首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3−/−) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21 days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3−/− and WT mice were subjected to myocardial ischemia (45 min) followed by reperfusion for up to 3 days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3−/− mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3−/− mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1β) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients.  相似文献   

2.
BackgroundToll-like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. The TLR9 ligand, CpG-ODN has been reported to improve cell survival. We examined effect of CpG-ODN on myocardial I/R injury.MethodsMale C57BL/6 mice were treated with either CpG-ODN, control-ODN, or inhibitory CpG-ODN (iCpG-ODN) 1 h prior to myocardial ischemia (60 min) followed by reperfusion. Untreated mice served as I/R control (n = 10/each group). Infarct size was determined by TTC straining. Cardiac function was examined by echocardiography before and after myocardial I/R up to 14 days.ResultsCpG-ODN administration significantly decreased infarct size by 31.4% and improved cardiac function after myocardial I/R up to 14 days. Neither control-ODN nor iCpG-ODN altered I/R-induced myocardial infarction and cardiac dysfunction. CpG-ODN attenuated I/R-induced myocardial apoptosis and prevented I/R-induced decrease in Bcl2 and increase in Bax levels in the myocardium. CpG-ODN increased Akt and GSK-3β phosphorylation in the myocardium. In vitro data suggested that CpG-ODN treatment induced TLR9 tyrosine phosphorylation and promoted an association between TLR9 and the p85 subunit of PI3K. Importantly, PI3K/Akt inhibition and Akt kinase deficiency abolished CpG-ODN-induced cardioprotection.ConclusionCpG-ODN, the TLR9 ligand, induces protection against myocardial I/R injury. The mechanisms involve activation of the PI3K/Akt signaling pathway.  相似文献   

3.
The macrophage scavenger receptor class A (SR-A) participates in the innate immune and inflammatory responses. This study examined the role of macrophage SR-A in myocardial ischemia/reperfusion (I/R) injury and hypoxia/reoxygenation (H/R)-induced cell damage. SR-A?/? and WT mice were subjected to ischemia (45 min) followed by reperfusion for up to 7 days. SR-A?/? mice showed smaller myocardial infarct size and better cardiac function than did WT I/R mice. SR-A deficiency attenuated I/R-induced myocardial apoptosis by preventing p53-mediated Bak-1 apoptotic signaling. The levels of microRNA-125b in SR-A?/? heart were significantly greater than in WT myocardium. SR-A is predominantly expressed on macrophages. To investigate the role of SR-A macrophages in H/R-induced injury, we isolated peritoneal macrophages from SR-A deficient (SR-A?/?) and wild type (WT) mice. Macrophages were subjected to hypoxia followed by reoxygenation. H/R markedly increased NF-κB binding activity as well as KC and MCP-1 production in WT macrophages but not in SR-A?/? macrophages. H/R induced caspase-3/7 and -8 activities and cell death in WT macrophages, but not in SR-A?/? macrophages. The levels of miR-125b in SR-A?/? macrophages were significantly higher than in WT macrophages. Transfection of WT macrophages with miR-125b mimics attenuated H/R-induced caspase-3/7 and -8 activities and H/R-decreased viability, and prevented H/R-increased p-53, Bak-1 and Bax expression. The data suggest that SR-A deficiency attenuates myocardial I/R injury by targeting p53-mediated apoptotic signaling. SR-A?/? macrophages contain high levels of miR-125b which may play a role in the protective effect of SR-A deficiency on myocardial I/R injury and H/R-induced cell damage.  相似文献   

