首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on Ca2+/calmodulin-dependent cyclic nucleotide (AMP) phosphodiesterase activity in rat liver cytosol was investigated. The addition of Ca2+ (50 µM) and calmodulin 160 U/ml in the enzyme reaction mixture caused a significant increase in cyclic AMP phosphodiesterase activity. This increase was inhibited by the presence of regucalcin (0.5-3.0 µM); the inhibitory effect was complete at 1.0 µM. Regucalcin (1.0 µM) did not have an appreciable effect on basal activity without Ca2+ and calmodulin. The inhibitory effect of regucalcin was still evident even at several fold higher concentrations of calmodulin (160–480 U/ml). However, regucalcin (1.0 µM) did not inhibit Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity in the presence of 100 and 200 µM Ca2+ added. Meanwhile, Cd2 (25–100 µM)-induced decrease in Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity was not reversed by the presence of regucalcin (1.0 µM). The present results suggest that regucalcin can regulate Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity due to binding Ca2+ in liver cells.  相似文献   

2.
The effect of regucalcin on Ca2+/calmodulin-dependent protein kinase activity in the cytosol of rat renal cortex was investigated. Regucalcin is a calcium-binding protein which exists in rat liver and renal cortex. Protein kinase activity in renal cortex cytosol was markedly increased by the addition of CaCl2 (0.5 mM) plus calmodulin (10 µg/ml) in the enzyme reaction mixture. This increase was completely prevented by the addition of trifluoperazine (25 µM), an antagonist of calmodulin. The cytosolic Ca2+/calmodulin- dependent protein kinase activity was clearly inhibited by the addition of regucalcin; an appreciable effect of regucalcin was seen at 0.01 µM. The cytosolic Ca2+/calmodulin-dependent protein kinase activity was fairly increased by increasing concentrations of added Ca2+ (100-1000 µM). This increase was markedly blocked by the presence of regucalcin (0.1 µM). The inhibitory effect of regucalcin on the protein kinase activity was also seen with varying concentrations of calmodulin (2-20 µg/ml). These results demonstrate that regucalcin can regulate Ca2+/calmodulin-dependent protein kinase activity in renal cortex cells.  相似文献   

3.
The effect of regucalcin, a novel Ca2+-binding protein, on Ca2+/ calmodulin-dependent cyclic adenosine monophosphate (AMP) phosphodiesterase activity in the cytosol of rat renal cortex was investigated. Regucalcin with physiologic concentration (10-7 M) in rat kidney had no effect on cyclic AMP phosphodiesterase activity in the absence of CaCl2 and calmodulin. However, the activatory effect of both CaCl2 (10 µM) and calmodulin (20 U/ml) on cyclic AMP phosphodiesterase was markedly inhibited by the addition of regucalcin (10-8 to 10-6 M) in the enzyme reaction mixture. The inhibitory effect of regucalcin on the enzyme activity was also seen in the presence of CaCl2 (5-50 µM) or calmodulin (5-50 U/ml) with increasing concentrations. The presence of trifluoperazine (10 µM), an antagonist of calmodulin, caused a partial inhibition of Ca2+ /calmodulin-dependent cyclic AMP phosphodiesterase activity. This inhibition was further enhanced by the addition of regucalcin (10-7 M). The inhibitory effect of regucalcin (10-7 M) was not seen in the presence of 20 µM trifluoperazine. Moreover, the activatory effect of calmodulin (20 U/ml) on cyclic AMP phosphodiesterase was not entirely seen, when calmodulin was added 10 min after incubation in the presence of CaCl2 (10 µM) and regucalcin (10-7 M). The present results demonstrates that regucalcin has an inhibitory effect on Ca2+ /calmodulin-dependent cyclic AMP phosphodiesterase activation in the cytosol of rat renal cortex.  相似文献   

