首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Several Longitarsus flea beetle species sequester pyrrolizidine alkaloids acquired from their Asteraceae and Boraginaceae host plants. We carried out feeding and injection experiments using radioactively labeled pyrrolizidine alkaloids to investigate the physiological mechanisms of uptake, metabolism and storage of alkaloids in adult beetles. We examined six Longitarsus species belonging to different phylogenetic clades in a comparative approach. All species that accepted pyrrolizidine alkaloids in a preceding food choice study showed the ability both to store pyrrolizidine alkaloid N-oxides and to metabolize tertiary pyrrolizidine alkaloids into their N-oxides. Regardless of whether the beetles' natural host plants contain pyrrolizidine alkaloids or not, these species were found to possess an oxidizing enzyme. This oxygenase appears to be specific to pyrrolizidine alkaloids: [3H]Atropine and [14C]nicotine, two alkaloids not related to pyrrolizidine alkaloids, were neither stored nor N-oxidized by any of the tested species. One species, L. australis, that strictly avoids pyrrolizidine alkaloids behaviorally, exhibited a lack of adaptations to pyrrolizidine alkaloids on a physiological level as well. After injection of tertiary [14C]senecionine, beetles of this species neither N-oxidized nor stored the compounds, in contrast to L. jacobaeae, an adapted species that underwent the same treatment. L. jacobaeae demonstrated the same efficiency in N-oxidation and storage when fed or injected with tertiary [14C]senecionine.Communicated by G. Heldmaier  相似文献   

2.
Oreina elongata is a chemically defended leaf beetle. If its food plant contains pyrrolizidine alkaloids, all life stages of the beetle sequester them. However, one of the two known host-plant genera does not contain these alkaloids. In this paper we compare the adult feeding preference and larval performance of two populations, one feeding on Adenostyles alliariae (which contains alkaloids) and one on Cirsium spinosissimum (devoid of alkaloids). Adults of the population living on C. spinosissimum preferred the alkaloid-containing A. alliariae, while adults of the population feeding on A. alliariae showed no preference for either plant. On the other hand, larval growth of both populations is better on C. spinosissimum, without alkaloids. This is especially so in the population that never naturally encounters pyrrolizidine alkaloids; the population living on A. alliariae is apparently better adapted to its host's secondary compounds. The data are discussed in terms of cost of defense and trade-offs between growth and defense.  相似文献   

3.
Tracer feeding experiments with (14)C-labeled senecionine and senecionine N-oxide were carried out to identify the biochemical mechanisms of pyrrolizidine alkaloid sequestration in the alkaloid-adapted leaf beetle Oreina cacaliae (Chrysomelidae). The taxonomically closely related mint beetle (Chrysolina coerulans) which in its life history never faces pyrrolizidine alkaloids was chosen as a 'biochemically naive' control. In C. coerulans ingestion of the two tracers resulted in a transient occurrence of low levels of radioactivity in the hemolymph (1-5% of radioactivity fed). With both tracers, up to 90% of the radioactivity recovered from the hemolymph was senecionine. This indicates reduction of the alkaloid N-oxide in the gut. Adults and larvae of O. cacaliae sequester ingested senecionine N-oxide almost unchanged in their bodies (up to 95% of sequestered total radioactivity), whereas the tertiary alkaloid is converted into a polar metabolite (up to 90% of total sequestered radioactivity). This polar metabolite, which accumulates in the hemolymph and body, was identified by LC/MS analysis as an alkaloid glycoside, most likely senecionine O-glucoside. The following mechanism of alkaloid sequestration in O. cacaliae is suggested to have developed during the evolutionary adaptation of O. cacaliae to its alkaloid containing host plant: (i) suppression of the gut specific reduction of the alkaloid N-oxides, (ii) efficient uptake of the alkaloid N-oxides, and (iii) detoxification of the tertiary alkaloids by O-glucosylation. The biochemical mechanisms of sequestration of pyrrolizidine alkaloid N-oxides in Chysomelidae leaf beetles and Lepidoptera are compared with respect to toxicity, safe storage and defensive role of the alkaloids.  相似文献   

