首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Pollen concentrations in the atmosphere of Van city has been monitored for two consecutive years (2010–2011). This was the first detailed aeropalynological study for the elevated East Anatolia Region of Turkey. The sampling was performed by Hirst-type volumetric sampler, and pollen grains of 35 taxa were identified. The main pollen producers of the pollen flora were recorded as: Poaceae (20.94 %), Cupressaceae (10.53 %), Fraxinus (8.56 %), Chenopodiaceae/Amaranthaceae (7.77 %), Populus (7.75 %), Quercus (6.70 %), Platanus (6.68 %), Morus (5.57 %), Plantago (3.03 %). The pollen spectrum reflected the floristic diversity of the region, and the highest pollen concentration was recorded in April. There were a great percentage of allergenic taxa found in the city atmosphere, otherwise many of them scored under threshold values for risk of pollinosis. Statistical analyses were performed for correlating daily pollen concentrations of dominated pollen types concurrent with the data of meteorological parameters in MPS periods and number of significant correlations found. In addition, comparing 2-year data in terms of pollen concentrations and meteorological factors in MPS durations, many variables were found explanatory and concordant with the data. MPS starting dates of many plant taxa were found nearly a month later compared with western sites and lower altitudes of the country as well as Mediterranean countries; this case is mostly thought the ecological factors of the study area which directly affects the plant growth about the timing.  相似文献   

2.
In this study, a Tauber pollen trap was used in the urban area of Shijiazhuang to monitor continuously the outdoor air pollen from 2007 to 2011. The trap was emptied at regular intervals (typically 15 days). The results show that airborne pollen assemblages are generally similar each year among 2007–2011 and are responsive to the flowering times of plants, being dominated by pollen from woody plants in the spring and by pollen from herbaceous plants in summer and autumn. Two peak pollen influx periods, especially for the main allergenic pollen taxa, are seen, one between early March to early June and a second between late August to early October. During the four seasons, the main pollen taxa are Juglans, Artemisia, Platanus, Populus, Chenopodiaceae, Urtica + Humulus, Rosaceae, Pinus, Poaceae, Cereals, Quercus, and Betula, and all taxa other than Rosaceae were confirmed by relevant studies to be allergenic pollen taxa. RDA analysis of pollen influx and meteorological factors shows that in spring, temperature and humidity have significant effects on the pollen influx of woody plants; in summer, humidity and precipitation have significant negative effects on pollen influx of herbaceous plants; in autumn, temperature, water vapor pressure, and precipitation have a significant positive influence on herbaceous pollen influx; in winter, there were no significant correlations between airborne pollen influx and meteorological factors. The results reveal the dispersion patterns of airborne pollen and provide an important reference to appropriate construction of urban green systems and the reliable reduction in regional pollinosis.  相似文献   

3.
Present investigation was undertaken to study the dynamics of relationships between atmospheric fungal spores and meteorological factors in western Romania. The airborne spore sampling was carried out by employing volumetric sampling. A total of nine meteorological parameters were selected for this investigation. During 2008–2010, it was found the same pattern of behaviour in the atmosphere for selected spore types (Alternaria, Cladosporium, Pithomyces, Epicoccum and Torula). The spores occurred in the air throughout the whole year, but maximum concentrations were reached in summer. Cladosporium and Alternaria peak levels were observed in June. Epicoccum peak value was found in September. The relationships between airborne spore concentrations and environmental factors were assessed using the analysis of Spearman’s rank correlations and multiple linear regressions. Spearman’s rank correlation analysis revealed that maximum, minimum and mean temperature, and number of sunshine hours were strongly (p < 0.01) and directly proportional to the concentration of all analysed fungal spores. Negative and significant correlations were with daily mean relative humidity. The variance explained percentage by regression analyses varied between 30.6 and 39.6 % for Alternaria and Cladosporium airborne spores. Statistical methods used in this study are complementary and confirmed stable dependence of Alternaria and Cladosporium spore concentrations on meteorological factors. The climate change parameters either increased temperatures, changed precipitation regimes or a combination of both affected allergenic fungal spore concentrations in western Romania. This study demonstrates the need for investigations throughout the year, from month to month, regarding the correct interpretation of airborne spore relationships with meteorological parameters.  相似文献   