4.
The increasing effect of regucalcin, isolated from rat liver cytosol, on neutral proteolytic activity in the hepatic cytosol was characterized. The proteolytic activity was markedly elevated by the addition of regucalcin (0.1–0.5 M) in the absence of Ca2+. This increase was not significantly altered by the presence of diisopropylfluorophsophate (DPF;2.5 mM)—although DFP caused a significant decrease in the proteolytic activity. Regucalcin (0.25 M) additively enhanced the dithiothreitol (DTT; 1.0 mM)—increased proteolytic activity, while the regucalcin or DTT effect was completely abolished by NEM (5 mM), indicating that regucalcin may act on the SH group in proteases. Also, regucalcin (0.25 M) enhanced the effect of Ca2+ (10 M) increasing liver proteolytic activity, suggesting that regucalcin does not influence on the active sites for Ca2+ in proteases. Moreover, the proteolytic activity of regucalcin (0.25 M) was significantly decreased by the presence of calpastatin (24 g/ml), an inhibitor of Ca2+-activated neutral protease (calpain). Now, regucalcin (0.25 M) increased about 7-fold the activity ofm-calpain isolated from rabbit skeletal muscle. These observations demonstrate that regucalcin directly activates cysteinyl-proteases. Regucalcin may have a role as a potent proteolytic activator in the cytoplasm of liver cells.  相似文献   

5.
The regulatory effect of regucalcin on Ca2+/calmodulin-dependent phosphatase activity and the binding of regucalcin to calmodulin was investigated. Phosphatase activity toward phosphotyrosine, phosphoserine, and phosphothreonine in rat liver cytosol was significantly increased by the addition of Ca2+ (100 μM) and calmodulin (0.30 μM). Thess increases were clearly inhibited by the addition of regucalcin (0.50–1.0 μM) into the enzyme reaction mixture. The cytosolic phosphoamino acid phosphatase activity was significantly elevated by the presence of anti-regucalcin monoclonal antibody (0.2 μg/ml), suggesting that endogenous regucalcin in the cytosol has an inhibitory effect on the enzyme activity. This elevation was prevented by the addition of regucalcin (0.50 μM). Purified calcineurin phosphatase activity was significantly increased by the addition of calmodulin (0.12 μM) in the presence of Ca2+ (1 and 10 μM). This increase was completely inhibited by the presence of regucalcin (0.12 μM). The inhibitory effect of regucalcin was reversed by the addition of calmodulin with the higher concentration (0.36 μM). Regucalcin has been demonstrated to bind on calmodulin-agarose beads by analysis with sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The present study demonstrates that regucalcin inhibits Ca2+/calmodulin-dependent protein phosphatase activity in rat liver cytosol, and that regucalcin can bind to calmodulin. J. Cell. Biochem. 71:140–148, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
The interaction of various hormones and regucalcin on (Ca2+–Mg2+)-ATPase activity in rat liver plasma membranes was investigated. The presence of epinephrine (10–6–10–4 M), and insulin (10–8–10 M) in the reaction mixture produced a significant increase in (Ca2+–Mg2+)-ATPase activity, while the enzyme activity was decreased significantly by calcitonin, (3×10–8–3×10–6 M). These hormonal effects, except for calcitonin, were clearly inhibited by the presence of vanadate (10–4 M) which can inhibit the Ca2+-dependent phosphorylation of enzyme. Meanwhile, regucalcin (0.25 and 0.50 M), isolated from rat liver cytosol, elevated significantly (Ca2+–Mg2+)-ATPase activity in the plasma membranes, although this elevation was not inhibited by vanadate (10–4 M). the epinephrine (10–5 M) or phenylephrine (10–4 M)-induced increase in (Ca2+–Mg2+)-ATPase activity was disappeared in the presence of regucalcin; in this case the effect of regucalcin was also weakened. However, the inhibitory effect of calcitonin (3×10–6 M) was not weakened by the presence of regucalcin (0.5 M). Moreover, GTP (10–5 and 10–4 M)-induced increase in (Ca2+–Mg2+)-ATPase activity was not seen in the presence of regucalcin (0.25 M). The present finding suggests that the activating mechanism of regucalcin on (Ca2+–Mg2+)-ATPase is not involved on GTP-binding protein which modulates the receptor-mediated hormonal effect in rat liver plasma membranes.  相似文献   

