首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cicadulina bipunctata was originally distributed in tropical and subtropical regions of the Old World. This leafhopper recently expanded its distribution area to southern parts of temperate Japan. In this study, factors affecting the overwintering ability of C. bipunctata were examined. A series of laboratory experiments revealed that cold acclimation at 15 °C for 7 days enhanced the cold tolerance of C. bipunctata to the same level as an overwintering population, adult females were more tolerant of cold temperature than adult males, and survival of acclimated adult females was highly dependent on temperature from −5 to 5 °C and exposure duration to the temperature. The temperature of crystallization of adult females was approximately −19 °C but temperatures in southern temperate Japan rarely dropped below −10 °C in the winter, indicating that overwintering C. bipunctata adults in temperate Japan are not killed by freezing injury but by indirect chilling injury caused by long-term exposure to moderately low temperatures. An overwintering generation of C. bipunctata had extremely low overwinter survival (<1%) in temperate Japan; however, based on winter temperature ranges, there are additional areas amenable to expansion of C. bipunctata in temperate Japan.  相似文献   

2.
Geographic variation in cold tolerance and associated physiological adaptations were investigated in the freeze tolerant enchytraeid Enchytraeus albidus (Oligochaeta). Specimens from Svalbard, Greenland (Nuuk), Iceland (Hólar and Mossfellsbær) and continental Europe [Norway (Bergen), Sweden (Kullen) and Germany] were reared in the laboratory in a common-garden experiment. The aim was to test for variations in minimum lethal temperature, freeze duration tolerance, carbohydrate reserves and metabolic rate among the populations. Cold tolerance was related to environmental temperature of the respective location. Populations from the coldest climatic regions were able to tolerate freezing down to at least ?15 °C and endured being frozen at ?5 °C for 27–48 days, respectively. Populations from milder climates had a lower freeze duration tolerance (about ?9 °C) and endured ?5 °C for a shorter period (between 9 and 16 days). Glucose accumulation and glycogen reserves varied significantly between populations, but was not related directly to cold tolerance. Metabolic rate varied significantly between populations, but was not significantly related to cold tolerance. The metabolic rates at ?2 °C of frozen and unfrozen worms from Germany and Svalbard were tested. The metabolic depression due to freezing of these populations was relatively small (<50 %), suggesting that the large carbohydrate accumulations may also be important as fuel during long-term freezing at moderately low temperatures. Differences in metabolic depression may partly explain the difference in cold tolerance of these two populations, however, the mechanisms behind local adaptation to low winter temperatures in these enchytraeid populations seem more complex than earlier studies have indicated.  相似文献   

3.
Diapause and cold tolerance are essential for temperate insects to pass the winter, with the mechanisms controlling these two traits varying considerably among insects. In the present study, diapause and cold tolerance are compared among three Leptopilina species: Leptopilina japonica Novkovi? & Kimura, Leptopilina victoriae Nordlander and Leptopilina ryukyuensis Novkovi? & Kimura, all larval parasitoids of frugivorous drosophilid flies, with the aim of understanding their climatic adaptations. The first species is divided into the temperate (Leptopilina japonica japonica) and subtropical subspecies (Leptopilina japonica formosana), and the latter two species are distributed in the tropical and subtropical regions. The temperate subspecies of L. japonica enters prepupal diapause at low temperatures (15 or 18 °C), irrespective of photoperiod, and some individuals enter diapause when exposed to 0 °C for 1 or 2 day(s) or when placed at low humidity. Leptopilina victoriae also shows signs of diapause initiation at 15 °C, although L. ryukyuensis and L. j. formosana from the subtropical regions do not. Preimaginal viability at low temperature (13, 14 or 15 °C) is usually lower in L. victoriae from the tropical regions compared with L. japonica or L. ryukyuensis from the temperate or subtropical regions. Diapausing prepupae of the temperate subspecies appear to be cold tolerant. However, the cold tolerance of nondiapausing prepupae, pupae and adult females varies little among the tropical, subtropical and temperate species or subspecies, and adult males of the temperate subspecies of L. japonica are less cold tolerant than those of the tropical or subtropical species or subspecies. Cold tolerance may be unnecessary, except for diapausing individuals of the temperate species, because nondiapausing individuals appear in warmer seasons.  相似文献   

