首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eicosapentaenoic acid (FPA, 20:5n-3) and arachidonic acid (AA, 20:4n-3)were obtained from the microalga Porphyridium cruentum by a three-stepprocess: fatty acid extraction by direct saponification of biomass,polyunsaturated fatty acid (PUFA) concentration by urea inclusion complexingand EPA isolation by high-performance liquid chromatography (HPLC). Twosolvents were tested for direct saponification of lipids in biomass. Themost efficient solvent, ethanol (96% v/v), extracted 75% ofthe fatty acids. PUFAs concentration by urea inclusion employed a urea/fattyacid ratio of 4:1 wt/wt at the crystallization temperatures of 4°C and28°C. Concentration factors were similar at both temperatures, but theEPA and AA recoveries were higher at 28°C (67.7% and 61.8%for the two acids, respectively). EPA and AA were purified from this PUFAconcentrate using analytical scale HPLC and the best results of thisseparation were scaled up to preparative level (4.7 i. d. × 30 cmcompression radial cartridge). A 94.3% pure EPA fraction and a81.4% pure AA fraction were obtained. Suitability of severalmicroalgae (Porphyridium cruentum, Phaeodactylum tricornutum and Isochrysisgalbana) and cod liver oil as sources of highly pure PUFAs, mainly EPA, wascompared.  相似文献   

2.
4-Hydroxy-2E-hexenal (4-HHE) and 4-hydroxy-2E-nonenal (4-HNE) have been characterized as prominent by-products of n-3 and n-6 hydroperoxy derivatives of n-3 and n-6 fatty acids, respectively. We also have characterized the homolog 4-hydroxy-2E,6Z-dodecadienal (4-HDDE) as a specific by-product of the 12-lipoxygenase product of arachidonic acid 12-hydroperoxy-eicosatetraenoate (12-HpETE). The three hydroxy-alkenals have been found in human plasma with 4-HHE being the most prominent followed by 4-HNE. They were found increased in tissues submitted to oxidative stress, according to the fatty acid characteristic of those tissues, e.g., 4-HNE and 4-HDDE in blood platelets and 4-HHE in the retina. We have shown they covalently bind to the primary amine moiety of ethanolamine phospholipids (PE), especially the plasmalogen subclass, with the highest hydrophobic alkenal (4-HDDE) being the most reactive. Their carboxylic acid metabolites, 4-hydroxy-2E-hexenoic acid (4-HHA), 4-hydroxy-2E-nonenoic acid (4-HNA) and 4-hydroxy-2E,6Z-dodecadienoic acid (4-HDDA), respectively, were found in human urine and measured in higher amounts in situations in which oxidative stress has been reported such as aging and diabetes. As reported above with their hydroxy-alkenals precursors, 4-HHA proved to be the most prominent followed by 4-HNA. Altogether, the three hydroxy-alkenals, either in their free form or bound to membrane PE, may be considered as specific markers of lipid peroxidation able to discriminate between n-3 and n-6 fatty acids. This is corroborated by the measurement of their urinary carboxylic acid metabolites.  相似文献   

3.
A complete series of even-carbon chain polyenoic fatty acids having 20-36 carbons occur in dipolyunsaturated molecular species of phosphatidylcholine from bovine retina. Using oxidative ozonolysis, it is shown that very long chain tetraenes belong to the n-6 series, hexaenes to the n-3 series, and major pentaenes to the n-3 series of fatty acids (very long chain n-6 pentaenes also occur). Molecular ions are obtained by electron impact mass spectrometry of methyl ester derivatives which conclusively identify the major components of this novel group of fatty acids. Mass spectral patterns are similar for the major very long chain tetraenes, for the pentaenes, and for the hexaenes, but different for each group of unsaturation. Very long chain (C24 to C36) polyenes account for about half the weight (40 mol %) of the acyl chains of major dodecaenoic, undecaenoic, and decaenoic molecular species of bovine retina phosphatidylcholine, the other half being made up by docosahexaenoate (22:6 n-3).  相似文献   

