首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atriplex halimus is found in the Mediterranean Basin along the coastal areas of Sardinia, but few data are available on its adaptability to salinity. The effects of drought and salinity under controlled conditions on two clones of A. halimus, designated MOR2 and SOR4, originating from southern and northern Sardinia, respectively, were compared with those of seedlings of A. nummularia, an Australian species widely used in the restoration of arid areas. The effects of increasing NaCl salinity above seawater concentrations and of increasing the KCl concentration gradient were tested. Plants were harvested and analysed after 10 and 20 days of NaCl and KCl treatments. All plants remained alive until the end of treatment, although growth was strongly reduced, mainly for the A. halimus MOR2 clone, under increasing concentrations of KCl. The leaves and roots of both species responded positively to increasing NaCl concentrations up to 600 mM NaCl for A. halimus, whereas the optimal growth of A. nummularia was recorded at 300 mM NaCl. SOR4 was more sensitive to KCl toxicity. The Na+ concentration in the plants increased with increased salinity and was higher in A. halimus than in A. nummularia, suggesting that A. halimus is an ion accumulator and may be used for phytoremediation. The sodium accumulation in the roots of the A. halimus MOR2 clone was far greater than in its leaves. This suggests that MOR2 is an Na+ excluder, either by minimising the entry of salt into the plant or by an excretion mechanism via the vesiculated hairs that play a significant role in the removal of salt from the remainder of the leaf, thereby preventing its accumulation to toxic levels in the leaves, whereas SOR4 acted as an Na+ includer. Higher levels of proline were detected in the MOR2 clone under NaCl treatments, suggesting a more developed adaptative mechanism for the selection of this characteristic in the southern part of the island, which is more exposed to abiotic stresses, particularly water stress that is either generated by salinity or by other causes.  相似文献   

2.
A study quantifying the effect of NaCl on growth and Cd accumulation of Spartina alterniflora subjected to Cd stress was conducted. Seedlings were cultivated in the presence of 1 or 3 mM Cd alone, or combined with NaCl (50 or 100 mM). The results showed that NaCl magnified the phytotoxicity of moderate Cd stress (1 mM Cd) on plants due to reduced levels of plant biomass, plant height, and chlorophyll a + b, while no synergistic effects were recorded under severe Cd stress (3 mM Cd). Proline and Ca2 + accumulated along with additional NaCl under moderate Cd stress, instead of reduced or unchanged levels under severe Cd stress owing to different adoption strategies caused by NaCl under different Cd stresses. NaCl reduced the oxidative stress in Cd-treated plants through increasing levels of antioxidative enzymes (catalase (CAT) and peroxidase (POD)) under moderate Cd stress. With NaCl addition, Cd2 + contents in S. alterniflora increased and reduced under moderate and severe Cd stress, respectively. However, total Cd2 + amounts increased with increasing NaCl concentration due to biological dilution. NaCl improved the increase of Cd2 + translocation factor (TF) under moderate Cd stress, indicating that NaCl might improve Cd2 + uptake and translocation from roots to shoots, and enhance the phytoextraction of S. alterniflora on Cd; while phytostabilization of Cd under severe Cd stress may be possible due to the reduced TF. Thus, NaCl alleviated phytotoxicity caused by Cd stress through improved management of osmotic solutes and oxidative status, and affected Cd accumulations in S. alterniflora differently under moderate and severe Cd stresses.  相似文献   

3.
The influence of silicon on the growth of maize plants cultivated in hydroponics in the presence of cadmium (5 μM) was investigated. Four different treatments were used: Control (C), Cadmium (Cd), Silicon (Si) and Cadmium plus Silicon (Cd + Si). The Si concentration was 35 mM. Thirteen-day-old plants were harvested. Growth parameters (length of primary seminal root, leaf area of first and second fully developed leaves, fresh and dry weight of below- and above-ground parts of the plants), and Cd concentration and total amount of Cd in the below- and above-ground parts were determined. In roots, the development of the endodermal barrier was observed by fluorescent staining with Fluorol yellow 088.Inhibitory effects of Cd on plant growth were observed. Silicon treatment in the absence of Cd had positive effects on most of observed growth parameters compared with the control. Moreover, Si in the Cd + Si treatment improved all growth parameters compared with the cadmium treatment. Silicon increased the cell-wall extensibility both in Si and Cd + Si treatments when compared with the control. Alleviation of the Cd-inhibitory effect on maize plants by Si was not due to exclusion of Cd from the plant; in contrast, Cd concentration in below- and above-ground plant parts and the total amount of Cd per plant were significantly higher in the Cd + Si plants than in the Cd treatment. The increased Cd content in Cd + Si plants was correlated with the development of the endodermis; during the second stage of endodermal development, suberin lamellae were formed at a greater distance from the root apex in the Cd + Si than in the Cd treatment. Silicon itself did not influence the development of suberin lamellae in the maize roots compared with the control.  相似文献   