4.
Although day length plays a critical role in the seasonal development of many temperate insects, this study showed that this variable is less important than temperature for seasonal regulation of an ant’s life cycle. Here, we examined the effects of temperature on queen oviposition and seasonal colony development of Lasius japonicus Santschi. Queens were collected soon after their nuptial flight and were reared under constant laboratory conditions; colony development was analyzed. The percentage of larvae- and pupae-emerged colonies was reduced in low rearing temperatures, indicating that temperature is the primary environmental factor for the regulation of seasonal development. Larval diapause was induced at higher temperatures than the reproductive diapause of queens. Larvae need to enter diapause before winter; nevertheless, eggs that were still unhatched in late autumn would not necessarily be wasted because they could be eaten by queens. Cyclic fluctuation in the egg number was observed. At 25 °C, the second increase in egg number was synchronized with pupation, suggesting a social effect on queen oviposition. In contrast, at 20 and 17.5 °C, the clear second peak of oviposition was found in colonies wherein larvae did not emerge, suggesting that endogenous rhythmicity is involved in the regulation of queen oviposition.  相似文献   

5.
The parasitoid Lariophagus distinguendus Förster (Hymenoptera: Pteromalidae) is a promising candidate for biological control of the granary weevil Sitophilus granarius (L.) (Coleoptera: Curculionidae) in grain stores. For practical application in northern temperate regions it is important that the parasitoids can survive the cold temperatures in the grain during the winter and resume activity the following spring. In the present study the survival of Lariophagus distinguendus and Sitophilus granarius was followed during a simulated winter with stepwise reductions of temperature down to 6°C which was maintained for 15 weeks. Only 20% of the weevils were alive after eight weeks at 6°C, whereas the survival of L. distinguendus was unaffected by the temperature decrease. After being returned to room temperature an F 1 generation of the parasitoid emerged and was able to reproduce.  相似文献   

6.
The wandering glider dragonfly, Pantala flavescens (Fabricius), arrives in Japan from tropical regions every spring. The offspring colonize areas throughout Japan, with rapid increases in populations in the autumn, but all individuals die in the winter, suggesting low tolerance to low temperatures. However, few quantitative data on egg development and water temperature have been reported for this species. Females at the reproductive stage were collected from fields throughout the flying season and their eggs released using an artificial oviposition technique. Almost all of the eggs were fertilized. Egg size was stable throughout the seasons. Most eggs hatched within a period of 5 days at high water temperatures (35 and 30 °C), which were recorded in the shallow ponds and rice paddy fields from summer to early autumn. However, the egg-stage duration increased with declining water temperature. All eggs in water at 15 °C had failed to hatch by 90 days. The calculated critical temperature of water was determined to be approximately 14.3 °C; the total effective temperature for the egg stage was about 80 degree-days. Thus, low water temperatures in winter may prevent P. flavescens overwintering in Japan.  相似文献   

7.
Two populations of the gall fly Eurosta solidaginsis utilize different strategies to endure seasonal exposure to temperatures below freezing. Both populations are freezing tolerant. In north temperate populations, supercooling points rise from ?10.2°C to ?6.2°C following exposures to temperatures below freezing. This level is maintained throughout winter and ensures frequent and prolonged periods of tissue freezing. South temperate populations depress the supercooling point to ?14.2°C during autumn and early winter, and this depression precludes extracellular ice formation during periods of supra-optimal temperature fluctuations. During mid-winter, supercooling points rise to the same level as in northern groups.Both populations accumulate three principal cryoprotective agents following first frost exposures (glycerol, sorbitol and trehalose). Cryoprotectants levels do not peak in northern populations until 4–6 weeks after first frost. In southern populations the accumulation profile is characterized by a high initial rate of synthesis, a protective overshoot and pronounced seasonal fluctuations. The relative survival advantages of each strategy are discussed.  相似文献   