4.
Summary Larvae of three moth species were compared with respect to strategies used to cope with secondary metabolites (allelochemicals) present in their diet.Syntomeida epilais is monophagous and accepted only oleander (which contains cardenolides, CG). CG were detected as stored products in the larvae and also in the faeces and exuviae. Pure CG (digoxin and gitoxin) which do not occur in oleander fed on oleander leaves were sequestered as the oleander CG.Syntomis mogadorensis is polyphagous: given a choice larvae avoided plants with a high load of allelochemicals. Upon shortage of preferred plants they ate a wide variety of plants which contain alkaloids, terpenes, or phenolics. Of these allelochemicals, alkaloids and CG were mainly recovered in the faeces and only minute fractions in the larvae.Creatonotos transiens larvae behaved similarly toSyntomis in terms of polyphagy and non-resorption. However, the larvae took up and stored pyrrolizidine alkaloids (PA) such as heliotrine selectively.Creatonotos is thus polyphagous (a generalist) but also a PA-specialist which exploits PA as defensive agents, as a morphogen for the male pheromone gland, and as a precursor for the male pheromone.Abbreviations CG cardiac glycosides - IG iridoid glycosides - PA pyrrolizidine alkaloids - GLC gas liquid chromatography - MS mass spectrometry  相似文献   

5.
Isotope feeding and inhibitor experiments were performed in order to elucidate the pathway common to polyamine and alkaloid biosynthesis in root cultures of Senecio vulgaris L. -Difluoromethylarginine, a specific inhibitor of arginine decarboxylase, prevented completely the incorporation of radioactivity from [14C]arginine and [14C]ornithine into spermidine and the pyrrolizidine alkaloid senecionine N-oxide. In contrast, -difluoromethylornithine, a specific ornithine-decarboxylase inhibitor, had no effect on the flow of radioactivity from labelled ornithine and arginine into polyamines and alkaloids. Thus, putrescine, the common precursor of polyamines and pyrrolizidine alkaloids, is exclusively derived via the arginine-agmatine route. Ornithine is rapidly transformed into arginine. Recycling of the guanido moiety of agmatine back to ornithine can be excluded. Putrescine and spermidine were found to be reversibly interconvertable and to excist in a highly dynamic state. In contrast, senecionine N-oxide did not show any turnover but accumulated as a stable metabolic product. In-vivo evidence is presented that the carbon flow from arginine into the polyamine/alkaloid pathway may be controlled by spermidine. The possible importance of the metabolic coupling of pyrrolizidine-alkaloid biosynthesis to polyamine metabolism is discussed.Abbreviations DFMA D,l--difluoromethylarginine - DFMO D,l--difluoromethylornithine - FW fresh weight  相似文献   

6.
In five species of the genus Oreina Chevrolat (Coleoptera, Chrysomelidae) we compared the size of offspring, the fecundity of the females, the timing of offspring production and female investment over the season. Two of the species, O. elongata and O. luctuosa, laid eggs, while O. cacaliae, O. gloriosa and O. variabilis gave birth to larvae. Offspring size corrected for female size was similar in the two oviparous species and in the viviparous O. cacaliae. In the two other viviparous species the larvae were two to three times bigger in relation to the female. The greater size of the offspring was not traded off for lower fecundity in these latter two species, yet the production of bigger larvae was associated with a longer laying period and thereby a spreading of reproductive investment over the season. The prediction of life history theory that higher investment in individual offspring should be traded off for lower fecundity could not be confirmed. The investigation of egg and larval development showed that in one of the oviparous species, O. luctuosa, the length of the egg stage was more variable. This corroborates the view that in this species the eggs can be retained for varying times before being laid. Greater size at birth does not necessarily lead to shortened developmental times: the larval periods of O. cacaliae, O. elongata, O. gloriosa and O. variabilis were all comparable although the larvae of the first two species were relatively smaller when laid; only the small larvae of O. luctuosa needed significantly longer for their development. For all growth parameters examined the differences between species were larger than the differences between populations. A comparison of larval growth of the oligophagous species O. cacaliae on three plant genera showed that larval growth rate is influenced by the food plant. However, the plant on which the larvae grew worst is apparently not chosen for oviposition in the field. A comparison with a phylogeny of the species based on allozymes suggests that species with similar reproductive parameters are closely related, yet that viviparity evolved independently in O. cacaliae on one hand and O. variabilis and O. gloriosa on the other.  相似文献   