4.
The opposing effects of n-3 and n-6 fatty acids   总被引:5,自引:0,他引:5  
Polyunsaturated fatty acids (PUFAs) can be classified in n-3 fatty acids and n-6 fatty acids, and in westernized diet the predominant dietary PUFAs are n-6 fatty acids. Both types of fatty acids are precursors of signaling molecules with opposing effects, that modulate membrane microdomain composition, receptor signaling and gene expression. The predominant n-6 fatty acid is arachidonic acid, which is converted to prostaglandins, leukotrienes and other lipoxygenase or cyclooxygenase products. These products are important regulators of cellular functions with inflammatory, atherogenic and prothrombotic effects. Typical n-3 fatty acids are docosahexaenoic acid and eicosapentaenoic acid, which are competitive substrates for the enzymes and products of arachidonic acid metabolism. Docosahexaenoic acid- and eicosapentaenoic acid-derived eicosanoids antagonize the pro-inflammatory effects of n-6 fatty acids. n-3 and n-6 fatty acids are ligands/modulators for the nuclear receptors NFkappaB, PPAR and SREBP-1c, which control various genes of inflammatory signaling and lipid metabolism. n-3 Fatty acids down-regulate inflammatory genes and lipid synthesis, and stimulate fatty acid degradation. In addition, the n-3/n-6 PUFA content of cell and organelle membranes, as well as membrane microdomains strongly influences membrane function and numerous cellular processes such as cell death and survival.  相似文献   

5.
Metabolism of highly unsaturated n-3 and n-6 fatty acids   总被引:28,自引:0,他引:28  
  相似文献   

6.
7.
Previous studies suggest that consuming meals containing large amounts of fish oil is associated with selective postprandial incorporation of 20:5n-3 and 22:6n-3 into plasma non-esterified fatty acids (NEFA). We investigated the effect of consuming meals containing different amounts of 20:5n-3 and 22:6n-3 comparable to dietary habits of western populations on the postprandial incorporation of 18:3n-3, 20:5n-3 and 22:6n-3 into plasma triacylglycerol (TAG) and NEFA over 6h in middle aged subjects. 20:5n-3 incorporation into plasma TAG was greater than 22:6n-3 irrespective of the test meal. Conversely, 22:6n-3 incorporation into plasma NEFA was greater than 20:5n-3, irrespective of the test meal. There was no effect of the amount of 20:5n-3+22:6n-3 in the test meal on the 18:3n-3 incorporation into plasma TAG or NEFA. These findings suggest differential metabolism of 20:5n-3 and 22:6n-3 in the postprandial period when consumed in amounts typical of western dietary habits.  相似文献   

8.
Rat peritoneal macrophages were cultured in either eicosatetraenoic acid (20:4(n-6) ) or eicosapentaenoic acid (20:5(n-3) ) and the effects on phospholipid fatty acids, prostaglandin synthesizing capacity and the ability of the macrophages to show chemiluminescence were examined. Chemiluminescence is an activity resulting from the synthesis of reactive oxygen species. It has been reported that prostaglandins inhibit this activity. The fatty acid profile of the four major phospholipids reflected the fatty acid component of the medium. Macrophages cultured in 20:4(n-6) synthesized twice the prostaglandin produced by controls and those cultured in 20:5(n-3) synthesized 10% that of controls and 5% that of 20:4(n-6)-cultured cells. Macrophages cultured with 20:4(n-6) for 12 h showed half the chemiluminescence of those cultured with 20:5(n-3), while those cultured with 20:4(n-6) for 24 h showed 10% the chemiluminescence of 20:5(n-3)-cultured cells. Addition of the prostaglandin synthase inhibitor, indomethacin, had no effect on chemiluminescence.  相似文献   