4.
PbtA, a putative P1B-type ATPase from the Gram-negative soil bacterium Achromobacter xylosoxidans A8 responsible for Pb2 +/Zn2 +/Cd2 +-resistance in Escherichia coli, was heterologously expressed in Saccharomyces cerevisiae. When present in Zn2 +- and Pb2 +/Cd2 +-hypersensitive S. cerevisiae strains CM137 and DTY168, respectively, PbtA was able to restore Zn2 +- and Pb2 +-resistant phenotype. At the same time, the increase of Pb, Zn, and Cd accumulation in yeast was observed. However, Cd2 +-tolerance of the pbtA-bearing yeasts dramatically decreased. The PbtA-eGFP fusion protein was localized primarily in the tonoplast and also in the plasma membrane and the perinuclear region corresponding to the endoplasmic reticulum at later growth stages. This indicates that PbtA protein is successfully incorporated into membranes in yeasts. Since PbtA caused a substantial increase of Pb2 +/Zn2 +-resistance and accumulation in baker's yeast, we propose its further use for the genetic modification of suitable plant species in order to obtain an effective tool for the phytoremediation of sites polluted by toxic transition metals.  相似文献   

5.
The potential of four essential cations (K+, Ca2+, Mg2+ and Fe2+) to alleviate salt toxicity was studied in sage (Salvia officinalis L.) plants grown in pots. Two concentrations of the following chloride salts: KCl, CaCl2, MgCl2 and FeCl3, were used together with 100 mM NaCl to study the effects of these nutrients on plant growth, leaf essential oils (EOs) and phenolic diterpenes composition. The sage plants accumulated Na+ in their leaves (includers); this has affected secondary metabolites’ biosynthesis. Treatment with 100 mM NaCl slightly decreased borneol and viridiflorol, while increased manool concentrations. Addition of KCl, CaCl2 and MgCl2 increased considerably in a dose-dependent manner the oxygen-containing monoterpenes (1.8-cineole, camphor, β-thujone and borneol) in 100 mM NaCl-treated sage. Whereas, the contents of viridiflorol decreased further with the addition of KCl in 100 mM NaCl-treated sage. Our results suggest that the changes in EOs composition were more related to K+ and Ca2+ availability than to Na+ toxicity. Furthermore, treatment with NaCl decreased by 50% carnosic acid (CA), a potent antioxidant, content in the leaves. K+ and Ca2+ promoted the accumulation of CA and its methoxylated form (MCA) in the leaves. The concentration of CA was positively correlated with leaf K+ (r = 0.56, P = 0.01) and Ca2+ (r = 0.44, P = 0.05) contents. It appears that different salt applications in combination with NaCl treatments had a profound effect on EOs and phenolic diterpene composition in sage. Therefore, ionic interactions may be carefully considered in the cultivation of this species to get the desired concentrations of these secondary metabolites in leaf extracts.  相似文献   

6.
Salsola ferganica L. (Chenopodianceae) is an annual halophytic species. Experiments were carried out in laboratory to determine the effects of temperature, perianths and various types of salinity on seed germination and germination recovery. Seeds were germinated at 6 levels of temperature with perianths, plus perianths and removed perianths in complete darkness for 9 days. The germination responses of the seeds without perianths at 25 °C were determined over a wide range of NaCl, NaHCO3 or NaCl–NaHCO3 mixed stress for 13 days. Perianths seriously affected germination as a barrier for seed germination and the optimal temperature was at 25 °C. Highest germination percentage was obtained under control and seed germination was progressively inhibited with the increase of salinity concentration. The negative effect of NaHCO3 at the same concentration on germination was stronger than that of NaCl and NaCl–NaHCO3 mixed. When substrate salinity was removed, seeds exposed to a high NaCl concentration (400–800 mM), NaHCO3 (50–200 mM) and NaCl–NaHCO3 mixed (100–400 mM) germinated well. Final germination of Salsola ferganica seeds was significantly affected by types of salt at the low salinity (?200 mM) and with increased salinity it was influenced mainly by salinity concentration for various proportion of salt–alkali mixed stress.  相似文献   