7.
In a chemotaxonomic study of the genusSymphytum pyrrolizidine alkaloids and triterpenes were used as chemotaxonomical markers. A micro-extraction methods was developed for screening compounds of very small pieces of herbarium material. The occurrence of the pyrrolizidine alkaloids symphytine and (acetyl-)lycopsamine is very general forSymphytum taxa. Echimidine is present in someS. officinale L. plants and inS. tanaicense Steven. The triterpene isobauerenol is present inS. officinale, S. bohemicum Schmidt,S. tanaicense and inS. officinale var.lanceolatum Weinm. The chemotaxonomic hypothesis, proposed byGadella and collaborators, based on the presence of the triterpene isobauerenol inS. officinale and its absence inS. asperum Lepech. and the presence of the pyrrolizidine alkaloid echimidine inS. asperum and its absence inS. officinale, can no longer be applied absolutely to theS. officinale species complex. The pyrrolizidine alkaloid and triterpene pattern ofS. officinale (2n = 24) andS. bohemicum (2n = 24) is identical.S. bohemicum is morphologically, cytologically and phytochemically very similar toS. officinale. Furthermore, it readily crosses with the white flowered W. European diploids ofS. officinale. Therefore it seems likely that these two taxa are conspecific.S. tanaicense shows a pyrrolizidine alkaloid and triterpene pattern similar toS. officinale (2n = 40). Also on morphological and cytological grounds they are very similar. It seems highly probable thatS. tanaicense is conspecific withS. officinale (2n = 40) and represents an intraspecific variant only.S. officinale var.lanceolatum contained no pyrrolizidine alkaloids but did contain isobauerenol. This feature points to an origin fromS. officinale.  相似文献   

8.
Leaf beetles of the genus Platyphora, feeding on plant species containing pyrrolizidine alkaloids of the lycopsamine type, not only sequester these alkaloids and concentrate them in their exocrine defensive secretions, but also specifically process the plant acquired alkaloids. Using P. boucardi as subject, three mechanisms were studied: (i). utilization of host plant alkaloids that are not sequestered per se; (ii). elucidation of the mechanism of the already documented C-7 epimerization of heliotridine O(9)-monoesters; (iii). the specificity of insect catalyzed necine base esterification. P. boucardi does not sequester the triester parsonsine, the principal alkaloid of its host plant Prestonia portobellensis (Apocynaceae). Beetles fed with a purified mixture of nor-derivatives of parsonsine, obtained from Parsonsia laevigata, did not sequester the triesters but transformed them by partial degradation into monoesters that are accumulated in the defensive secretions. The mechanism of the previously described transformation of rinderine into intermedine by C-7 epimerization was elucidated by feeding C-7 deuterated heliotrine (3'-methylrinderine). The transformation of heliotrine into epiheliotrine (3'-methylintermedine) catalyzed by P. boucardi is accompanied by complete loss of deuterium, indicating the same mechanism of an oxidation-reduction process via a ketone intermediate as recently demonstrated in a pyrrolizidine alkaloid sequestering lepidopteran. P. boucardi is able to form ester alkaloids from five different necine bases fed as radioactively labeled substrates. However, besides C-7 epimerization the beetles are not able to convert simple necine bases into retronecine. The functional importance of the various alkaloid transformations is discussed in comparison to striking parallels of analogous reactions known from pyrrolizidine alkaloid sequestering Lepidoptera.  相似文献   