4.
《Phytomedicine》2014,21(10):1146-1153
IntroductionR(+)-pulegone is a ketone monoterpene and it is the main constituent of essential oils in several plants. Previous studies provided some evidence that R(+)-pulegone may act on isolated cardiac myocytes. In this study, we evaluated in extended detail, the pharmacological effects of R(+)-pulegone on cardiac tissue.MethodsUsing in vivo measurements of rat cardiac electrocardiogram (ECG) and patch-clamp technique in isolated myocytes we determinate the influence of R(+)-pulegone on cardiac excitability.ResultsR(+)-pulegone delayed action potential repolarization (APR) in a concentration-dependent manner (EC50 = 775.7 ± 1.48, 325.0 ± 1.30, 469.3 ± 1.91 μM at 10, 50 and 90% of APR respectively). In line with prolongation of APR R(+)-pulegone, in a concentration-dependent manner, blocked distinct potassium current components (transient outward potassium current (Ito), rapid delayed rectifier potassium current (IKr), inactivating steady state potassium current (Iss) and inward rectifier potassium current (IK1)) (EC50 = 1441 ± 1.04; 605.0 ± 1.22, 818.7 ± 1.22; 1753 ± 1.09 μM for Ito, IKr, Iss and IK1, respectively). The inhibition occurred in a fast and reversible way, without changing the steady-state activation curve, but instead shifting to the left the steady-state inactivation curve (V1/2 from −56.92 ± 0.35 to −67.52 ± 0.19 mV). In vivo infusion of 100 mg/kg R(+)-pulegone prolonged the QTc (∼40%) and PR (∼62%) interval along with reducing the heart rate by ∼26%.ConclusionTaken together, R(+)-pulegone prolongs the APR by inhibiting several cardiomyocyte K+ current components in a concentration-dependent manner. This occurs through a direct block by R(+)-pulegone of the channel pore, followed by a left shift on the steady state inactivation curve. Finally, R(+)-pulegone induced changes in some aspects of the ECG profile, which are in agreement with its effects on potassium channels of isolated cardiomyocytes.  相似文献   

5.
The role of endogenous nitric oxide (NO) in modulating myocardial contractility is still unclear, in part because of unknown, secondary effects of blocking NO release. We hypothesized that the nonspecific inhibition of nitric oxide synthase (NOS) enhances endothelin-1 (ET-1) effects, which can play a role in ET-A receptor-dependent myocardial contractile responses. The myocardial contractility was estimated from the slope of the left ventricular end-systolic pressure–diameter relationship in closed-chest, pentobarbital-anesthetized dogs. Group 1 (n = 7) was the saline-treated control, while in groups 2 (n = 7) and 3 (n = 7) N-nitro-l-arginine (NNA, 4 mg kg?1), a nonselective NOS blocker, was administered with or without pretreatment with the ET-A receptor antagonist ETR-P1/fl peptide (100 nmol kg?1 iv). Plasma ET-1, nitrite/nitrate (NOx) and blood superoxide levels were measured, and myocardial ET-1 content and xanthine oxidoreductase (XOR) activity were determined from myocardial biopsies. The infusion of NNA over 120 min decreased the plasma NOx, significantly elevated the plasma ET-1 and blood superoxide levels, and in parallel greatly increased the left ventricular contractility as compared with the untreated controls [47.5 vs 30 mm Hg mm?1]. The myocardial ET-1 content decreased simultaneously, while the XOR activity and blood superoxide level were significantly elevated. These effects, including NNA-induced positive inotropy, were significantly suppressed by pretreatment with ETR-P1/fl peptide. These results demonstrate that a diminished NO synthesis leads to a preponderant ET-1 effect, which increases myocardial contractility through an ET-A receptor-dependent mechanism.  相似文献   