7.
Saline environments of terrestrial halophytes are often prone to waterlogging, yet the effects on halophytes of combined salinity and waterlogging have rarely been studied. Either salinity or hypoxia (low O2) alone can interfere with K+ homeostasis, therefore the combination of salinity or hypoxia is expected to impact significantly on K+ retention in roots. We studied mechanisms of tolerance to the interaction of salinity with hypoxia in Puccinellia ciliata and Thinopyrum ponticum, halophytic grasses that differ in waterlogging tolerance. Plants were exposed to aerated and stagnant saline (250 mM NaCl) treatments with low (0.25 mM) and high (4 mM) K+ levels; growth, net ion fluxes and tissue ion concentrations were determined. P. ciliata was more tolerant than T. ponticum to stagnant-saline treatment, producing twice the biomass of adventitious roots, which accumulated high levels of Na+, and had lower shoot Na+. After 24 h of saline hypoxic treatment, MIFE measurements revealed a net uptake of K+ (∼40 nmol m−2 s−1) for P. ciliata, but a net loss of K+ (∼20 nmol m−2 s−1) for the more waterlogging sensitive T. ponticum. NaCl alone induced K+ efflux from roots of both species, with channel blocker tests implicating GORK-like channels. P. ciliata had constitutively a more negative root cell membrane potential than T. ponticum (−150 versus −115 mV). Tolerance to salinity and hypoxia in P. ciliata is related to increased production of adventitious roots, regulation of shoot K+/Na+, and a superior ability to maintain negative membrane potential in root cells, resulting in greater retention of K+.  相似文献   

8.
Although some plant responses to salinity have been characterized, the precise mechanisms by which salt stress damages plants are still poorly understood especially in woody plants. In the present study, the physiological and biochemical responses of Broussonetia papyrifera, a tree species of the family, Moraceae, to salinity were studied. In vitro-produced plantlets of B. papyrifera were treated with varying levels of NaCl (0, 50, 100 and 150 mM) in hydroponic culture. Changes in ion contents, accumulation of H2O2, as well as the activities and isoform profiles of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the leaves, stems and roots were investigated. Under salt stress, there was higher Na+ accumulation in roots than in stems and leaves, and Ca2 +, Mg2 + and P3 + content, as well as K+/Na+ ratio were affected. NaCl treatment induced an increase in H2O2 contents in the tissues of B. papyrifera. The work demonstrated that activities of antioxidant defense enzymes changed in parallel with the increased H2O2 and salinity appeared to be associated with differential regulation of distinct SOD and POD isoenzymes. Moreover, SDS-PAGE analysis of total proteins extracted from leaves and roots of control and NaCl-treated plantlets revealed that in the leaves salt stress was associated with decrease or disappearance of some protein bands, and induction of a new protein band after exposure to 100 and 150 mM NaCl. In contrast, NaCl stress had little effect on the protein pattern in the roots. In summary, these findings may provide insight into the mechanisms of the response of woody plants to salt stress.  相似文献   

9.
Kinetics of cellulose hydrolysis with halostable cellulase from a marine Aspergillus niger was analyzed at different salinities. Cellulase activity in 8% NaCl solution was 1.43 folds higher than that in NaCl free solution. Half saturation constant, Km (15.6260 g/L) and the rate constant of deactivation, Kde (0.3369 g/L h) in 8% NaCl solution was lower than that (18.6364 g/L), 0.3754 (g/L h) in NaCl free solution. The maximum initial hydrolysis velocity, Vmax (25.5295 g/L h), in 8% NaCl solution was higher than that in NaCl free solution (25.0153 g/L h). High salinity increased affinity to the cellulase to the substrate and thermostability. Halostable cellulase from a marine Aspergillus niger was valuable for cellulose hydrolysis under high salinity conditions.  相似文献   