9.
Platyphora boucardi leaf-beetles sequester tertiary pyrrolizidine alkaloids of the lycopsamine type acquired from their host-plant Prestonia portobellensis (Apocynaceae) and synthesize their own alkaloids from exogenous retronecine and aliphatic 2-hydroxy acids. Tracer studies with [14C]rinderine and its N-oxide revealed that P. boucardi sequesters both alkaloidal forms with the same efficiency, but accumulates exclusively tertiary alkaloids. There is no substantial alkaloid accumulation in the body outside the defensive glands. Feeding studies with [2H][14C]rinderine confirmed that P. boucardi specifically epimerizes rinderine to its stereoisomers intermedine and lycopsamine. Feeding studies with [2H][14C]retronecine proved the ability of P. boucardi to synthesize O7- and O9-(2-hydroxyisovaleryl)-retronecine and O7-lactyl-O9-(2-hydroxyisovaleryl)-retronecine. Both, alkaloids of the lycopsamine type and self-synthesized retronecine esters accumulate in the defensive secretions at concentrations up to 38 mM and 33 mM, respectively. The different biochemical strategies to maintain pro-toxic pyrrolizidine alkaloids and to prevent self-poisoning, developed by specialized insects, are compared. There are two major findings: (1) the chemical defense mediated by plant acquired pyrrolizidine alkaloids in the taxonomically related palaearctic Oreina and neotropical Platyphora leaf beetles have been evolved independently, since the biochemical mechanisms of storing and maintaining the alkaloids is completely different in the two genera; (2) unexpected parallels exist between taxonomically unrelated Coleoptera and Lepidoptera in their ability to synthesize the same retronecine esters and to catalyze the same site-specific epimerizations of the lycopsamine stereoisomers.  相似文献   

10.
InS. tuberosum subspp.tuberosum andnodosum, S. grandiflorum andS. ibericum the presence of the pyrrolizidine alkaloids lycopsamine, echimidine and symphytine could be demonstrated. The taxonS. tuberosum contains an unknown compound that seems to be specific for this taxon. This compound is not the pyrrolizidine alkaloid anadoline which has previously been reported for this species. It is possibly represented by a peak on GC/MS with a molecular ion peak at m/z 623 (as TMS derivative) and can be used as a chemotaxonomic marker for the speciesS. tuberosum. The pyrrolizidine alkaloid pattern of the two subspecies ofS. tuberosum reinforces the close relationship. Fresh material ofS. tuberosum contained the triterpene isobauerenol, but in herbarium material isobauerenol was lacking. InS. grandiflorum, neither fresh nor dried material contains isobauerenol. In herbarium material ofS. ibericum also no isobauerenol could be found. More extensive chemotaxonomical research is necessary to support the view thatS. abchasicum is more closely related toS. ibericum than toS. grandiflorum.  相似文献   

11.
14C-Labelled alkaloid precursors (arginine, putrescine, spermidine) fed to Senecio vulgaris plants via the root system were rapidly taken up and efficiently incorporated into the pyrrolizidine alkaloid senecionine N-oxide (sen-Nox) with total incorporations of 3–6%. Considerable amounts of labelled sen-Nox were translocated into the shoot and were directed mainly into the inflorescences, the major sites of pyrrolizidine-alkaloid accumulation. Detached shoots of S. vulgaris were unable to synthesize pyrrolizidine alkaloids, indicating that the roots are the site of their biosynthesis. Further evidence was obtained from studies with in-vitro systems established from S. vulgaris: root cultures were found to synthesize pyrrolizidine alkaloids but not cell-suspension cultures, tumor cultures or shoot-like teratomas obtained by transformation with Agrobacterium tumefaciens. Studies on transport of [14C]sen-Nox, which was fed either to detached shoots or to the root system of intact plants, indicate that the alkaloid N-oxide does not simply follow the transpiration stream but is specifically channelled to the target tissues such as epidermal stem tissue and flower heads. Exogenously applied [14C]senecionine is rapidly N-oxidized. If the phloem path along the stem is blocked by a steam girdle translocation of labelled sen-Nox is blocked as well. Root-derived sen-Nox accumulated below the girdle and only trace amounts were found in the tissues above. It is most likely that the root-to-shoot transport of sen-Nox occurs mainly if not exclusively via the phloem. In accordance with previous studies the polar, salt-like N-oxides, which are often considered to be artifacts, were found to be the real products of pyrrolizidine-alkaloid biosynthesis as well as the physiological forms for long-distance transport, tissue-specific distribution and cellular accumulation.Abbreviations FW fresh weight - sen senecionine - sen-Nox senecionine N-oxide  相似文献   