7.
The effect of regucalcin, a Ca2+-binding protein, on Ca2+ transport system in rat renal cortex microsomes was investigated. The presence of regucalcin (10-8 to 10-6 M) in the reaction mixture caused a significant increase in Ca2+-ATPase activity and ATP-dependent45 Ca2+ uptake in the microsomes. Regucalcin (10-7 M) increased Ca2+-ATPase activity independently of increasing concentrations of CaCl_2. The microsomal Ca2+-ATPase activity and45 Ca2+ uptake were markedly decreased by the presence of vanadate (0.1 mM) or N-ethylmaleimide (NEM; 5 mM) in the absence or presence of regucalcin. Dithiothreitol (DTT; 5 mM) markedly elevated Ca2+-ATPase activity and 45Ca2+ uptake in the microsomes. The DTT effects were not further enhanced by regucalcin (10-7 M). Meanwhile, the microsomal Ca2+-ATPase activity and 45Ca2+ uptake were significantly decreased by the presence of dibutyryl cyclic AMP (DcAMP; 10-5 and 10-3 M) or inositol 1,4, 5-trisphosphate (IP3; 10-7 and 10-5 M). The effect of regucalcin (10-7 M) on Ca2+ ATPase activity and 45Ca2+ uptake was weakened in the presence of DcAMP or IP3. The present results demonstrate that regucalcin has a stimulatory effect on ATP-dependent Ca2+ uptake in the microsomes of rat renal cortex due to acting on the thiol groups of Ca2+-ATPase.  相似文献   

8.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, onin vitro protein synthesis in the 5500g supernatant fraction of rat liver homogenate was investigated. Addition of Ca2+ up to 5.0 M in the reaction mixture caused a significant decrease in protein synthesis. This decrease was saturated at 10 M Ca2+. The Ca2+ effect was not reversed by the presence of regucalcin (2.0 M); the protein caused a remarkable decrease in hepatic protein synthesis, and it enhanced significantly the Ca2– effect. Meanwhile, calmodulin (2.5-20 g/ml), a calcium-binding protein, did not have an appreciable effect on the Ca2+ (10 M)-induced decrease in hepatic protein synthesis. [3H]Leucyl-tRNA synthetase activity in the 105000g supernatant fraction (cytosol) of liver homogenate was markedly decreased by addition of Ca2+ (1.0–50 M). This decrease was not reversed by the presence of regucalcin (2.0 M); the protein (1.0–2.0 M) caused a remarkable decrease in the enzyme activity. The present results suggest that regucalcin can regulate protein synthesis in liver cells.  相似文献   

9.
The effect of hormonal signaling factors on (Ca2+–Mg2+)-ATPase activity in rat liver plasma membranes was investigated. The presence of inositol-glycan (10–7–10–5M), dibutyryl cAMP (10–4 and 10–3M) or inositol 1,4,5-trisphosphate (IP3; 10–6 and 10–5 M) in the enzyme reaction mixture produced a significant increase in (Ca2+–Mg2+)-ATPase activity. These effects were completely inhibited by the presence of vanadate (10–4 M), an inhibitor of the enzyme phosphorylation, and N-ethylmaleimide (5×10–3 M), a SH group modifying reagent. Meanwhile, regucalcin, a Ca2+-binding protein isolated from rat liver cytosol, increased the enzyme activity by binding to the SH groups of (Ca2+–Mg2+)-ATPase in liver plasma membranes. The presence of regucalcin (0.25 M) with an effective concentration completely inhibited the effect of inositol-glycan (10–5 M) to increase (Ca2+–Mg2+)-ATPase activity, while the effect of dibutyryl cAMP (10–3M) or IP3 (10–5M) was not altered. The inositol-glycan effect was not modulated by the presence of dibutyryl cAMP or IP3. Now, the preincubation of the plasma membranes with regucalcin did not modify the effect of inositol-glycan on the enzyme activity, suggesting that regucalcin competes with inositol-glycan for the binding to the plasma membranes. The present results suggest that there may be a cross talk with regucalcin and hormonal signaling factors in the regulation of (Ca2+–Mg2+)-ATPase activity in liver plasma membranes.  相似文献   

10.
The effect of various metals and regucalcin, a calcium-binding protein isolated from rat liver cytosol, on (Ca2+–Mg2+)-ATPase activity in the plasma membranes of rat liver was investigated. Of various metals (Zn2+, Cu2+, Ni2+, Mn2+, Co2+ and Al3+; 100 M as a final concentration), Mn2+ and Co2+ increased markedly (Ca2+–Mg2+)-ATPase activity, while other metals had no effect. When Ca2+ was not added into enzyme reaction mixture, Mn2+ and Co2+ (25–100 M) did not significantly increase the enzyme activity, indicating that heavy metals act on Ca2+-stimulated phosphorylation of the enzyme. Meanwhile, regucalcin (0.25–1.0 M) caused a remarkable elevation of (Ca2+–Mg2+)-ATPase activity. This increase was not inhibited by the presence of 100 M vanadate, although the effects of Mn2+ and Co2+ (100 M) were inhibited by vanadate. Also, the inhibition of the Mn2+ and Co2+ effects by vanadate was not seen in the presence of regucalcin. Moreover, regucalcin (0.5 M) increased significantly the enzyme activity in the absence of Ca2+. This effect of regulcalcin was not altered by increasing concentrations of Ca2+ added, indicating that the regucalcin effect does not depend on Ca2+. The present results suggest that regucalcin activates directly (Ca2+–Mg2+)-ATPase in liver plasma membranes, and that the activation is not involved in the Ca2+-dependent phosphorylation of the enzyme.  相似文献   