6.
Angiotensin IV (Ang IV) is formed by aminopeptidase N from Ang III by removing the first N-terminal amino acid. Previously, we reported that Ang III has some cardioprotective effects against global ischemia in Langendorff heart. However, it is not clear whether Ang IV has cardioprotective effects. The aim of the present study was to evaluate the effect of Ang IV on myocardial ischemia-reperfusion (I/R) injury in rats. Before ischemia, male Sprague-Dawley rats received Ang IV (1 mg/kg/day) for 3 days. Anesthetized rats were subjected to 45 min of ischemia by ligation of left anterior descending coronary artery followed by reperfusion and then, sacrificed 1 day or 1 week after reperfusion. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations, and infarct size were measured. Quantitative analysis of apoptotic and inflammatory proteins in ventricles were performed using Western blotting. Pretreatment with Ang IV attenuated I/R-induced increases in plasma CK and LDH levels, and infarct size, which were blunted by Ang IV receptor (AT4R) antagonist and but not by antagonist for AT1R, AT2R, or Mas receptor. I/R increased Bax, caspase-3 and caspase-9 protein levels, and decreased Bcl-2 protein level in ventricles, which were blunted by Ang IV. I/R-induced increases in TNF-α, MMP-9, and VCAM-1 protein levels in ventricles were also blunted by Ang IV. Ang IV increased the phosphorylation of Akt and mTOR. These effects were attenuated by co-treatment with AT4R antagonist or inhibitors of downstream signaling pathway. Myocardial dysfunction after reperfusion was improved by Ang IV. These results suggest that Ang IV has cardioprotective effect against I/R injury by inhibiting apoptosis via AT4R and PI3K-Akt-mTOR pathway.  相似文献   

7.
We have previously identified exosomes as the paracrine factor secreted by mesenchymal stem cells. Recently, we found that the key features of reperfusion injury, namely loss of ATP/NADH, increased oxidative stress and cell death were underpinned by proteomic deficiencies in ischemic/reperfused myocardium, and could be ameliorated by proteins in exosomes. To test this hypothesis in vivo, mice (C57Bl6/J) underwent 30 min ischemia, followed by reperfusion (I/R injury). Purified exosomes or saline was administered 5 min before reperfusion. Exosomes reduced infarct size by 45% compared to saline treatment. Langendorff experiments revealed that intact but not lysed exosomes enhanced viability of the ischemic/reperfused myocardium. Exosome treated animals exhibited significant preservation of left ventricular geometry and contractile performance during 28 days follow-up. Within an hour after reperfusion, exosome treatment increased levels of ATP and NADH, decreased oxidative stress, increased phosphorylated-Akt and phosphorylated-GSK-3β, and reduced phosphorylated-c-JNK in ischemic/reperfused hearts. Subsequently, both local and systemic inflammation were significantly reduced 24 h after reperfusion. In conclusion, our study shows that intact exosomes restore bioenergetics, reduce oxidative stress and activate pro-survival signaling, thereby enhancing cardiac function and geometry after myocardial I/R injury. Hence, mesenchymal stem cell-derived exosomes are a potential adjuvant to reperfusion therapy for myocardial infarction.  相似文献   

8.
9.
Yang W  Li H  Luo H  Luo W 《Life sciences》2011,88(7-8):302-306
AimsThis study tested the hypothesis that the inhibition of semicarbazide-sensitive amine oxidase (SSAO) after ischemia could attenuate myocardial ischemia–reperfusion (I/R) injury.Main methodsAnesthetized male Sprague–Dawley rats underwent myocardial I/R injury. Saline, semicarbazide (SCZ, 30 mg/kg), hydralazine (HYD, 10 mg/kg), or LJP 1207 (30 mg/kg) was administered intraperitoneally 3 min before reperfusion. After 30 min of ischemia and 180 min of reperfusion, the myocardial infarct size was determined using nitroblue tetrazolium staining. Myocardial myeloperoxidase activity was determined through biochemical assay. HE staining was used for histopathological evaluation. Myocardial SSAO activity was assayed with high performance liquid chromatography analysis. Additionally, the endothelial expression of P-selectin was evaluated using immunohistochemistry after 30 min of ischemia and 20 min of reperfusion.Key findingsMyocardial SSAO activity was increased in myocardial I/R injury. Administration of SCZ, HYD, or LJP 1207 reduced the myocardial infarct size and decreased leukocyte infiltration and endothelial P-selectin expression in myocardial I/R injury in vivo.SignificanceThese data suggest that myocardial I/R injury up-regulates myocardial SSAO activity, and the inhibition of SSAO prior to reperfusion is able to attenuate acute myocardial I/R injury.  相似文献   