12.
Cell-suspension cultures of pyrrolizidinealkaloid-producing species selectively take up and accumulate senecionine (sen) and its N-oxide (sen-Nox). Cultures established from non-alkaloid-producing species are unable to accumulate the alkaloids. The uptake and accumulation of 14C-labelled alkaloids was studied using a Senecio vulgaris cell-suspension culture as well as protoplasts and vacuoles derived from it. The alkaloid uptake exhibits all characteristics of a carrier-mediated transport. The uptake of sen-Nox follows a multiphasic saturation kinetics. The Km-values for sen Nox of 53 M and 310 M are evaluated. Senecionine competitively inhibits sen-Nox uptake, indicating that the tertiary alkaloid and its N-oxide share the same membrane carrier. The N-oxide of sen shows a pH optimum below 5.5, whereas sen is taken up over a range from pH 4 to 8. Activation energies of 90 and 53 kJ·mol-1 are calculated for sen-Nox and sen transport, respectively. At concentrations of 10 to 100 M, sen-Nox is rapidly taken up by cells and protoplasts; within 2 h >90% of total N-oxide is within the cells. By contrast the uptake of sen is less efficient. Vacuoles isolated from protoplasts preloaded with sen-Nox totally retained the alkaloid N-oxide, whereas sen is rapidly lost during the procedure of vacuole preparation. N-oxidation converts the weak lipophilic tertiary base into a charged polar molecule which is excellently adapted to serve as the cellular transport and storage form of pyrrolizidine alkaloids.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - DNP 2,4-dinitrophenol - sen senecionine - sen-Nox senecionine N-oxide  相似文献   

13.
The genetic relationships between five Oreina species (Chrysomelidae, Coleoptera) were studied. Of these species, four (O. bifrons, O. gloriosa, O. speciosa, O. variabilis) feed on Apiaceae and secrete mixtures of autogenous cardenolides from defensive glands, whilst the other (O. speciosissima) feeds on Asteraceae and is able both to produce cardenolides and to sequester pyrrolizidines N-oxides (PAs). A dendrogram based on the different mixtures of cardenolides produced by the different species agreed with these genetic relationships. In other words, cardenolide mixtures are good taxonomic markers, since the clustering method based on chemical defense produces a branching pattern similar to that based on genetic relationships.  相似文献   

14.
We compared the effects of a sesquiterpene (ST, cacalol) and a pyrrolizidine alkaloid (PA, seneciphylline), both occurring in Adenostyles alliariae, on food choice and performance of specialist and generalist insect herbivores which are all known to feed or live on A. alliariae. In choice experiments we investigated whether the compounds were preferred, deterrent or had no effect. All specialist species Aglaostigma discolor (Hymenoptera, Tenthredinidae), Oreina cacaliae (Coleoptera, Chrysomelidae) and O. speciosissima avoided feeding when confronted with the combination of compounds. Only larvae of A. discolor avoided the single ST treatment as well. Larvae of the generalist species Callimorpha dominula (Lepidoptera, Arctiidae), Cylindrotoma distinctissima (Diptera, Tipulidae) and Miramella alpina (Caelifera, Acrididae) generally avoided feeding from PA, ST and PAST treatments. The only exception were caterpillars of C. dominula which were indiscriminate towards PA when naive, and preferred to feed on the PA treatment when they had experienced the compound before. Performance, measured as the growth of larvae on the different treatments in a no choice situation over a period of 10–17 days, was not different between treatments in the specialist leaf beetles O. cacaliae and O. speciosissima. Their avoidance of the combination treatment in the choice experiments had no obvious effect on growth when forced to feed from the treatment. In the generalist C. dominula only the high concentration combination treatment (PAST) reduced growth of the larvae due to decreased consumption. In C. distinctissima we found reduced growth in all treatments except one (PA3%). Poor growth performance in C. distinctissima was due to postingestive physiological effects of all treatments and additionally to consumption reduction in high‐dose ST treatments. Genetic variability (broad sense heritability) of growth performance metabolism varied in accordance with the specialization degree of the species. O. cacaliae, the most specialized species, had no significant heritability; O. speciosissima, the less specialized specialist, had a heritability of 0.46; C. dominula, the PA adapted generalist species, had a heritability of 0.64; C. distinctissima, the generalist with no apparent adaptations, had a heritability of 0.84.  相似文献   