8.
Phytoseiulus macropilis Banks (Acari: Phytoseiidae) is a specialist predator of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), and has been used to control the pest in its native range: Mediterranean regions, the tropics and Florida, USA. This study investigates the thermal biology as a proxy for establishment potential of glasshouse escapees in cooler northern European climates, using a combination of laboratory and field trials. High mortality rates at 10 °C indicated limited acclimation ability. Mites displayed continuous oviposition in conditions that have previously been shown to induce a hiatus in other phytoseiid species, supporting previous findings that Phytoseiulus is a genus with no diapause state. Adult P. macropilis supercooled to between ?17.2 and ?24.0 °C, but the lower lethal temperature50 was ?5.7 °C, resulting in a high level of pre-freeze mortality. The lethal time50 at 5 °C was 2.6 days, and maximum survival in winter field trials across 2010 and 2011 was 21 days. The thermal biology data indicate that P. macropilis is unlikely to establish in northern Europe, and will therefore make a suitable glasshouse biological control agent in temperate climates.  相似文献   

9.
Effects of cold storage temperatures and storage duration were evaluated for Psyttalia humilis (Silvestri) from Namibia and Psyttalia ponerophaga (Silvestri) from Pakistan, braconid parasitoids of Bactrocera oleae (Rossi) imported to California, USA. Immature stages of P. humilis were exposed to 4, 6, 8, 10, or 12 °C for 1, 2 or 4 months (pupa only at 4 and 12 °C) and then held at 24 °C for adult emergence. Less than 5 % of parasitoids in the 4–8 °C treatments survived, regardless of storage duration. At the 10 °C treatment, adult survival decreased with increased storage duration, but increased with advancing developmental stages. Survival was not affected at the 12 °C treatment. Adult P. humilis were exposed to 6, 8, 10 °C for short periods (1, 2, 4, or 6 weeks) or ambient winter conditions in Parlier, California, USA (about 9 °C). Regardless of storage temperature, P. humilis reproduction was reduced after storage of four and six weeks. Similarly, after 4 months at ambient winter temperatures, P. humilis reproduction was reduced. Psyttalia ponerophaga pupae stored at 6 °C for 41–97 days had decreased survival and increased developmental time. Survival of P. ponerophaga pupae ranged from 13.9–52.1 %, whereas under similar storage conditions survival of P. humilis was <0.7 %, suggesting P. ponerophaga is more cold tolerant than P. humilis.  相似文献   

10.
Drosophila simulans is more abundant under colder and drier montane habitats in the western Himalayas as compared to its sibling D. melanogaster but the mechanistic bases of such climatic adaptations are largely unknown. Previous studies have described D. simulans as a desiccation sensitive species which is inconsistent with its occurrence in temperate regions. We tested the hypothesis whether developmental plasticity of cuticular traits confers adaptive changes in water balance-related traits in the sibling species D. simulans and D. melanogaster. Our results are interesting in several respects. First, D. simulans grown at 15 °C possesses a high level of desiccation resistance in larvae (~39 h) and in adults (~86 h) whereas the corresponding values are quite low at 25 °C (larvae ~7 h; adults ~13 h). Interestingly, cuticular lipid mass was threefold higher in D. simulans grown at 15 °C as compared with 25 °C while there was no change in cuticular lipid mass in D. melanogaster. Second, developmental plasticity of body melanisation was evident in both species. Drosophila simulans showed higher melanisation at 15 °C as compared with D. melanogaster while the reverse trend was observed at 25 °C. Third, changes in water balance-related traits (bulk water, hemolymph and dehydration tolerance) showed superiority of D. simulans at 15 °C but of D. melanogaster at 25 °C growth temperature. Rate of carbohydrate utilization under desiccation stress did not differ at 15 °C in both the species. Fourth, effects of developmental plasticity on cuticular traits correspond with changes in the cuticular water loss i.e. water loss rates were higher at 25 °C as compared with 15 °C. Thus, D. simulans grown under cooler temperature was more desiccation tolerant than D. melanogaster. Finally, desiccation acclimation capacity of larvae and adults is higher for D. simulans reared at 15 °C but quite low at 25 °C. Thus, D. simulans and D. melanogaster have evolved different strategies of water conservation consistent with their adaptations to dry and wet habitats in the western Himalayas. Our results suggest that D. simulans from lowland localities seems vulnerable due to limited acclimation potential in the context of global climatic change in the western Himalayas. Finally, this is the first report on higher desiccation resistance of D. simulans due to developmental plasticity of both the cuticular traits (body melanisation and epicuticular lipid mass) when grown at 15 °C, which is consistent with its abundance in temperate regions.  相似文献   