10.
Among the 27 cytochrome P450s (CYPs) of Nocardia farcinica IFM10152, three CYPs have been identified as having O-dealkylation catalytic activity. Of the two that encode CYP154 subfamilies, the one encoded by the nfa22930 gene showed distinct O-dealkylation and subsequent hydroxylation of formononetin. Firstly, formononetin was O-dealkylated into daidzein, which was subsequently mono-hydroxylated at the 3′-position of the B-ring into ortho-dihydroxy-isoflavone. Apparent kcat/Km values of CYP154 for the O-dealkylation of formononetin and the hydroxylation of daidzein were 3.57 and 1.84 μM−1 min−1, respectively. The dissociation constants of CYP154 based on spectral changes upon binding to each substrate were 5.16 and 3.11 μM, respectively. Homology modeling and docking simulation found that Thr247 is responsible for the 3′-position hydroxylation reaction by forming a hydrogen bond with the 4′-hydroxyl group of daidzein that forces the proton at the 3′-position to face the heme center. Site-directed mutagenesis of Thr247 to alanine drastically decreased the binding affinity for daidzein (9.73 μM) as well as 3′-position hydroxylation catalytic activity by 3 fold (0.48 μM−1 min−1).  相似文献   

11.
ObjectiveIn Graves' disease therapy, the amount of 131I is usually decided following two different modalities: the administration of a fixed activity or of an activity individually calculated based on a fixed value of target absorbed dose. Although the effectiveness of each of these approaches is good (about 80% of patients cured), the ALARA principle must be applied avoiding the un-justified radioactivity to the patient himself, the people living/working near him and the environment. In this paper a new approach to the 131I therapy in Graves' disease, based on the optimum value of the final thyroid mass, is presented.Design97 Graves' disease patients (29 males) were randomly assigned into three groups (GR1, GR2, GR3). In two of them (GR1, GR3) the radioiodine administering activity was calculated based on two fixed thyroid absorbed dose values (100 Gy for GR1; 400 Gy for GR3), in GR2 it was calculated based on the desired final optimum thyroid mass value mf = 0.24 m0/U0ResultsThe rate of cured patients are 48% (GR1), 97% (GR2) (z-test, p < 0.001) and 97% (GR3). The average activity administered to GR2 (393 ± 157 MBq) is lower than that administrered to GR3 patients (524 ± 201 MBq) (p = 0.007, two-tails unpaired t-test); the thyroid absorbed dose in GR2 (262 ± 78 Gy) is lower than in GR3 patients (407 ± 23 Gy) (p < 0.001, two-tails unpaired t-test).ConclusionOur results demonstrate that the thyroid-mass based approach optimizes the treatment avoiding an un-justified excess or a not-effective too low activity without time and resources consuming.  相似文献   