9.
Arachidonic acid is the principal unsaturated acid in most membrane lipids. Membrane lipids also contain a variety of other (n-6) and (n-3) fatty acids. The amounts of (n-6) and (n-3) fatty acids in membrane lipids can be modified by dietary fat change. Our studies show that long chain (n-6) and (n-3) acids are metabolized by platelet lipoxygenase and cyclooxygenase. When cells are exposed to various agonists, a variety of unsaturated fatty acids may be released. Our studies show that they have the potential of modifying physiological function both by mediating arachidonic acid metabolism and as direct precursors for oxygenated metabolites which themselves may interact with specific receptors to regulate biological processes.  相似文献   

10.
11.
The concentration-dependent metabolism of 1-(14)C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [(14)C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-(14)C]20:5n-3 to [3-(14)C]22:6n-3 was more efficient than that of [1-(14)C]20:4n-6 to [3-(14)C]22:5n-6. At low substrate concentration (4 microM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 microM). The conversion of [1-(14)C]22:5n-3 to [1-(14)C]22:6n-3 was 1.7 times more efficient than that of [1-(14)C]22:4n-6 to [1-(14)C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-(14)C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-(14)C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-(14)C]20:4n-6 or [1-(14)C]22:4n-6 to [(14)C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-(14)C]20:5n-3 and [1-(14)C]22:5n-3 to [(14)C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

12.
Much attention has recently been paid to the possible benefits of increasing the intake of eicosapentaenoic acid (EPA) by consuming fish oil. However, this can have adverse effects such as raising cholesterol levels in patients with hyperlipidaemia and causing a deterioration in glucose tolerance. High doses of EPA given to Westerners also lower levels of dihomogammalinolenic acid (DGLA), a substance with a wide range of desirable cardiovascular and antiinflammatory actions. This lowering of DGLA does not occur in Eskimos who consume large amounts of EPA, indicating that there may be differences in essential fatty acid metabolism between Westerners and Eskimos. Therapeutic strategies are required which raise both EPA and DGLA and which do not raise EPA at the cost of lowering DGLA.  相似文献   

13.
Statins are highly effective cholesterol-lowering drugs but may have broader effects on metabolism. This investigation examined effects of simvastatin on serum levels of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Subjects were 106 healthy adults with hypercholesterolemia randomly assigned to receive placebo or 40 mg simvastatin daily for 24 weeks. Serum fatty acids were analyzed by gas chromatography. Total fatty acid concentration fell 22% in subjects receiving simvastatin (P<.001), with similar declines across most fatty acids. However, concentrations of arachidonic acid (AA, 20:4n-6), eicosapentanoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) were unchanged. Relative percentages of linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (LNA, 18:3n-3), decreased while AA and DHA increased (P's < or = .007). In addition, simvastatin increased the AA:EPA ratio from 15.5 to 18.8 (P<.01), and tended to increase the AA:DHA ratio (P=.053). Thus, simvastatin lowered serum fatty acid concentrations while also altering the relative percentages of important PUFAs.  相似文献   

14.
Alterations in the metabolism of arachidonic (20:4n-6), docosapentaenoic (22:5n-6), and docosahexaenoic (22:6n-3) acids and other polyunsaturated fatty acids in Zellweger syndrome and other peroxisomal disorders are reviewed. Previous proposals that peroxisomes are necessary for the synthesis of 22:6n-3 and 22:5n-6 are critically examined. The data suggest that 22:6n-3 is biosynthesized in mitochondria via a channelled carnitine-dependent pathway involving an n-3-specific D-4 desaturase, while 20:4n-6, 20:5n-3 and 22:5n-6 are synthesized by both mitochondrial and microsomal systems; these pathways are postulated to be interregulated as compensatory-redundant systems. Present evidence suggests that 22:6n-3-containing phospholipids may be required for the biochemical events involved in successful neuronal migration and developmental morphogenesis, and as structural cofactors for the functional assembly and integration of a variety of membrane enzymes, receptors, and other proteins in peroxisomes and other subcellular organelles. A defect in the mitochondrial desaturation pathway is proposed to be a primary etiologic factor in the clinicopathology of Zellweger syndrome and other related disorders. Several implications of this proposal are examined relating to effects of pharmacological agents which appear to inhibit steps in this pathway, such as some hypolipidemics (fibrates), neuroleptics (phenothiazines and phenytoin) and prenatal alcohol exposure.  相似文献   