11.
Previous research suggested that the polar and temperate populations of the kelp Saccharina latissima represent different ecotypes. The ecotypic differentiation might also be reflected in their biochemical composition (BC) under changing temperatures and pCO2. Accordingly, it was tested if the BC of Arctic (Spitsbergen) and temperate S. latissima (Helgoland) is different and if they are differently affected by changes in temperature and pCO2. Thalli from Helgoland grown at 17 °C and 10 °C and from Spitsbergen at 10 °C and 4 °C were all tested at either 380, 800, or 1,500 µatm pCO2, and total C-, total N-, protein, soluble carbohydrate, and lipid content, as well as C/N-ratio were measured. At 10 °C, the Arctic population had a higher content of total C, soluble carbohydrates, and lipids, whereas the N- and protein content was lower. At the lower tested temperature, the Arctic ecotype had particularly higher contents of lipids, while content of soluble carbohydrates increased in the Helgoland population only. In Helgoland-thalli, elevated pCO2 caused a higher content of soluble carbohydrates at 17 °C but lowered the content of N and lipids and increased the C/N-ratio at 10 °C. Elevated pCO2 alone did not affect the BC of the Spitsbergen population. Conclusively, the Arctic ecotype was more resilient to increased pCO2 than the temperate one, and both ecotypes differed in their response pattern to temperature. This differential pattern is discussed in the context of the adaptation of the Arctic ecotype to low temperature and the polar night.  相似文献   

12.
Many insects in temperate zones withstand the adverse conditions of winter through entering diapause and the two most important environmental stimuli that induce diapause are photoperiod and ambient temperature. The Large Copper butterfly, Lycaena dispar Haworth (Lepidoptera: Lycaenidae), is a Palearctic butterfly that hibernates as larvae. Since this butterfly is a near threatened species in some regions, there has been a growing need for a standardized protocol for mass rearing of this butterfly based on the adequate knowledge of its ecology. In the present study, we first identified that L. dispar larvae were sensitive to the photoperiodic induction of diapause during their first larval instar. We then investigated to what extent the diapause-inducing effects of photoperiod could be modified by ambient temperatures in L. dispar larvae by exposing them to the range of day-lengths (L:D 14:10, 12:12, 10:14 and 8:16) at three different temperatures (15, 20 and 25 °C). All larvae were induced to enter diapause at low ambient temperature (15 °C) regardless of photoperiod, whereas most of them (86 %) exhibited direct development when temperature was high (25 °C). The photoperiodic induction of diapause was evident when day-length was shorter than 14 h at intermediate temperature (20 °C). Pre-diapause development was prolonged at low temperatures. Finally, we found that post-diapause development of L. dispar larvae was determined by both the chilling temperature experienced by diapausing larvae and the duration of larval diapause. Adult emergence was enhanced when larvae were chilled at 8 °C and when they had been under the state of diapause for 20 days before they were treated to terminate diapause.  相似文献   