12.
AimsLate phase ischemic preconditioning (LPC) protects the heart against ischemia–reperfusion (I/R) injury. However, its effect on myocardial tissue oxygenation and related mechanism(s) is unknown. The aim of the current study is to determine whether LPC attenuates post-ischemic myocardial tissue hyperoxygenation through preserving mitochondrial oxygen metabolism.Main methodsC57BL/6 mice were subjected to 30 min coronary ligation followed by 60 min or 24 h reperfusion with or without LPC (3 cycles of 5 min I/5 min R): Sham, LPC, I/R, and LPC + I/R group. Myocardial tissue Po2 and redox status were measured with electron paramagnetic resonance (EPR) spectroscopy.Key findingsUpon reperfusion, tissue Po2 rose significantly above the pre-ischemic level in the I/R mice (23.1 ± 2.2 vs. 12.6 ± 1.3 mm Hg, p < 0.01). This hyperoxygenation was attenuated by LPC in the LPC + I/R mice (11.9 ± 2.0 mm Hg, p < 0.01). Activities of NADH dehydrogenase (NADH-DH), succinate-cytochrome c reductase (SCR) and cytochrome c oxidase (CcO) were preserved or increased in the LPC group, significantly reduced in the I/R group, and conserved in the LPC + I/R group. Manganese superoxide dismutase (Mn-SOD) protein expression was increased by LPC in the LPC and LPC + I/R mice compared to that in the Sham control (1.24 ± 0.01 and 1.23 ± 0.01, p < 0.05). Tissue redox status was shifted to the oxidizing state with I/R (0.0268 ± 0.0016/min) and was corrected by LPC in the LPC + I/R mice (0.0379 ± 0.0023/min). Finally, LPC reduced the infarct size in the LPC + I/R mice (10.5 ± 0.4% vs. 33.3 ± 0.6%, p < 0.05).SignificanceThus, LPC preserved mitochondrial oxygen metabolism, attenuated post-ischemic myocardial tissue hyperoxygenation, and reduced I/R injury.  相似文献   

13.
Vascular endothelial growth factor (VEGF) is a regulator of vascular formation in physiological and pathological conditions. The aim of our study was to evaluate the value of VEGF as a surrogate marker of myocardial injury in acute ischemic conditions.Materials and methodsIn 104 consecutive patients with acute coronary syndrome (ACS) with and without ST segment elevation (STEMI and NSTEMI) the plasma and serum human VEGF (hVEGF) concentration was measured two times i.e. immediately after admission due to ACS and 24 h later. According to ECG findings and coronary angiography results, patients were divided into three groups. Group A represented major myocardial injury due to ST-segment elevation in precordial leads and/or in I and aVL leads and with left anterior descending (LAD) artery responsible for STEMI symptoms or additionally with significant atherosclerotic lesions (lumen vessel narrowed >50%) in other than LAD coronary arteries. Group B (medium myocardial injury) consisted of patients with ST-segment elevation in II, III and aVF leads and/or ST-segment depression in V2-V3 leads with one-vessel disease and the culprit artery was not LAD. Group C included patients with changes in ECG other than ST-segment elevation independently of the site of atherosclerotic lesions in coronary arteries.ResultsIn all 104 patients with ACS the highest values of serum hVEGF were observed in second measurement (357.9 ± 346 pg/ml, p < 0.01). Although in the first measurement, plasma and serum hVEGF concentration did not differentiate groups, the difference between deltas for serum hVEGF was observed (p < 0.05). Increased number of neutrophils in the first measurement increased the OR of the high serum hVEGF concentration in the first measurement (OR = 1.155; 95%CI: 1.011; 1.32) (p < 0.05). The number of neutrophils in the second measurement also revealed significant relationship with high serum hVEGF in the first assessment (OR = 1.318, 95%CI: 1.097; 1.583) (p < 0.01). Increased values of triglycerides (exceeding the upper limit) were connected with decreased OR of high serum hVEGF concentrations in the first measurement (OR = 0.152, 95%CI: 0.033; 0.695, p < 0.05).ConclusionsIn acute coronary syndrome, serum VEGF concentrations are elevated and can serve as a surrogate marker of myocardial injury. The elevated number of neutrophils increases odds ratio of high VEGF concentrations in ACS. In patients with high concentrations of triglycerides, odds ratio of low level of hVEGF is expected.  相似文献   