11.
The effect of regucalcin, which is a regulatory protein of Ca2+ signaling, on Ca2+‐ATPase activity in isolated rat renal cortex mitochondria was investigated. The presence of regucalcin (50, 100, and 250 nM) in the enzyme reaction mixture led to a significant increase in Ca2+‐ATPase activity. Regucalcin significantly stimulated ATP‐dependent 45Ca2+ uptake by the mitochondria. Ruthenium red (10−6 M) or lanthunum chloride (10−6 M), an inhibitor of mitochondrial Ca2+ uptake, markedly inhibited regucalcin (100 nM)‐increased mitochondrial Ca2+‐ATPase activity and 45Ca2+ uptake. The effect of regucalcin (100 nM) in elevating Ca2+‐ATPase activity was completely prevented by the presence of digitonin (10−2%), a solubilizing reagent of membranous lipids, vanadate, an inhibitor of phosphorylation of ATPase, or dithiothreitol (50 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme. The activating effect of regucalcin (100 nM) on Ca2+‐ATPase activity was not further enhanced by calmodulin (0.30 μM) or dibutyryl cyclic AMP (10−4 M), which could increase Ca2+‐ATPase activity. Trifluoperazine (TFP; 50 μM), an antagonist of calmodulin, significantly decreased Ca2+‐ATPase activity. The activating effect of regucalcin on the enzyme was also seen in the presence of TFP, indicating that regucalcin's effect is not involved in mitochondrial calmodulin. The present study demonstrates that regucalcin can stimulate Ca2+‐pump activity in rat renal cortex mitochondria, and that the protein may act on an active site (SH group) related to phosphorylation of mitochondrial Ca2+‐ATPase. J. Cell. Biochem. 80:285–292, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

12.
The expression of hepatic Ca2+-binding protein regucalcin in the cloned rat hepatoma cells (H4-II-E) was investigated. The change in regucalcin mRNA levels was analyzed by Northern blotting using rat liver regucalcin complementary DNA (0.9 kb of open reading frame). Regucalcin mRNA was expressed in H4-II-E hepatoma cells. This expression was clearly stimulated in the presence of serum (10% fetal bovine serum). Bay K 8644 (2. 5 × 10-6 M), a Ca2+ channel agonist, significantly stimulated regucalcin mRNA expression in the absence or presence of 10% serum. Dibutyryl cyclic AMP (10-3 M) did not have a stimulatory effect on the regucalcin mRNA expression. The presence of phorbol 12-myristate 13-acetate (PMA; 10-6 M) or estrogen (10-8 M) caused a significant increase in regucalcin mRNA levels in the hepatoma cells cultured in serum-free medium, while insulin (5 × 10-9 M) or dexamethasone (10-6 M) had no effect. Bay K 8644-stimulated regucalcin mRNA expression in the hepatoma cells was completely blocked in the presence of trifluoperazine (10-5 M), an antagonist of calmodulin, or staurosporine (10-7 M), an inhibitor of protein kinase C. The stimulatory effect of PMA was clearly inhibited in the presence of stauroporine. The present study demonstrates that regucalcin mRNA is expressed in the transformed H4-II-E hepatoma cells, and that the expression is stimulated through Ca2+-dependent signaling factors.  相似文献   