13.
The global temperature increase has significant implications on the survival of microalgae which form the basis of all aquatic food webs. The aim of this study was to compare the response of similar taxa of microalgae from the Antarctic (Chlamydomonas UMACC 229, Chlorella UMACC 237, and Navicula glaciei UMACC 231), temperate (Chlamydomonas augustae UMACC 247, Chlorella vulgaris UMACC 248, and Navicula incerta UMACC 249), and tropical (C. augustae UMACC 246, C. vulgaris UMACC 001, and Amphiprora UMACC 239) regions to changing temperature. The Antarctic, temperate, and tropical strains were grown over specific temperature ranges of 4 °C to 30 °C, 4 °C to 32 °C, and 13 °C to 38 °C, respectively. The three Antarctic strains survived at temperatures much higher than their ambient regime. In comparison, the tropical strains are already growing at their upper temperature limits. The three Chlorella strains from different regions are eurythermal, with a large overlap on tolerance ranging from 4 °C to 38 °C. The specific growth rate (μ) of the Antarctic Navicula decreased (<0.34 day?1) at temperatures above 4 °C, showing it to be sensitive to temperature increase. If further warming of Earth occurs, N. glaciei UMACC 231 is likely to have the most deleterious consequences than the other two Antarctic microalgae studied. The percentage of polyunsaturated fatty acids (PUFA) decreased with increasing temperature in the Antarctic Navicula. As temperature increases, the growth and nutritional value of this commonly occurring diatom in the Antarctic may decrease, with consequences for the aquatic food web. Of the three Chlamydomonas strains, only the Antarctic strain produced predominantly PUFA, especially 16:3 (48.4–57.2 % total fatty acids).  相似文献   

14.
Leptocorisa chinensis Dallas (Hemiptera: Alydidae) is known to cause pecky rice by sucking panicles of milk stage of rice. Based on its continuous spread and expanded damage area in Asian countries such as Japan with high reproduction potential, it is highly likely that L. chinensis will become an important rice pest in the near future. However, limited information is available to predict its distribution and occurrence. Thus, the objective of this study was to develop models for their development and oviposition. We investigated the development of L. chinensis immatures (from egg to adult) at 11 constant temperatures ranging from 16.2 to 35.3 °C and the oviposition of female adults at five constant temperatures ranging from 22.3 to 35.3 °C in this study. For L. chinensis immatures, the lower developmental threshold temperature, optimal developmental temperature, upper developmental threshold temperature were 12.7, 32.3, and 37.6 °C, respectively. The highest survival rate of immatures was observed at temperature of 25.2 °C and the highest mean total fecundity was 585.8 at 28.0 °C. This study provides basic information for the ecology of L. chinensis. It is applicable to forecast the phenology of its populations in the fields and to predict its future distribution under global warming.  相似文献   

15.
The objective of this study was to elucidate how temperature affects the reproduction and development of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), an emerging major pest of blueberry in Japan. Although extensive studies of the biology of this pest have been carried out, the effects of temperature on its reproduction and development remain unknown. We found that when adults mated at 31 °C for 4 days, none of the eggs hatched. Female oviposition and egg hatching rate were also reduced as temperature increased during the oviposition period. When D. suzukii larvae developed above 31 °C, pupation and adult eclosion were abolished. According to field observations, adult D. suzukii ceased to appear from the end of July 2010, when the average temperature exceeded 28 °C or when the temperature within a day exceeded 33 °C for 8 h or more. Experiments in which the mating temperature fluctuated within a day revealed that both the number of eggs oviposited and their hatch rate were significantly suppressed when the daily temperature regime during mating was either 31 °C for 12 h/25 °C for 12 h or 33 °C for 8 h/25 °C for 16 h, relative to the values at 25 °C for 24 h.  相似文献   