14.
《Cytokine》2015,76(2):373-379
BackgroundGraves’ disease (GD) is a common autoimmune disease which is one of the major causes of hyperthyroidism. Interleukin 7 (IL-7) has been recently reported to play an important role in various autoimmune diseases, but its role in the pathogenesis of GD has not been assessed. The aim of this study was to evaluate the levels of IL-7 and the soluble form of its receptor (sIL-7R) in the serum of GD patients, and to identify their association with disease activity.MethodsA total of 37 GD patients were enrolled into the experimental group and 16 individuals into the control group. All patients were further classified into three subgroups: a GD-active group (hyperthyroidism and TRAb (thyroid stimulating hormone receptor antibody) >7.5 U/L) (N = 15), a GD-inactive group (euthyreosis and TRAb < 1 U/L) (N = 8), and other GD patients (euthyreosis and TRAb > 1 U/L) (N = 14). Concentrations of IL-7 and sIL-7R were assayed with ELISA. Additionally, the relationship between IL-7 and sIL-7R serum concentrations with disease activity (free triiodothyronine [FT3], free thyroxine [FT4], thyroid stimulating hormone [TSH] and TRAb) was also analyzed.ResultsThe serum concentrations of IL-7 in GD-active patients were significantly lower than those of the control group as well as the GD-inactive and GD-other groups. The serum level of IL-7 in GD patients negatively correlated with FT4 and TRAb concentrations. Moreover, no significant difference was observed in the serum level of sIL-7R in GD patients compared to the control group.ConclusionsThese observations suggest that IL-7 may play a role in the pathogenesis of GD and may be associated with its clinical activity. To this end, the serum level of IL-7 could be an additional diagnostic biomarker predictive of the disease and could be particularly valuable for TRAb-negative GD patients.  相似文献   

15.
The frog skin host-defense peptide tigerinin-1R (RVCSAIPLPICH.NH2) is insulinotropic both in vitro and in vivo. This study investigates the effects on insulin release and cytotoxicity of changes in cationicity and hydrophobicity produced by selected substitutions of amino acids by l-arginine, l-lysine and l-tryptophan. The [A5W], [L8W] and [I10W] analogs produced a significant (P < 0.01) increase in the rate of insulin release from BRIN-BD11 rat clonal β cells at concentration of 0.01 nM compared with 0.1 nM for tigerinin-1R. The increase in the rate of insulin release produced by a 3 μM concentration of the [S4R], [H12K], and [I10W] analogs from both BRIN-BD11 cells and mouse islets was significantly greater (P < 0.05) than that produced by tigerinin-1R. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 μM indicating that plasma membrane integrity had been preserved. [A5W] tigerinin-1R was the only analog tested that showed cytotoxic activity against human erythrocytes (LC50 = 265 ± 16 μM) and inhibited growth of Escherichia coli (MIC = 500 μM) and Staphylococcus aureus (MIC = 250 μM). The circular dichroism spectra of tigerinin-1R and [A5W] tigerinin-1R indicate that the peptides adopt a mixture of β-sheet, random coil and reverse β-turn conformations in 50% trifluoroethanol/water and methanol/water. Administration of [S4R] tigerinin-1R (75 nmol/kg body weight) to high-fat fed mice with insulin resistance significantly (P < 0.05) enhanced insulin release and improved glucose tolerance over a 60 min period following an intraperitoneal glucose load. The study supports the claim that tigerinin-1R shows potential for development into novel therapeutic agents for treatment of type 2 diabetes mellitus.  相似文献   