15.
The study was carried out on 42 breeder couples (42 males and 42 females) of European brown hare (Lepus europaeus), divided into three groups fed three different experimental diets (14 couples/treatment). Two diets were supplemented with n-3 and n-6 polyunsaturated fatty acids (PUFAs; 2% of linseed oil and soybean oil, respectively) and were compared with a control diet supplemented with a monounsaturated fatty acids (2% of olive oil). During the experimental period (from 15 April to 30 September), the following parameters were recorded: days from the beginning of trial to the first parturition, parturition interval, number of parturitions, number of leverets born (alive and dead), dead during suckling, the total number of leverets weaned and feed intake per cage (of males, females and leverets until weaning). Feed intake was not influenced by treatments. In hares fed n-3 and n-6 diets, the days from the beginning of the trial to the first parturition and the parturition interval were similar and were lower compared with control group (63.1 v. 70.6 days, and 37.8 v. 40.9 days, respectively; P < 0.05). Hares from n-6 group had a higher (P < 0.05) number of parturitions per cage during the experimental period than the n-3 and control group that showed a similar value (3.00 v. 2.36, respectively). The total number of leverets born per cage and parturition in n-6 and n-3 groups increased with respect to those fed control diet (P < 0.05). The leverets' mortality rate at birth was higher in n-6 than in n-3 and control group (3.50 v. 2.17, respectively; P < 0.05). In control group, leverets' mortality rate during suckling was lower with respect to n-3 (P < 0.05) and n-6 (P < 0.05), showing the highest value for the latter (P < 0.05). In spite of this higher mortality, the number of leverets weaned per cage and parturition was higher (P < 0.05) in n-6 compared with n-3 group, being the latter higher than the control group (3.12, 2.79 and 2.43, respectively). Our results show that the dietary PUFAs, particularly n-6 supplementation, have a positive influence on the reproductive performances of the European brown hare.  相似文献   

16.
Post fish oil(n-3 fatty acids) treatment (5mg/kg/day for 12 days) was effective in bringing the reversal of tobramycin (160mg/kg/day,ip for 12 days) induced nephrotoxicity in albino rats as was evident by normal urea, creatinine, cholesterol and inorganic phosphate levels in the serum of the treatment group compared with group receiving tobramycin only. The return of normal levels of alkaline and acid phosphatase in kidney homogenates of post fish oil treatment group also indicated the beneficial effect of dietary n-3 fatty acids(fish oil) more than n-6 fatty acids(olive oil).The results suggest that oral supplements of dietary n-3 fatty acids (fish oil) for nearly two weeks after tobramycin exposure is more beneficial than n-6 fatty acids (olive oil) as it results in reversal of nephrotoxicity induced by tobramycin.  相似文献   

17.
Dietary-treated phenylketonuric patients (PKUs) display low levels of long-chain polyunsaturated fatty acids (PUFA) in plasma lipids. In a 6-month clinical trial we observed a decrease of triglycerides and an increase of n-3 long-chain PUFA in plasma of PKUs supplemented with fish oil, while no major differences in respect to the baseline values were found in a group supplemented with blackcurrant oil. A more complete source of long-chain PUFA of both the n-6 and n-3 series should be investigated for dietary supplementation of PKU patients.  相似文献   