16.
Native Lauraceae (e.g. sassafras, redbay) in the southeastern USA are being severely impacted by laurel wilt disease, which is caused by the pathogen Raffaelea lauricola T. C. Harr., Fraedrich and Aghayeva, and its symbiotic vector, the redbay ambrosia beetle (Xyleborus glabratus Eichhoff). Cold temperatures are currently the only viable limitation to the establishment of X. glabratus in northern populations of sassafras. The observed lower lethal temperature of X. glabratus (? 10.0 °C) is warmer than its supercooling point (? 22.0 °C), indicating the beetle is a freeze intolerant and chill susceptible species. Empirically derived X. glabratus lower lethal temperature thresholds were combined with host distribution and microhabitat-corrected climate data to produce species distribution models for X. glabratus in the eastern USA. Macroclimate data (30-year mean annual minimum temperature) were corrected (? 1.2 °C) to account for thermal buffering afforded to X. glabratus while living inside sassafras trees. Only 0.1% of the current US sassafras spatial extent experiences sufficiently harsh winters (locales where mean annual minimum winter temperatures ≤ ? 6.2 °C for ≥ 12 h) to exclude X. glabratus establishment in our species distribution model. Minimum winter temperatures will likely cause some X. glabratus mortality in ~ 52% of the current spatial extent of sassafras, although current data do not allow a quantification of X. glabratus mortality in this zone. Conversely, ~ 48% of the current spatial extent of sassafras is unlikely to experience sufficiently cold winter temperatures to cause any significant impediment to X. glabratus spread or establishment. A modest climate change scenario (RCP4.5) of + 1.4 °C would result in 91% of the current spatial extent of sassafras in the eastern USA occurring where winter minimum temperatures are unlikely to cause any mortality to X. glabratus.  相似文献   

17.
Release and evaluation studies of the Brazil population of Cyrtobagous salviniae on Salvinia molesta were conducted originally at 18 sites in Texas and Louisiana from 1999 through 2005. However, overall project results could only be continually evaluated at two release and two control sites because the remainder were eventually destroyed or corrupted by floods, droughts, or herbicides. Mean fresh weight biomass of S. molesta ranged from 15.5 kg FW m−2 during the summer to as low as 2.1 kg FW m−2 during the winter prior to the release of C. salviniae. Insect populations established within a year of release and initially spread slowly. Damage to S. molesta increased with increasing C. salviniae detections while S. molesta biomass and surface coverage declined at both release sites by more than 99% while remaining unchanged at the control sites. Water in release sites registered higher levels of dissolved oxygen, higher temperatures, and higher pH than water in control sites. This study provides another example of the effectiveness of C. salviniae against S. molesta even in more temperate climates.  相似文献   

18.
Zaprionus indianus is a fly species native to the Afrotropical biogeographic region that invaded the South American continent 20 years ago. Its southernmost record is 34°S in areas with temperate climates with cold winters. To better understand its invasion biology, we investigated physiological responses to winter-like abiotic conditions that may be relevant in Z. indianus geographic expansion. We characterized Z. indianus females reproductive traits (ovarian maturation and fertility) and survival in response to cold treatments with summer-like and winter-like photoperiods. We also compared these traits between native (Yokadouma, Africa) and invasive (Yuto, South America) range wild-derived flies. We showed that Z. indianus females have the ability to arrest ovarian maturation and maintain fertility following recovery from cold stress. The critical temperature for ovarian maturation of this species was estimated at c. 13 °C, an intermediate value between those of tropical and temperate drosophilid species. Wild-derived females from Yuto responded to winter-like photoperiod by slowing down ovarian maturation at low but permissive temperatures of 14 °C and 16 °C and also delayed the start of oviposition after cold treatment. Yuto flies also survived better and recovered 20% faster from chill coma than flies from Yokadouma. These results are consistent with a scenario of local adaptations or phenotypic plasticity in the invaded range, and suggest that photoperiod could act as modulator of ovarian arrest. Conversely, the fact that native range flies showed higher fertility after cold recovery than females from invaded range is not indicative of local adaptation. All in all, our findings report a set of physiological responses that would enable Z. indianus expansion to temperate and cold areas, but also results that are compatible with a limitation to the invasion process.  相似文献   