10.
A pot experiment was carried out with tomato (Lycopersicon esculentum Mill.) cv. “Target F1” in a mixture of peat, perlite, and sand (1:1:1) to investigate the effects of supplementary calcium sulphate on plants grown at high NaCl concentration (75 mM). The treatments were: (i) control (C), nutrient solution alone; (ii) salt treatment (C + S), 75 mM NaCl; (iii) salt plus calcium treatment 1 (C + S + Ca1), 75 mM NaCl plus additional mixture of 2.5 mM CaSO4 in nutrient solution; (iv) salt plus calcium treatment 2 (C + S + Ca2), 75 mM NaCl plus additional mixture of 5 mM CaSO4 in nutrient solution. The plants grown under salt stress produced low dry matter, fruit weight, and relative water content than those grown in standard nutrient solution. Supplemental calcium sulphate added to nutrient solution containing salt significantly improved growth and physiological variables affected by salt stress (e.g. plant growth, fruit yield, and membrane permeability) and also increased leaf K+, Ca2+, and N in tomato plants. The effects of supplemental CaSO4 in maintaining membrane permeability, increasing concentrations of Ca2+, N, and K+ and reducing concentration of Na+ (because of cation competition in root zone) in leaves could offer an economical and simple solution to tomato crop production problems caused by high salinity.  相似文献   

11.
The combined effects of salt stress and gibberellic acid (GA3) on plant growth and nutritional status of maize (Zea mays L. cv., DK 647 F1) were studied in a pot experiment. Treatments were (1) control (C): nutrient solution alone, (2) salt stress (S): 100 mM NaCl, (3) S + GA1: 100 mM NaCl and 50 ppm GA3 and (4) S + GA2: 100 mM NaCl and 100 ppm GA3. Salt stress (S) was found to reduce the total dry matter, chlorophyll content, relative water content (RWC), but to increase proline accumulation, superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC 1.11.1.7) and polyphenol oxidase (PPO; 1.10.3.1) enzyme activities and electrolyte leakage. GA3 treatments overcame to variable extents the adverse effects of NaCl stress on the above physiological parameters. GA3 treatments reduced the activities of enzyme in the salt-stressed plants. Salt stress reduced some macro and micronutrient concentrations but exogenous application of GA3 increased these to levels of control treatment. Foliar application of GA3 counteracted some of the adverse effects of NaCl salinity with the accumulation of proline which maintained membrane permeability and increased macro and micronutrient levels.  相似文献   

12.
Atriplex (Halimione) portulacoides is a halophyte with potential interest for saline soil reclamation and phytoremediation. Here, we assess the impact of salinity reaching up to two-fold seawater concentration (0–1000 mM NaCl) on the plant growth, leaf water status and ion uptake and we evaluate the contribution of inorganic and organic solutes to the osmotic adjustment process. A. portulacoides growth was optimal at 200 mM NaCl but higher salinities (especially 800 and 1000 mM NaCl) significantly reduced plant growth. Na+ and Cl contents increased upon salt exposure especially in the leaves compared to the roots. Interestingly, no salt-induced toxicity symptoms were observed and leaf water content was maintained even at the highest salinity level. Furthermore, leaf succulence and high instantaneous water use efficiency (WUEi) under high salinity significantly contributed to maintain leaf water status of this species. Leaf pressure–volume curves showed that salt-challenged plants adjusted osmotically by lowering osmotic potential at full turgor (Ψπ100) along with a decrease in leaf cell elasticity (values of volumetric modulus elasticity (ε) increased). As a whole, our findings indicate that A. portulacoides is characterized by a high plasticity in terms of salt-response. Preserving leaf hydration and efficiently using Na+ for the osmotic adjustment especially at high salinities (800–1000 mM NaCl), likely through its compartmentalization in leaf vacuoles, are key determinants of such a performance. The selective absorption of K+ over Na+ in concomitance with an increase in the K+ use efficiency also accounted for the overall plant salt tolerance.  相似文献   