18.
Ras proteins are critical regulators of cell function, including growth, differentiation, and apoptosis, with membrane localization of the protein being a prerequisite for malignant transformation. We have recently demonstrated that feeding fish oil, compared with corn oil, decreases colonic Ras membrane localization and reduces tumor formation in rats injected with a colon carcinogen. Because the biological activity of Ras is regulated by posttranslational lipid attachment and its interaction with stimulatory lipids, we investigated whether docosahexaenoic acid (DHA), found in fish oil, compared with linoleic acid (LA), found in corn oil, alters Ras posttranslational processing, activation, and effector protein function in young adult mouse colon cells overexpressing H-ras (YAMC-ras). We show here that the major n-3 polyunsaturated fatty acid (PUFA) constituent of fish oil, DHA, compared with LA (an n-6 PUFA), reduces Ras localization to the plasma membrane without affecting posttranslational lipidation and lowers GTP binding and downstream p42/44(ERK)-dependent signaling. In view of the central role of oncogenic Ras in the development of colon cancer, the finding that n-3 and n-6 PUFA differentially modulate Ras activation may partly explain why dietary fish oil protects against colon cancer development.  相似文献   

19.
The reasons why most cellular lipids preferentially accumulate 22:6(n-3) rather than 22:5(n-6) are poorly understood. In the present work the metabolisms of the precursor fatty acids, [1-(14)C]20:4(n-6), [1-(14)C]22:4(n-6) versus [1-(14)C]20:5(n-3), [1-(14)C]22:5(n-3) in isolated rat hepatocytes were compared. The addition of lactate and L-decanoylcarnitine increased the formation of [(14)C]24 fatty acid intermediates and the final products, [(14)C]22:5(n-6) and [(14)C]22:6(n-3). In the absence of lactate and L-decanoylcarnitine, no [(14)C]24 fatty acids and [(14)C]22:5(n-6) were detected when [1-(14)C]22:4(n-6) was the substrate, whereas small amounts of the added [1-(14)C]22:5(n-3) was converted to [(14)C]22:6(n-3). Lactate reduced the oxidation of [1-(14)C]22:4(n-6) and [1-(14)C]22:5(n-3) while L-decanoylcarnitine did not. No significant differences between the total oxidation or esterification of the two substrates were observed. By fasting and fructose refeeding the amounts of [(14)C]24:4(n-6) and [(14)C]24:5(n-3) were increased by 2.5- and 4-fold, respectively. However, the levels of [(14)C]22:5(n-6) and [(14)C]22:6(n-3) were similar in hepatocytes from fasted and refed versus fed rats. With hepatocytes from rats fed a fat free diet the levels of [(14)C]24 fatty acid intermediates were low while the further conversion of the n-6 and n-3 substrates was high and more equal, approx. 33% of [1-(14)C]22:4(n-6) was converted to [(14)C]22:5(n-6) and 43% of [1-(14)C]22:5(n-3) was converted to [(14)C]22:6(n-3). The moderate differences found in the conversion of [1-(14)C]22:4(n-6) versus [1-(14)C]22:5(n-3) to [(14)C]22:5(n-6) and [(14)C]22:6(n-3), respectively, and the equal rates of oxidation of the two substrates could thus not explain the abundance of 22:6(n-3) versus the near absence of 22:5(n-6) in cellular membranes.  相似文献   

20.
This paper reports the results of our analysis of the impact high levels of de novo fatty acids have on the proportions of essential and non-essential fatty acids in human milk lipids. The data for seven fatty acids (linoleic, alpha-linolenic, arachidonic (AA), docosahexaenoic (DHA), palmitic, stearic and oleic) were derived from several studies conducted in Nigeria. The proportion by weight of each of these fatty acids was plotted versus the proportion of C10-14 fatty acids. As the proportion of C10-14 fatty acids increased from 15 to 65%, there was not a proportional decrease in the percentages of all seven fatty acids, but, instead, preferential incorporation of the essential fatty acids, AA and DHA into the triacylglycerol component of the milk. At the same time, the proportions of stearic and oleic acid declined by 69% and 86%, respectively. However, the proportions of linoleic acid, palmitic acid, DHA, AA and alpha-linolenic acid, in milk lipids decreased by only 44%, 40%, 39%, 28% and 2.3%, respectively. These observations indicate that as the contribution of C10-14 fatty acids increases, essential fatty acids are preferentially incorporated into milk triacylglycerols at the expense of oleic acid and stearic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号