4.
The ambient atmosphere is dominated with pollen and spores, which trigger allergic reactions and diseases and impact negatively on human health. A survey of pollen and fungal spores constituents of the atmosphere of Garki, Abuja (North-Central Nigeria) was carried out for 1 year (June 1, 2011–May 31, 2012). The aim of the study was to determine the prevalence and abundance of pollen and fungal spores in the atmosphere and their relationship with meteorological parameters. Airborne samples were trapped using modified Tauber-like pollen trap, and the recipient solutions were subjected to acetolysis. Results revealed the abundance of fungal spores, pollen, fern spores, algal cysts and diatoms in decreasing order of dominance. The atmosphere was qualitatively and quantitatively dominated by pollen during the period of late rainy/harmattan season than the rainy season. Numerous fungal spores were trapped throughout the sampling periods among which Alternaria spp., Fusarium spp., Cladosporium spp. and Curvularia spp. dominated. These fungi have been implicated in allergic diseases and are dermatophytic, causing diverse skin diseases. Other pathogenic fungi found in the studied aeroflora were Dreschlera spp., Helminthosporium spp., Torula spp., Pithomyces spp., Tetraploa spp., Nigrospora ssp., Spadicoides spp., Puccinia spp. and Erysiphe graminis. Total pollen and fungal spores counts do not show significant correlation with meteorological parameters.  相似文献   

5.
This study has been focused on airborne pollen concentration in Northern Tunis. Pollen has been detected by a volumetric Hirst-type spore trap. This suction sampler was placed for two hydrologic years in the area of Mornag, northeastof Tunisia (36°40N; 10°17E). Fifty-two taxa were identified with heterogeneous daily pollen concentrations and a dominance of anemophilous plants. The main pollen types detected in the atmosphere were Olea europaea (38.7 and 20.75%), Cupressus (33.57 and 55.4%), Urticaceae (9.22 and 12.24%), Poaceae (3.55 and 3.32%), Mercurialis annua (2.96 and 1.6%) and Amaranthaceae (2.49 and 1.55%). The monthly pollen spectrum indicated a seasonal periodicity of airborne pollen with the main pollen season during spring. Two pollen seasons have been observed during these hydrologic years, due to both Cupressus and Amaranthaceae airborne pollen is represented during winter or spring, and also during autumn and late summer, respectively. Other pollen types represent a long pollen season, i.e., Urticaceae, starting in autumn and following until late spring. Daily pollen concentration showed a different behavior during the flowering season between both years, observing differences related to pollen index. Correlation between daily pollen concentrations of the dominant taxa showed a positive and significant correlation between airborne pollen concentrations of spring-pollinated taxa and mean temperature, but negative with maximum temperature, humidity and rainfall. In the case of minimum temperature, a different response, positive for trees and negative for herbaceous plants, has been observed.  相似文献   

6.
With a view to obtaining fuller information on airborne pollen content in the city of Havana, pollen sampling was carried out using a volumetric capture method, for the first time in Cuba. The study was conducted during 2 years (2011 and 2015). An annual pollen integral of 3414 grains was registered during the first year of study, whereas 5120 grains were observed along the 2015. Monthly maximum concentrations were recorded during April, June and July with total values close to 800 pollen grains. Of the 45 pollen types identified, Cecropia (38% of the total pollen identified in both years), Poaceae (18%), Urera type (9%) and Casuarina (6%) were particularly abundant. Although the main pollen types differed in terms of intradiurnal distribution, the highest concentrations were in all cases recorded between 0900 and 1300 hours. Maximum temperature was the variable most influencing airborne pollen counts in the air, with the exception of Casuarina. This paper sought to establish a methodological basis for the further development of aerobiological research in Cuba, thus helping to enhance the prevention and diagnosis of pollen allergies in the affected island population.  相似文献   

7.
In Uruguay, aeromycological studies are restricted to a gravimetric analysis performed from December 1942 to March 1944 in Montevideo where spores of Pucciniaceae, Alternaria and Helminthosporium were the only specimens identified. Daily monitoring of airborne fungal spores was carried out for the first time in Montevideo, from April 2012 to March 2014, using a Rotorod sampler in order to evaluate the seasonal variation and influence of meteorological parameters. A total of 548,309.68 spores/m3 were recorded which belong to anamorphs of Higher Fungi (69.18 %), Phyla Ascomycota (12.62 %), Basidiomycota (8.01 %), Oomycota (0.37 %) and Myxomycota (0.06 %). Airborne spores occurred in Montevideo throughout the whole year. However, a seasonal pattern was revealed, with the highest concentrations recorded in autumn and summer. The most abundant spore types were Cladosporium (53.22 %), Alternaria (6.62 %), Didymella Group (5.86 %), Leptosphaeria Group (4.37 %) and Coprinus (4.3 %). Temperature appeared to be the most influential meteorological factor correlating significantly and positively with total spore, Cladosporium, Alternaria and Didymella Group abundance. Relative humidity influenced positively total spore, Cladosporium and Didymella Group concentrations while a weak negative association was obtained for Alternaria. Wind speed correlated negatively with total spore, Cladosporium, Alternaria and Didymella Group. Precipitation showed a negative influence on Alternaria, while positive correlations were observed for Didymella Group. For the first time, fungal spores considered allergenic were recorded in Montevideo atmosphere and the risk of exposure would have been high from December to June. However, long-term sampling is needed to define seasonal prevalence patterns and the influence of meteorological conditions on spore abundance.  相似文献   