13.
Seedlings of Pistacia vera L. and Pistacia atlantica Desf. were cultured on hormone-free DKW medium supplemented with NaCl. The plants were subjected to low NaCl concentrations ranging from 0 to 80 mM for 45 days or to high salt concentrations (0, 131, and 158.5 mM for P. vera and 0, 131, and 240 mM for P. atlantica) for 25 days. Toxicity symptoms were recorded for seedlings exposed to low NaCl treatments. Plant growth, survival rates, mineral content, as well as proline and soluble sugar contents were determined and evaluated at the end of the culture period. The results indicated that low NaCl treatments yielded no instances of plant death in both species. At high salt conditions, however, significant mortality rates were noted for both species, being 22.86% at 240 mM NaCl for P. atlantica and 25.8% at 158.5 mM NaCl for P. vera. With regards to salinity effects, levels of 60 and 80 mM NaCl induced significant decreases of stem elongation and leaf number in the P. vera species. Salinities between 40 and 80 mM NaCl, however, induced a decrease in the root number of both species. The fresh weights of P. vera and P. atlantica also decreased significantly after 45 days of culture at NaCl concentrations between 40 and 80 mM and after 25 days of culture at 158.5 and 240 mM NaCl, respectively. The sodium and chloride uptake in plant organs seemed to be controlled more efficiently in P. atlantica than in P. vera. In both species, the K+ content was noted to undergo a significant decrease when salinity increased. While the K+/Na+ ratio was maintained above 2 at low NaCl treatments, it was sharply decreased at high NaCl conditions, suggesting a failure of K–Na selectivity mechanism. The Ca2+/Na+ ratio decreased significantly at 60 and 80 mM NaCl in P. vera and at 60 mM NaCl for P. atlantica. In both Pistacia species, high NaCl treatments (131–240 mM NaCl) induced a significant increase in proline content.  相似文献   

14.
The effects of heavy metals (Cd, Cr and Cd + Cr) on the motility parameters and oxidative stress of sterlet (Acipenser ruthenus) sperm were investigated in vitro. Sturgeon sperm were exposed for 2 h to heavy metals at environmental related concentrations (0.1 mg L?1 Cr, 0.001 mg L?1 Cd, 0.1 mg L?1 Cr + 0.001 mg L?1 Cd) and higher concentrations (5.0 mg L?1 Cr, 0.05 mg L?1 Cd, 5.0 mg L?1 Cr + 0.05 mg L?1 Cd). Results revealed that environmental concentrations of heavy metals had no significant influence on motility parameters and antioxidant responses indices in sturgeon sperm, except for LPO level and SOD activity. But higher concentrations of these metals induced oxidative tress in sturgeon sperm in vitro, associated with sperm motility parameters inhibition. Our results suggest that using of sperm in vitro assays may provide a novel and efficiently means for evaluating the effects of residual heavy metals in aquatic environment on sturgeon.  相似文献   

15.
The present study aimed to investigate the protective role of ascorbic acid (vitamin C) and zinc (Zn) against cadmium (Cd) induced histopathological changes in tissues of liver, kidney, lung and testis of rats as well as chromosomal aberrations. For this purpose, 60 male albino rats were divided into six groups; each group contained 10 animals. The first group served as control and was given only distilled water. The second and third groups received distilled water supplemented with 2 g ascorbic acid/l and 500 mg Zn/l, respectively. The fourth group received a daily oral dose containing 3 mg Cd/kg b.w. (1/30 LD50). The fifth group received Cd + ascorbic acid (3 mg Cd/kg b.w. + 2 g ascorbic acid/l), while the sixth group received Cd + Zn (3 mg Cd/kg b.w. +500 mg Zn/l). The treatment in all groups lasted for 90 consecutive days. Rats exposed to cadmium showed severe histopathological changes in the liver, kidney, lung and testicular tissues as well as chromosomal aberrations such as: break, ring, centromeric separation and polyploidy. Co-treatment with zinc partially improved the histopathological changes and chromosomal aberrations while co-treatment with vitamin C exhibited a more protective role and markedly reduced tissues damage induced by Cd.  相似文献   