13.
The activating mechanism of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on (Ca2+–Mg2+)-ATPase in the plasma membranes of rat liver was investigated. (Ca2+–Mg2+)-ATPase activity was markedly increased by a sulfhydryl (SH) group protecting reagent dithiothreitol (DTT; 2.5 and 5 mM as a final concentration), while the enzyme activity was significantly decreased by a SH group modifying reagent N-ethylmaleimide (NEM; 0.5–5 mM). The effect of DTT (5 mM) to increase the enzyme activity was clearly blocked by NEM (5 mM). Regucalcin (0.25–1.0 M) significantly increased (Ca2+-Mg2+)-ATPase activity. This increase was completely blocked by NEM (5 mM). Meanwhile, digitonin (0.04%), which can solubilize the membranous lipids, significantly decreased (Ca2+–Mg2+)-ATPase activity. Digitonin did not have an effect on the DTT (5 mM)-increased enzyme activity. However, the effect of regucalcin (0.25 M) increasing (Ca2+–Mg2+)-ATPase activity was entirely blocked by the presence of digitonin. The present results suggest that regucalcin activates (Ca2+–Mg2+)-ATPase by the binding to liver plasma membrane lipids, and that the activation is involved in the SH groups which are an active site of the enzyme.  相似文献   

14.
The effect of regucalcin, a calcium-binding protein, on neutral proteolytic activity in the cytosol of rat kidney cortex was investigated. Proteolytic activity was significantly increased by the presence of regucalcin (0. 01-0. 25 M) in the enzyme reaction mixture. This increase was not significantly altered by the addition of CaCl2 (0.01 and 1.0 mM) or EGTA (1.0 mM), indicating that the effect of regucalcin was independent on Ca2+. The effect of regucalcin to increase proteolytic activity was completely prevented in the presence of N-ethylmaleimide (5 mM), a modifying reagent of thiol groups. Proteolytic activity was clearly elevated by dithiothreitol (5 mM). This elevation was further enhanced by regucalcin (0.1 M). Meanwhile, the stimulatory effect of regucalcin on proteolytic activity was not significantly altered in the presence of diisopropylfluorophosphate (2.5 mM), an inhibitor of serine proteases. Also, the regucalcin effect was not appreciably changed by the addition of EDTA (2.5 mM), a chelator of metal ions, indicating that it is not involved in metal-related proteases. These results demonstrate that regucalcin can increase proteolytic activity in the cytosol of rat kidney cortex. Regucalcin may activate thiol proteases independent on Ca2+.  相似文献   

15.
Calcium-activated proteolytic activity in rat liver mitochondria   总被引:1,自引:0,他引:1  
Soluble extracts from sonicated rat liver mitochondria and rat liver cytosol were each chromatographed on DEAE-cellulose columns, and the fractions assayed for Ca2+-activated proteolytic activity using 14C-casein as a substrate. The mitochondrial preparations were shown to be free of cytosolic and microsomal contamination by the lack of alcohol dehydrogenase activity, a cytosolic marker enzyme, and by a lack of cytochrome P-450 activity, a microsomal marker enzyme. Two peaks of Ca2+-activated neutral endoprotease activity were resolved from the mitochondrial fractions. One protease was half-maximally activated with 25 μM Ca2+, and the other by 750 μM Ca2+. Rat liver cytosol contained only a high Ca2+-requiring protease peak. This is the first demonstration of Ca2+-activated proteases in mitochondria.  相似文献   

16.
An endogenous inhibitor of calcium activated neutral proteinase has been purified from human placenta. The procedure included chromatography on DEAE cellulose, Ultrogel AcA 22 and milli calcium activated neutral proteinase-sepharose in succession. Endogenous calcium activated neutral proteinase inhibitor was a tetramer with identical subunits of molecular weight 68 kDa. It was specific for milli calcium activated neutral proteinase (Calpain II) which is inhibited by the formation of an inactive enzyme-inhibitor complex and not by sequestering Ca2+ from the medium. Although micro calcium activated neutral proteinase (Calpain I) was not inhibited by endogenous calcium activated neutral proteinase inhibitor, it was protected from autolysis in the presence of the inhibitor. The placental endogenous calcium activated neutral proteinase inhibitor thus regulates Ca2+ activated proteolysis by ensuring micro calcium activated neutral proteinase activity, while inhibiting milli calcium activated neutral proteinase.  相似文献   