8.
A 1-year study was conducted, with the aim to investigate the airborne allergens around the Dead Sea (DS), identify and quantify airborne pollen and spores in the DS region, and determine the different sensitization prevalence among various population groups to these aeroallergens. According to results, we also aimed to define “safe seasons” when there are no or only few aeroallergens in the atmosphere that surrounds the Dead Sea. A Rotorod and a Hirst trap were used for continuous monitoring of pollen and spores which were then identified. Sensitization to aeroallergens was assessed by skin prick tests (SPT) in three groups of allergic residents: foreign tourists, Israeli tourists, and local workers from the hotel industry. Air around the DS is by no means free of aeroallergens, 50 pollen and 43 mold types were identified. Pollen was from native plants, imported ornamentals, and others transported by winds from long distances. Overall pollen concentrations were lower around the Dead Sea than in the Tel Aviv region, but in certain months, they were higher around the DS. Marked seasonal variations in pollen and spore dispersal were observed. By SPT, hypersensitivity to Chenopodiaceae, Amaranthaceae, Cupressus, Solidago, Poaceae, Olea, Artemisia as well as molds such as Alternaria and Aspergillus, was found. As assessed by SPT, some of tourists and permanent residents are allergic to pollen, molds, and house dust mites. The presented study enables one to denote “safe” seasons when the concentration of airborne allergens is below “allergenic risk”: June–August and November–February. These seasons are the most suitable for allergic medical tourists.  相似文献   

9.
The European Commission Cooperation in Science and Technology (COST) Action FA1203 “SMARTER” aims to make recommendations for the sustainable management of Ambrosia across Europe and for monitoring its efficiency and cost-effectiveness. The goal of the present study is to provide a baseline for spatial and temporal variations in airborne Ambrosia pollen in Europe that can be used for the management and evaluation of this noxious plant. The study covers the full range of Ambrosia artemisiifolia L. distribution over Europe (39°N–60°N; 2°W–45°E). Airborne Ambrosia pollen data for the principal flowering period of Ambrosia (August–September) recorded during a 10-year period (2004–2013) were obtained from 242 monitoring sites. The mean sum of daily average airborne Ambrosia pollen and the number of days that Ambrosia pollen was recorded in the air were analysed. The mean and standard deviation (SD) were calculated regardless of the number of years included in the study period, while trends are based on those time series with 8 or more years of data. Trends were considered significant at p < 0.05. There were few significant trends in the magnitude and frequency of atmospheric Ambrosia pollen (only 8% for the mean sum of daily average Ambrosia pollen concentrations and 14% for the mean number of days Ambrosia pollen were recorded in the air). The direction of any trends varied locally and reflected changes in sources of the pollen, either in size or in distance from the monitoring station. Pollen monitoring is important for providing an early warning of the expansion of this invasive and noxious plant.  相似文献   

10.
11.
Pollen and spores have been found as major biological sources of morbidity among individuals sensitive to respiratory disorders. The aim of the present study was to analyse the deposition rate of atmospheric pollen and fern spores at selected sites in Benue and Plateau states of the North-Central Nigeria between July 2015 and June 2016. This was accomplished by: (1) determining the pollen and fern spore content of each monitoring station; (2) establishing the relationship between total pollen count and meteorological parameters; and (3) comparing the recovered airborne pollen spectra with identified plants in the surrounding vegetation types of the sampling sites. The collection of atmospheric pollen was done using a modified Tauber sampler and plants in the surrounding environment of the sampling sites were enumerated. The residual solution was collected monthly and acetolysed, after which slide preparation and microscopy of the treated residue were done. Meteorological data were obtained from the Nigerian Meteorological Agency, Lagos. The results obtained reveal seasonal distribution patterns of various airborne pollen grains in the study locations. The most abundant pollen types recovered in Plateau State were produced by Syzygium guineense, Tridax procumbens, Alchornea sp., Terminalia sp., Poaceae and Amaranthaceae. Pollen types of Casuarina equisetifolia, Syzygium guineense, Tridax procumbens, Poaceae and Cyperaceae were preponderant in Benue State. Pteris sp., Nephrolepis sp. and a trilete fern spore were also represented in this study. The recovered airborne pollen spectra correspond favourably with some identified plants in the study locations. There was no significant correlation between monthly total pollen count and mean monthly values of meteorological parameters in Benue State. Air temperature and wind speed correlated significantly with monthly total pollen count in Plateau State. It is suggested that the allergenic effect of these abundant pollen types on humans should be further examined.  相似文献   