19.
The relationship between distribution boundaries and temperature responses of some North AtlanticCladophora species (Chlorophyta) was experimentally examined under various regimes of temperature, light and daylength. Experimentally determined critical temperature intervals, in which survival, growth or reproduction was limited, were compared with annual temperature regimes (monthly means and extremes) at sites inside and outside distribution boundaries. The species tested belonged to two phytogeographic groups: (1) the tropical West Atlantic group (C. submarina: isolate from Curaçao) and (2) the amphiatlantic tropical to warm temperate group (C. prolifera: isolate from Corsica;C. coelothrix: isolates from Brittany and Curaçao; andC. laetevirens: isolates from deep and shallow water in Corsica and from Brittany). In accordance with distribution from tropical to warm temperate regions, each of the species grew well between 20–30°C and reproduction and growth were limited at and below 15°C. The upper survival limit in long days was <35°C in all species but high or maximum growth rates occurred at 30°C.C. prolifera, restricted to the tropical margins, had the most limited survival at 35°C. Experimental evidence suggests thatC. submarina is restricted to the Caribbean and excluded from the more northerly American mainland and Gulf of Mexico coasts by sporadic low winter temperatures in the nearshore waters, when cold northerly weather penetrates far south every few years. Experimental evidence suggests thatC. prolifera, C. coelothrix andC. laetevirens are restricted to their northern European boundaries by summer temperatures too low for sufficient growth and/or reproduction. Their progressively more northerly located boundaries were accounted for by differences in growth rates over the critical 10–15°C interval.C. prolifera andC. coelothrix are excluded or restricted in distribution on North Sea coasts by lethal winter temperatures, again differences in cold tolerance accounting for differences in their distribution patterns. On the American coast, species were probably restricted by lethal winter temperatures in the nearshore and, in some cases, by the absence of suitable hard substrates in the more equable offshore waters. Isolates from two points along the European coast (Brittany, Corsica) ofC. laetevirens showed no marked differences in their temperature tolerance but the Caribbean and European isolates ofC. coelothrix differed markedly in their tolerance to low temperatures, the lethal limit of the Caribbean isolate lying more than 5°C higher (at ca 5°C).  相似文献   

20.
“Dongnongdongmai 1” is a cultivated winter wheat which can endure cold temperature as low as ?30 °C with a reviving rate of 85 %. We aimed to explore the involvement of antioxidant protection system in salicylic acid (SA)-enhanced cold resistance of winter wheat. Seedlings were prayed with 0.1 mM SA at three-leaf stage, followed by cold acclimation at tillering stage (4 °C for 5 days) prior to cold treatment at 4, 0, ?10 or ?20 °C for 2 days. Under low temperature, the relative electrical conductivity (REC) of rhizomes and H2O2 content in rhizomes were lower compared with leaves, while in the reactive oxygen species (ROS) removal system, only the POD activity was higher. Foliar spray with SA significantly inhibited the cold-increased REC of rhizomes at ?20 °C and REC of leaves at ?10 and ?20 °C. In addition, application of SA prior to ?10 or ?20 °C treatment suppressed the increase in H2O2 content both in rhizomes and leaves. SA enhanced the activities of SOD, POD, and CAT in wheat following low-temperature treatment, especially at ?10 and ?20 °C. In addition, spray with SA resulted in 1.1-to-4.9-fold enhanced activities of the key enzymes in AsA–GSH cycle, including APX, DHAR, and MDHAR. Our results suggested that SA could improve the resistance of winter wheat against extreme low temperature by enhancing the activities of antioxidases to eliminate ROS and maintain the redox homeostasis. In addition, the less damage to rhizomes in comparison with leaves may be attributed to enhanced POD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号