17.
The alteration of regucalcin concentrations in the liver and serum of rats administered orally calcium is investigated. Rats received a single oral administration of calcium chloride solution (25, 50 and 75 mg Ca/100 g body weight). The administration of calcium (50 mg/100 g) produced a significant increase in liver regucalcin concentration between 30 and 180 min after the administration, while serum regucalcin concentration was not altered appreciably. The effect of calcium administration increasing liver regucalcin concentration was also seen with the dose of 25 mg/100 g. When liver cytosol prepared from normal rats was incubated for 6 h in the presence of 10 M Ca2+, the cytosolic regucalcin concentration at 3 and 6 h of incubation was decreased about 20% (p<0.05) as compared with the value at zero time point, indicating that the presence of Ca2+ does not inhibit the decomposition of liver cytosolic regucalcin. Moreover, serum regucalcin concentration was not significantly altered by the incubation for 6 h at 37°C, indicating a stability of regucalcin in rat serum. This suggests that the calcium administration-induced in liver regucalcin concentration is not based on the inhibition of regucalcin release from liver to serum. The present study demonstrates that regucalcin in the liver is clearly increased by calcium administration, presumably due to stimulating the protein synthesis.  相似文献   

18.
The effect of Ca2+-binding protein regucalcin on protein kinase activity in the nuclei of normal and regenerating rat livers was investigated. Protein kinase activity in the nuclei isolated from normal rat liver was significantly increased by addition of Ca2+ (500 μM) and calmodulin (10 μg/ml) in the enzyme reaction mixture. Nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), trifluoperazine (TFP; 20 μM), dibucaine (10−4 M), or staurosporine (10−7 M), indicating that Ca2+-dependent protein kinases are present in the nuclei. Protein kinase activity was significantly elevated in the liver nuclei obtained at 6 to 48 h after a partial hepatectomy. Hepatectomy-increased nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), TFP (20 μM), or staurosporine (10−7 M) in the enzyme reaction mixture. The presence of regucalcin (0.1–0.5 μM) caused a significant decrease in protein kinase activity in the nuclei obtained from normal and regenerating rat livers. Meanwhile, the nuclear protein kinase activity from normal and regenerating livers was significantly elevated in the presence of anti-regucalcin monoclonal antibody (50–200 ng/ml). The present study suggests that regucalcin plays a role in the regulation of protein kinase activity in the nuclei of proliferative liver cells. J. Cell. Biochem. 71:569–576, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
The alteration of (Ca2+-Mg2+)-ATPase activity in the plasma membranes of regenerating rat liver after a partial hepatectomy was investigated. Liver was surgically removed about two thirds of that of sham-operated rats. The reduced liver weight by partial hepatectomy was restored about 50% at 24 h after the surgery, and it was completely restored at 72 h. Regenerating liver significantly increased calcium content and plasma membrane (Ca2+-Mg2+)-ATPase activity between 12–48 h after hepatectomy. Those increases were maximum at 24 h after the surgery. The regenerating liver-induced increase in hepatic plasma membrane (Ca2+-Mg2+)-ATPase activity was completely abolished by the presence of anti-regucalcin IgG (1.0–4.0 g/ml). The regenerating liver-induced increase in hepatic plasma membrane (Ca2+-Mg2+)-ATPase activity was clearly inhibited by N-ethylmaleimide (2.5 and 5.0 mM) addition into the enzyme reaction mixture. This NEM effect was also seen for the activatory effect with regucalcin (0.25 M) addition on the enzyme activity in the plasma membranes from normal rat liver. The endogenous regucalcin may play a cell physiological role in the activation of the plasma membrane (Ca2+-Mg2+)-ATPase to maintain the intracellular calcium level in regenerating rat liver.  相似文献   

20.
It has been known that the extracellular proteinase of Coccus P is found only in cultures grown in the presence of Ca2+. It is now shown that this cation is required neither for synthesis, excretion, or activation of a zymogen nor as a prosthetic factor necessary for enzymatic activity. The only function of Ca2+ is to stabilize the active structure of the enzyme molecule, presumably by substituting for absence of S-S bridges. In the absence of Ca2+, the excreted proteinase undergoes rapid autodigestion and, instead of the active protein, its hydrolytic products are accumulated in the culture fluid. In minimal medium and under conditions of enzyme stability [presence of Ca2+ and Ficoll (Pharmacia)], Coccus P accumulates the proteinase at a gradually reduced speed although the rate of cultural growth remains constant. It is shown that this decline in rate of accumulation is caused by the excreted proteinase itself, possibly acting on its own precursor emerging from the cell in a form susceptible to proteolytic attack and not amenable to Ca2+ protection. A proteinase precursor is actually demonstrable in a calciumless culture at the onset of the enzyme accumulation which follows Ca2+ addition. It is suggested that excreted proteins require an unfolded (or incompletely folded) structure to cross the cell envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号