some conditions were revealed in pressure-jump kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号