12.
Fungal spores of Alternaria and Cladosporium are ubiquitous components of both indoor and outdoor air samples and are the main causes of human respiratory allergies. Monitoring these airborne fungal spores during 2009–2014 was carried out by means of Hirst-type spore trap to investigate their airborne spore concentrations with respect to annual load, seasonality and overall intradiurnal pattern. Alternaria and Cladosporium spores are present throughout the year in the atmosphere of Tétouan, although they show seasonal variations. Despite important differences between years, their highest levels presented a first peak during spring and a higher second peak in summer or autumn depending on the year. The spore concentrations were homogeneously distributed throughout the day with slight increase of 7.6 and 3.7% on average between 12–14 and 14–16 h for Alternaria and Cladosporium, respectively. The borderline of 3000 sp/m3 of Cladosporium linked to the occurrence of allergic diseases was exceeded between 13 and 31 days. Airborne spores of Alternaria overcame the threshold value of 100 sp/m3 up to 95 days, suggesting that Cladosporium and Alternaria could be clinically significant aeroallergens for atopic patients.  相似文献   

13.
Ascospores are frequently found as airborne fungal spores and recognized in various areas as an important cause of respiratory allergies. The main objective of the study was to determine the relationship between airborne ascospores and meteorological parameters using multivariate canonical correspondence analysis (CCA) and Spearman correlation. The aerobiological monitoring of fungal spores was performed over 5 years (2009–2013) using a Burkard volumetric spore traps. Seven main types of ascospores were identified: Leptosphaeria, Pleospora, Venturia, Diatrype, Chaetomium, Sporormiella and Ascobolus. The CCA results showed that all applied variables accounted for 27.4 % of the total variance in the spore data in the 5 years. The largest contribution to the total variance was explained in this period by the maximum air temperature (10.3 %). The effect of meteorological factors varied among years. The highest values of the total variance in the spore data, explained by the statistically significant variables, were observed in 2012 (28.6 %), with the highest contribution to minimum relative humidity (8.0 %). Most ascospores showed positive and statistically significant correlation with relative humidity and rainfall. In contrast, ascospores of Chaetomium were negatively correlated with precipitation and the relative humidity and positively with temperature. Based on these results, epidemiological and allergological studies must deserve more attention to estimate the allergenic potential of the ascospores.  相似文献   

14.
15.
Artemisia pollen is an important allergen in Europe. In Poznań (Western Poland), three Artemisia species, A. vulgaris, A. campestris and A. absinthium, are widely distributed. However, the contributions of these species to the total airborne pollen are unknown. The aim of the study was to determine the flowering phenology and pollen production of the three abovementioned species and to construct a model of potential Artemisia pollen emission in the study area. Phenological observations were conducted in 2012 at six sites in Poznań using a BBCH phenological scale. Pollen production was estimated by counting the pollen grains per flower and recalculating the totals per inflorescence, plant and population in the study area. Airborne pollen concentrations were obtained using a Hirst-type volumetric trap located in the study area. Artemisia vulgaris began to flower the earliest, followed by A. absinthium and then A. campestris. The flowering of A. vulgaris corresponded to the first peak in the airborne pollen level, and the flowering of A. campestris coincided with the second pollen peak. The highest amounts of pollen per single plant were produced by A. vulgaris and A. absinthium. A. campestris produced considerably less pollen, however, due to its common occurrence, it contributed markedly (30 %) to the summation of total of recorded pollen. A. vulgaris is the most important pollen source in Poznań, but the roles of two other Artemisia species cannot be ignored. In particular, A. campestris should be considered as an important pollen contributor and likely might be one of the main causes of allergic reactions during late summer.  相似文献   