16.
Soil salinity is one of the most important environmental factors responsible for serious agricultural problems. Tomato salt tolerance may be improved by genetic selection and by the use of adapted physiological tools. The aim of this study was to investigate the impact of exogenous application of salicylic acid (SA 0.01 mM) and calcium sulphate (CaSO4 5 mM), singly or in combination, on plant growth, photosynthetic pigments, nutritional behaviour and some metabolic parameters (total chlorophyll, carotenoids, soluble sugars, proline and lipid peroxidation) of two tomato cultivars (cv. Super Marmande and cv. Red River) exposed to salt stress (100 mM NaCl). Application of 100 mM NaCl reduced plant growth, total chlorophyll and carotenoid contents. Salt stress also induced an accumulation of Na+, a decrease in K+ and Ca2 + concentration and root sugar level, an increase in malondialdehyde (MDA) and proline concentration. Deleterious impact of salinity was related to modification in ion content rather than modification in the plant water status. Exogenous application of SA or Ca alone improved plant behaviour in the presence of NaCl. Nevertheless, the best results in terms of growth, photosynthetic pigment concentrations and mineral nutrition (limitation of Na+ accumulation and maintenance of K+ and Ca2 + content) were obtained in response to the combined SA + Ca treatment. Although the involved physiological parameters varied depending on the considered cultivar, our results suggest that Ca2 + and SA may interact to reduce the stress experienced by the plant in the presence of NaCl.  相似文献   

17.
《Aquatic Botany》2007,87(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

18.
《Aquatic Botany》2008,88(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

19.
Chill susceptible insects like Drosophila lose the ability to regulate water and ion homeostasis at low temperatures. This loss of hemolymph ion and water balance drives a hyperkalemic state that depolarizes cells, causing cellular injury and death. The ability to maintain ion homeostasis at low temperatures and/or recover ion homeostasis upon rewarming is closely related to insect cold tolerance. We thus hypothesized that changes to organismal ion balance, which can be achieved in Drosophila through dietary salt loading, could alter whole animal cold tolerance phenotypes. We put Drosophila melanogaster in the presence of diets highly enriched in NaCl, KCl, xylitol (an osmotic control) or sucrose (a dietary supplement known to impact cold tolerance) for 24 h and confirmed that they consumed the novel food. Independently of their osmotic effects, NaCl, KCl, and sucrose supplementation all improved the ability of flies to maintain K+ balance in the cold, which allowed for faster recovery from chill coma after 6 h at 0 °C. These supplements, however, also slightly increased the CTmin and had little impact on survival rates following chronic cold stress (24 h at 0 °C), suggesting that the effect of diet on cold tolerance depends on the measure of cold tolerance assessed. In contrast to prolonged salt stress, brief feeding (1.5 h) on diets high in salt slowed coma recovery, suggesting that the long-term effects of NaCl and KCl on chilling tolerance result from phenotypic plasticity, induced in response to a salty diet, rather than simply the presence of the diet in the gut lumen.  相似文献   

20.
Salinization of agricultural land is an increasing problem. Because of their high tolerance to salinity, Salicornia spp. could become models to study salt tolerance; they also represent promising saline crops. The salinity-growth response curve for Salicornia dolichostachya Moss was evaluated at 12 salt concentrations in a hydroponic study in a greenhouse and at 5 different seawater dilutions in an outside setting. Salt concentrations ranged between 0 mM and 500 mM NaCl (≈seawater salinity). Plants were grown for six weeks and morphological and physiological adaptations in different tissues were evaluated.S. dolichostachya had its growth optimum at 300 mM NaCl in the root medium, independent of the basis on which growth was expressed. The relative growth rate (RGR) in the greenhouse experiment was comparable with RGR-values in the outdoor growth experiment. Leaf succulence and stem diameter had the highest values at the growth optimum (300 mM NaCl). Carbon isotope discrimination (δ13C) decreased upon salinity. S. dolichostachya maintained a lower leaf sap osmotic potential relative to the external solution over the entire salinity range, this was mainly accomplished by accumulation of Na+ and Cl. Glycine betaine concentrations did not significantly differ between the treatments. Na+:K+-ratio and K+-selectivity in the shoots increased with increasing salinity, both showed variation between expanding and expanded shoot tissue. We conclude that S. dolichostachya was highly salt tolerant and showed salt requirement for optimal growth. Future growth experiments should be done under standardized conditions and more work at the tissue and cellular level needs to be done to identify the underlying mechanisms of salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号