首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Leishmania tropica and Leishmania mexicana: cross-immunity in mice   总被引:3,自引:0,他引:3  
The effect of a previous or concurrent Leishmania tropica major infection on a L. mexicana infection was studied. Mice which were recovering from or had recovered from a L. tropica infection were found to be totally resistant to L. mexicana. Infection of mice already carrying a L. mexicana infection with L. tropica resulted in subsequent ulceration and eventual healing of the lesions caused by both Leishmania species. Mice infected with L. mexicana were found normally to be no more susceptible to L. tropica than untreated mice: Only when L. tropica infections were located in the region of a draining lymph node already serving a L. mexicana infection did lesions of the former parasite persist.  相似文献   

2.

Background

Protozoan parasites of the genus Leishmania cause a large spectrum of clinical manifestations known as Leishmaniases. These diseases are increasingly important public health problems in many countries both within and outside endemic regions. Thus, an accurate differential diagnosis is extremely relevant for understanding epidemiological profiles and for the administration of the best therapeutic protocol.

Methods/Principal Findings

Exploring the High Resolution Melting (HRM) dissociation profiles of two amplicons using real time polymerase chain reaction (real-time PCR) targeting heat-shock protein 70 coding gene (hsp70) revealed differences that allowed the discrimination of genomic DNA samples of eight Leishmania species found in the Americas, including Leishmania (Leishmania) infantum chagasi, L. (L.) amazonensis, L. (L.) mexicana, L. (Viannia) lainsoni, L. (V.) braziliensis, L. (V.) guyanensis, L. (V.) naiffi and L. (V.) shawi, and three species found in Eurasia and Africa, including L. (L.) tropica, L. (L.) donovani and L. (L.) major. In addition, we tested DNA samples obtained from standard promastigote culture, naturally infected phlebotomines, experimentally infected mice and clinical human samples to validate the proposed protocol.

Conclusions/Significance

HRM analysis of hsp70 amplicons is a fast and robust strategy that allowed for the detection and discrimination of all Leishmania species responsible for the Leishmaniases in Brazil and Eurasia/Africa with high sensitivity and accuracy. This method could detect less than one parasite per reaction, even in the presence of host DNA.  相似文献   

3.
Zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania (L.) major parasites represents a major health problem with a large spectrum of clinical manifestations. Psammomys (P.) obesus and Meriones (M.) shawi represent the most important host reservoirs of these parasites in Tunisia. We already reported that infection prevalence is different between these two rodent species. We aimed in this work to evaluate the importance of genetic diversity in L. major parasites isolated from different proven and suspected reservoirs for ZCL. Using the multilocus microsatellites typing (MLMT), we analyzed the genetic diversity among strains isolated from (i) P. obesus (n = 31), (ii) M. shawi (n = 8) and (iii) Mustela nivalis (n = 1), captured in Sidi Bouzid, an endemic region for ZCL located in the Center of Tunisia. Studied strains present a new homogeneous genotype profile so far as all tested markers and showed no polymorphism regardless of the parasite host-reservoir origin. This lack of genetic diversity among these L. major isolates is the first genetic information on strains isolated from Leishmania reservoirs hosts in Tunisia. This result indicates that rodent hosts are unlikely to exert a selective pressure on parasites and stresses on the similarity of geographic and ecological features in this study area. Overall, these results increase our knowledge among rodent reservoir hosts and L. major parasites interaction.  相似文献   

4.
BackgroundDipeptidyl peptidase III (DPPIII) member of M49 peptidase family is a zinc-dependent metallopeptidase that cleaves dipeptides sequentially from the N-terminus of its substrates. In Leishmania, DPPIII, was reported with other peptidases to play a significant role in parasites’ growth and survival. In a previous study, we used a coding sequence annotated as DPPIII to develop and evaluate a PCR assay that is specific to dermotropic Old World (OW) Leishmania species. Thus, our objective was to further assess use of this gene for Leishmania species identification and for phylogeny, and thus for diagnostic and molecular epidemiology studies of Old World Leishmania species.MethodologyOrthologous DDPIII genes were searched in all Leishmania genomes and aligned to design PCR primers and identify relevant restriction enzymes. A PCR assays was developed and seventy-two Leishmania fragment sequences were analyzed using MEGA X genetics software to infer evolution and phylogenetic relationships of studied species and strains. A PCR-RFLP scheme was also designed and tested on 58 OW Leishmania strains belonging to 8 Leishmania species and evaluated on 75 human clinical skin samples.FindingsSequence analysis showed 478 variable sites (302 being parsimony informative). Test of natural selection (dN-dS) (-0.164, SE = 0.013) inferred a negative selection, characteristic of essential genes, corroborating the DPPIII importance for parasite survival. Inter- and intra-specific genetic diversity was used to develop universal amplification of a 662bp fragment. Sequence analyses and phylogenies confirmed occurrence of 6 clusters congruent to L. major, L. tropica, L. aethiopica, L. arabica, L. turanica, L. tarentolae species, and one to the L. infantum and L. donovani species complex.A PCR-RFLP algorithm for Leishmania species identification was designed using double digestions with HaeIII and KpnI and with SacI and PvuII endonucleases. Overall, this PCR-RFLP yielded distinct profiles for each of the species L. major, L. tropica, L. aethiopica, L. arabica and L. turanica and the L. (Sauroleishmania) L. tarentolae. The species L. donovani, and L. infantum shared the same profile except for strains of Indian origin. When tested on clinical samples, the DPPIII PCR showed sensitivities of 82.22% when compared to direct examination and was able to identify 84.78% of the positive samples.ConclusionThe study demonstrates that DPPIII gene is suitable to detect and identify Leishmania species and to complement other molecular methods for leishmaniases diagnosis and epidemiology. Thus, it can contribute to evidence-based disease control and surveillance.  相似文献   