16.
Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.  相似文献   

17.
The aim of this study was to investigate aerobiological dynamics of pollen in the Mediterranean part of Croatia in the air of the city of Split. Pollen monitoring during the period from 2005 to 2013 was performed using a Hirst volumetric trap. Among the identified pollen of 50 taxa, 21 were allergenic. The average annual pollen index was 33,513. Three pollination seasons were established: early winter season dominated by tree pollen, spring–summer season dominated by herbaceous plants and summer–autumn season with lower amounts of Parietaria and Cupressaceae pollen. According to the abundance, the main taxa were: Cupressaceae, Parietaria/Urtica, Pinus, Quercus, Olea, Carpinus/Ostrya, Poaceae, Platanus and Ambrosia. The annual pollen index together with the daily maximum concentrations showed an upward trend for selected taxa during the study period. The highest monthly pollen index and the highest biodiversity were recorded in April and the lowest during the late autumn and winter months. The pollen calendar created for the city of Split confirmed Mediterranean features of the pollen spectrum. The longest pollen seasons were recorded for Cupressaceae, Parietaria/Urtica and Poaceae pollen types. The correlations between pollen concentrations and meteorological parameters were analyzed. The correlations between pollen concentrations and temperature were positive, while the humidity and the precipitation mostly showed negative influence.  相似文献   

18.
The air that we inhale contains simultaneously a multiple array of allergenic pollen. It is well known that such allergens cause allergic reactions in some 15 of the population of the Western World. However little is known about the quantitative aspect of this phenomenon. What is the lowest concentration of pollen that might trigger allergic responses? As people are exposed to heterogeneous and variable environments, clarification of the partial contribution of each of the major airborne pollen allergens and determination of its role in invoking allergy are of prime importance. Objectives: (1) Assessment of a possible correlation between the concentration of airborne pollen and incidence of allergy. (2) Estimation of the lowest average concentrations for various species of airborne pollen that elicit allergic symptoms when exceeded. (3) Determination of the extent of the variations in manifestation of allergy symptoms that can be explained by fluctuations in the concentration of individual species of airborne pollen. Methods: The study was conducted during 14?months with a rural population in Israel. The participants completed a detailed questionnaire and were skin prick tested with the common airborne allergens. The appearance of clinical symptoms, i.e. nasal, bronchial, ocular or dermal, were reported daily by the patients. Concentrations of the airborne pollen and spores were monitored in the center of activity of the residents during one day every week, using three ‘Rotorod’ pollen traps. The pollen grains were identified by light microscopy. Results: The pollen spectrum was divided into time-blocks presenting the main pollination periods of the investigated species. The correlation between the concentration of airborne pollen of the relevant species and the clinical symptoms of the patients was determined for each time block. The correlation differed for different clinical symptoms and for different pollen allergens. Highest correlation with airborne pollen counts was found for patients with nasal and bronchial symptoms. The onset of the clinical symptoms by sensitive patients started, in each of the relevant groups, once the weekly average concentration of the airborne pollen crossed a threshold level. Under the limitations of the present study, this level was estimated to be 2–4 pollen m?3 air for olive, 3–5 pollen m?3 air for grasses, 4–5 pollen m?3 air for Artemisia, 10–20 pollen m?3 air for pecan and 50–60 pollen m?3 air for cypress. Conclusions: Fluctuations in specific airborne pollen grains explained up to 2/3 of the variation in clinical allergy responses. Those were: 69 of the variation for cypress (March–April), 66 for the grasses (March–April), 49 for the pecan (May–June) and 62 for Artemisia (Autumn).  相似文献   

19.
Pollen grains have been a major focus of research mostly in temperate regions due to their effects on human health, especially allergies and asthma. The current study investigates a subtropical region characterized by a Mediterranean climate where Sharav conditions are experienced during the spring and autumn. The aim of the current study was to investigate whether Sharav conditions impacted airborne pollen concentrations of allergenic Amaranthaceae, Poaceae, Morus, Pinus, and Quercus more than standard Warm days during the main pollen seasons in the years 2010–2014 in Tel Aviv and Jerusalem (Israel). Slight variation was observed between the main pollen seasons in Tel Aviv compared to Jerusalem resulting from differences in temperature and relative humidity percentages. Additionally, more Sharav conditions occurred in Jerusalem than in Tel Aviv during the study period. The highest pollen concentrations occurred during Sharav days for Amaranthaceae, Poaceae, and Pinus but not for Morus and Quercus. Therefore, individuals who are allergic to Amaranthaceae, Poaceae, and Pinus pollen, and exposed to high pollen concentrations during Sharav days, might suffer more allergy symptoms than on Warm days.  相似文献   

20.
The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source–receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees (Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs (Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89–97% of annual counts of the highly allergenous Olea originates from extra-regional sources in southern Iberia and northern Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号