16.
《Cellular signalling》2014,26(11):2521-2529
Dopamine D1-like receptors (D1R and D5R) stimulate adenylyl cyclase (AC) activity, whereas the D2-like receptors (D2, D3 and D4) inhibit AC activity. D1R, but not the D5R, has been reported to regulate AC activity in lipid rafts (LRs). We tested the hypothesis that D1R and D5R differentially regulate AC activity in LRs using human embryonic kidney (HEK) 293 cells heterologously expressing human D1 or D5 receptor (HEK-hD1R or HEK-hD5R) and human renal proximal tubule (hRPT) cells that endogenously express D1R and D5R. Of the AC isoforms expressed in HEK and hRPT cells (AC3, AC5, AC6, AC7, and AC9), AC5/6 was distributed to a greater extent in LRs than non-LRs in HEK-hD1R (84.5 ± 2.3% of total), HEK-hD5R (68.9 ± 3.1% of total), and hRPT cells (66.6 ± 2.2% of total) (P < 0.05, n = 4/group). In HEK-hD1R cells, the D1-like receptor agonist fenoldopam (1μM/15 min) increased AC5/6 protein (+ 17.2 ± 3.9% of control) in LRs but decreased it in non-LRs (− 47.3 ± 5.3% of control) (P < 0.05, vs. control, n = 4/group). By contrast, in HEK-hD5R cells, fenoldopam increased AC5/6 protein in non-LRs (+ 67.1±5.3% of control, P < 0.006, vs. control, n = 4) but had no effect in LRs. In hRPT cells, fenoldopam increased AC5/6 in LRs but had little effect in non-LRs. Disruption of LRs with methyl-β-cyclodextrin decreased basal AC activity in HEK-D1R (− 94.5 ± 2.0% of control) and HEK-D5R cells (− 87.1 ± 4.6% of control) but increased it in hRPT cells (6.8 ± 0.5-fold). AC6 activity was stimulated to a greater extent by D1R than D5R, in agreement with the greater colocalization of AC5/6 with D1R than D5R in LRs. We conclude that LRs are essential not only for the proper membrane distribution and maintenance of AC5/6 activity but also for the regulation of D1R- and D5R-mediated AC signaling.  相似文献   

17.
IntroductionWe aimed to determine whether the changes in muscle activity (in terms of both gross electromyography (EMG) and motor unit (MU) discharge characteristics) observed during pain are spatially organized with respect to pain location within a muscle which is the main contributor of the task.MethodsSurface and fine-wire EMG was recorded during matched low-force isometric plantarflexion from soleus (from four quadrants with fine-wire EMG and from the medial/lateral sides with surface EMG), both gastrocnemii heads, peroneus longus, and tibialis anterior. Four conditions were tested: two control conditions that each preceded contractions with pain induced in either the lateral (PainL) or medial (PainM) side of soleus.ResultsNeither the presence (p = 0.28) nor location (p = 0.19) of pain significantly altered gross muscle activity of any location (lateral/medial side of soleus, gastrocnemii, peroneus longus and tibialis anterior). Group data from 196 MUs show redistribution of MU activity throughout the four quadrants of soleus, irrespective of pain location. The significant decrease of MU discharge rate during pain (p < 0.0001; PainL: 7.3 ± 0.9–6.9 ± 1.1 Hz, PainM: 7.0 ± 1.1 to 6.6 ± 1.1 Hz) was similar for all quadrants of the soleus (p = 0.43), regardless of the pain location (p = 0.98). There was large inter-participant variation in respect to the characteristics of the altered MU discharge with pain.ConclusionResults from both surface and fine-wire EMG recordings do not support the hypothesis that muscle activity is reorganized in a simple systematic manner with respect to pain location.  相似文献   