15.
The N-oxides of pyrrolizidine alkaloids such as senecionine or monocrotaline are rapidly taken up and accumulated by cell suspension cultures obtained from plants known to produce pyrrolizidines, i.e. Senecio vernalis, vulgaris, viscosus (Asteraceae) and Symphytum officinale (Boraginaceae). The transport of the N-oxides into the cells is a specific and selective process. Other alkaloid N-oxides such as sparteine N-oxide are not taken up. Cell cultures from plant species which do not synthesize pyrrolizidine alkaloids are unable to accumulate pyrrolizidine N-oxides. The suitability of the pyrrolizidine N-oxides in alkaloid storage and accumulation is emphasized.  相似文献   

16.
Herbivorous insects and phytopathogenic fungi often share their host plants. This creates a network of direct and indirect interactions, with far‐reaching consequences for the ecology and evolution of all three parties. In the Alps, the leaf beetles Oreina elongata and Oreina cacaliae (Coleoptera: Chrysomelidae), and the rust fungus Uromyces cacaliae (Uredinales: Pucciniaceae) are found on the same host plant, Adenostyles alliariae (Asterales: Asteraceae). We compare the impact of rust infection on these two closely‐related beetle species, one of which, O. cacaliae, is a specialist on A. alliariae, while the other, O. elongata, moves repeatedly between Adenostyles and an alternative host, Cirsium spinosissimum. Larval performance, feeding preference, oviposition choice and dispersal behaviour were studied in field and laboratory experiments. When reared on rust‐infected leaves, larvae of both beetle species had lower growth rates, lower maximum weights and longer development times. Larvae and adults discriminated among diets in feeding trials, showing a preference for discs cut from healthy leaves over those bearing a patch of sporulating rust, those from elsewhere on an infected leaf, and those from an upper leaf on an infected plant. Females of the two species differed in behaviour: in O. cacaliae they favoured healthy leaves for larviposition, while in O. elongata they showed no significant preference during oviposition. In the field, larvae and adults of both species dispersed more rapidly when placed on infected host plants. The results demonstrate that rust infection reduces the quality of the plant as a host for both Oreina species, and they combine the ability to detect systemic infection with the evolution of evasive behaviours. For these beetles, competition with a rust clearly increases the difficulty of survival in the harsh conditions of alpine environments, and may have a profound impact on the evolution of their life history traits and host plant use.  相似文献   

17.
Gas chromatography–mass spectrometry analysis of seeds from 28 species of Crotalaria from Brazil (sections Calycinae, Crotalaria, Chrysocalycinae and Hedriocarpae) showed that pyrrolizidine alkaloids (PAs) are important as chemotaxonomic markers at the infrageneric level. The sections Calycinae and Crotalaria were characterized by 11-membered macrocyclic monocrotaline-type PAs. In the section Chrysocalycinae, a single species in the subsection Incanae, C. incana, showed integerrimine, a 12-membered macrocyclic senecionine-type, as main PA. The group close to the subsection Stipulosae (C. micans and C. maypurensis) showed distinctive PA patterns: C. micans presented mainly the 12-membered macrocyclic integerrimine, and C. maypurensis the unusual 7-hydroxy-1-methylene-8-pyrrolizidine. In the group close to the subsection Glaucae, the PAs with otonecine as the necine base were the main alkaloids, except in C. rufipila which showed an assamicadine-like PA (monocrotaline-type). The section Hedriocarpae showed main 12-membered macrocyclic senecionine-type PAs.  相似文献   