18.
《Médecine Nucléaire》2014,38(2):71-82
PurposeWe investigated the prognostic significance of F-18 fluorodeoxyglucose (FDG) uptake measured as maximum Standardized Uptake Value (SUVmax) in primary tumor by positron emission tomography/computed tomography (PET/CT) in cervical cancer. The secondary objective was to determine the accuracy of the PET/CT for detecting pelvic lymph node (PLN) and para-aortic lymph node (PALN) metastases.MethodsThis retrospective study included 49 consecutive patients with stage IB1 to IVB cervical cancer. Univariate analysis was performed to determine the relationships between SUVmax value and pathological prognostics factors. Survival was estimated by Kaplan-Meier method. The gold standard of LN metastases was histologic.ResultsA significant difference in SUVmax was observed between stage I and stage II, stage I and stage IV and tumor size ≤ 4 cm and > 4 cm (P = 0.0001). There was a significant correlation between the SUVmax and tumor maximal size (r = 0.597) (P < 0.0001). PLN metastasis was found to be predictive of progression-free survival (P = 0.0007). The negative predictive value (NPV) of the PET/CT for PALN was 100% for locally advanced cervical carcinoma in 24 patients. The specificity and NPV of the PET/CT for PLN in eight early-stage cervical cancer were 100% and 87.5% (7/8) respectively. The PET/CT false-negative PLN measured less than 2 mm.ConclusionOur results demonstrate a correlation between SUVmax and tumor maximal size, which represents an indicator of tumor aggressiveness. PET/CT is effective to predict the absence of PALN in locally advanced cervical carcinoma. PET/CT is not sufficient to predict PLN in early-stage cancer without lymphadenectomy.  相似文献   

19.
BackgroundIn the last years, food grade antioxidants are used safely as an alternative to traditional fungicides to control fungal growth in several food and agricultural products.AimsIn this work, the effect of butylated hydroxyanisole (BHA) and propyl paraben (PP) on two hydrolytic enzyme activity (β-d-glucosidase and α-d-galactosidase) by Aspergillus section Nigri species under different water activity conditions (aW; 0.98, 0.95 and 0.93) and incubation time intervals (24, 48, 72 and 96 h) was evaluated on peanut-based medium.MethodsThe activity of two glycosidases, β-d-glucosidase and α-d-galactosidase, was assayed using as substrates 4-nitrophenyl-β-d-glucopyranosido and 4-nitrophenyl-α-d-galactopyranosido, respectively. The enzyme activity was determined by the increase in optical density at 405 nm caused by the liberation of p-nitrophenol by enzymatic hydrolysis of the substrate. Enzyme activity was expressed as micromoles of p-nitrophenol released per minute.ResultsThe major inhibition in β-d-glucosidase activity of A. carbonarius and A. niger was found with 20 mmol l−1 of BHA or PP at 0.98 and 0.95 aW, respectively, whereas for α-d-galactosidase activity a significant decrease in enzyme activity with respect to control was observed in A. carbonarius among 5 to 20 mmol l−1 of BHA or PP in all conditions assayed. Regarding A. niger, the highest percentages of enzyme inhibition activity were found with 20 mmol l−1 of BHA or PP at 0.95 aW and 96 h.ConclusionsThe results of this work provide information about the capacity of BHA and PP to inhibit in vitro conditions two of the most important hydrolytic enzymes produced by A. carbonarius and A. niger species.  相似文献   

20.
A specific ultra-performance liquid chromatography–mass spectrometry (UPLC–MS) method was developed for the simultaneous determination of puerarin, daidzein, baicalin, wogonoside and liquiritin in rat plasma. Chromatographic separation was performed on a C18 column packed with 1.7 μm particles by a linear gradient elution. The analytes and carbamazepine (internal standard, I.S.) were monitored in a selected-ion reaction (SIR) mode with a positive electrospray ionization (ESI) interface by the following ions: m/z 417.2 for puerarin, m/z 255.2 for daidzein, m/z 271.0 for baicalin, m/z 461.0 for wogonoside, m/z 441.0 for liquiritin and m/z 237.2 for carbamazepine (I.S.), respectively. The calibration curves of these analytes were linear over the concentration ranges from 0.00254–1.02 μg mL?1 to 0.0102–10.2 μg mL?1. Within-batch and between-batch precisions (RSD%) were all within 15% and accuracy (RE%) ranged from ?10% to 10%. The extraction recoveries were on average 79.8% for puerarin, 90.8% for daidzein, 74.4% for baicalin, 70.2% for wogonoside and 84.7% for liquiritin. The validated method was successfully applied to investigate the pharmacokinetics of five bioactive compounds of GegenQinlian decoction (GQD) in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号