18.
Synopsis The behaviour of three piranha species,Serrasalmus marginatus, S. spilopleura, andPygocentrus nattereri, and their prey fishes was studied underwater in the Pantanal region, Mato Grosso, Brazil. General habits, predatory tactics, feeding behaviour, and social interactions while foraging, as well as defensive tactics of prey fishes were observed.S. marginatus is solitary whereas the other two species live in shoals; their agonistic behaviour varies accordingly, the simplest being displayed by the solitary species. Predatory tactics and feeding behaviour also vary:S. spilopleura shows the most varied diet and highly opportunistic feeding strategy, which includes aggressive mimicry. The solitaryS. marginatus, besides fin and scale-eating, occasionally cleans larger individuals ofP. nattereri. Several cichlid species display defensive tactics clearly related to piranha attacks: tail protecting, watching, and confronting the predator are the most commonly observed behaviours. Piranhas seem to strongly influence use of habitat, social structure, and foraging mode of the fish communities.  相似文献   

19.
Nine alkaloids (acridine, aristolochic acid, atropine, berberine, caffeine, nicotine, scopolamine, sparteine, and strychnine) were evaluated as feeding deterrents for gypsy moth larvae (Lymantria dispar (L.); Lepidoptera: Lymantriidae). Our aim was to determine and compare the taste threshold concentrations, as well as the ED50 values, of the nine alkaloids to determine their potency as feeding deterrents. The alkaloids were applied to disks cut from red oak leaves (Quercus rubra) (L.), a plant species highly favored by larvae of this polyphagous insect species. We used two-choice feeding bioassays to test a broad range of biologically relevant alkaloid concentrations spanning five logarithmic steps. We observed increasing feeding deterrent responses for all the alkaloids tested and found that the alkaloids tested exhibited different deterrency threshold concentrations ranging from 0.1 to 10 mM. In conclusion, it appears that this generalist insect species bears a relatively high sensitivity to these alkaloids, which confirms behavioral observations that it avoids foliage containing alkaloids. Berberine and aristolochic acid were found to have the lowest ED50 values and were the most potent antifeedants. Handling Editor: Joseph Dickens.  相似文献   

20.
Caño L  Escarré J  Vrieling K  Sans FX 《Oecologia》2009,159(1):95-106
This paper tests the prediction that introduced plants may become successful invaders because they experience evolutionary changes in growth and defence in their new range [evolution of increased competitive ability hypothesis (EICA)]. Interspecific and intraspecific binary feeding choices were offered to the snail Helix aspersa. The choices were between: (1) plants of the invasive Senecio inaequidens and Senecio pterophorus derived from populations in the introduced range (Europe) and plants of three indigenous species (Senecio jacobea, Senecio vulgaris and Senecio malacitanus) from populations in Europe; (2) plants of the invasive S. inaequidens and S. pterophorus from populations in the introduced range (Europe) and from populations in the native range (South Africa). We did not find a clear pattern of preference for indigenous or alien species of Senecio. However, we found that European invasive populations of S. inaequidens and S. pterophorus were less palatable than South African native populations. Moreover, in contrast to the predictions of the EICA hypothesis, the invasive genotypes of both species also showed a higher total concentration of pyrrolizidine alkaloids, and in the case of S. inaequidens we also found higher growth than in native genotypes. Our results are discussed with respect to the refinement of the EICA hypothesis that takes into account the difference between specialist and generalist herbivores and between qualitative and quantitative defences. We conclude that invasive populations of S. inaequidens and S. pterophorus are less palatable than native populations, suggesting that genetic differentiation associated with founding may occur and contribute to the plants’ invasion success by selecting the best-defended genotypes in the introduced range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号