5.
Leishmania (L.) tropica is a causative agent of human cutaneous and viscerotropic leishmaniasis. Immune response to L. tropica in humans and experimental animals are not well understood. We previously established that L. tropica infection induces partial protective immunity against subsequent challenge infection with Leishmania major in BALB/c mice. Aim of the present study was to study immunologic mechanisms of protective immunity induced by L. tropica infection, as a live parasite vaccine, in BALB/c mouse model. Mice were infected by L. tropica, and after establishment of the infection, they were challenged by L. major. Our findings shows that L. tropica infection resulted in protection against L. major challenge in BALB/c mice and this protective immunity is associated with: (1) a DTH response, (2) higher IFN-γ and lower IL-10 response at one week post-challenge, (3) lower percentage of CD4+ lymphocyte at one month post-challenge, and (4) the source of IFN-γ and IL-10 were mainly CD4 lymphocyte up to one month post-challenge suggesting that CD4 lymphocytes may be responsible for protection induced by L. tropica infection in the studied intervals.  相似文献   

6.
In the south of France, Leishmania infantum is responsible for numerous cases of canine leishmaniasis (CanL), sporadic cases of human visceral leishmaniasis (VL) and rare cases of cutaneous and muco-cutaneous leishmaniasis (CL and MCL, respectively). Several endemic areas have been clearly identified in the south of France including the Pyrénées-Orientales, Cévennes (CE), Provence (P), Alpes-Maritimes (AM) and Corsica (CO). Within these endemic areas, the two cities of Nice (AM) and Marseille (P), which are located 150 km apart, and their surroundings, concentrate the greatest number of French autochthonous leishmaniasis cases. In this study, 270 L. infantum isolates from an extended time period (1978–2011) from four endemic areas, AM, P, CE and CO, were assessed using Multi-Locus Microsatellite Typing (MLMT). MLMT revealed a total of 121 different genotypes with 91 unique genotypes and 30 repeated genotypes. Substantial genetic diversity was found with a strong genetic differentiation between the Leishmania populations from AM and P. However, exchanges were observed between these two endemic areas in which it seems that strains spread from AM to P. The genetic differentiations in these areas suggest strong epidemiological structuring. A model-based analysis using STRUCTURE revealed two main populations: population A (consisting of samples primarily from the P and AM endemic areas with MON-1 and non-MON-1 strains) and population B consisting of only MON-1 strains essentially from the AM endemic area. For four patients, we observed several isolates from different biological samples which provided insight into disease relapse and re-infection. These findings shed light on the transmission dynamics of parasites in humans. However, further data are required to confirm this hypothesis based on a limited sample set. This study represents the most extensive population analysis of L. infantum strains using MLMT conducted in France.  相似文献   

7.
Leishmania infantum causes Visceral and cutaneous leishmaniasis in northern Morocco. It predominantly affects children under 5 years with incidence of 150 cases/year. Genetic variability and population structure have been investigated for 33 strains isolated from infected dogs and humans in Morocco. A multilocus microsatellite typing (MLMT) approach was used in which a MLMtype based on size variation in 14 independent microsatellite markers was compiled for each strain. MLMT profiles of 10 Tunisian, 10 Algerian and 21 European strains which belonged to zymodeme MON-1 and non-MON-1 according to multilocus enzyme electrophoresis (MLEE) were included for comparison. A Bayesian model-based approach and phylogenetic analysis inferred two L.infantum sub-populations; Sub-population A consists of 13 Moroccan strains grouped with all European strains of MON-1 type; and sub-population B consists of 15 Moroccan strains grouped with the Tunisian and Algerian MON-1 strains. Theses sub-populations were significantly different from each other and from the Tunisian, Algerian and European non MON-1 strains which constructed one separate population. The presence of these two sub-populations co-existing in Moroccan endemics suggests multiple introduction of L. infantum from/to Morocco; (1) Introduction from/to the neighboring North African countries, (2) Introduction from/to the Europe. These scenarios are supported by the presence of sub-population B and sub-population A respectively. Gene flow was noticed between sub-populations A and B. Five strains showed mixed A/B genotypes indicating possible recombination between the two populations. MLMT has proven to be a powerful tool for eco-epidemiological and population genetic investigations of Leishmania.  相似文献   

8.
The natural infection of sand flies by Leishmania was examined in the Department of Huanuco of Peru, where cutaneous leishmaniasis caused by a hybrid of Leishmania (Viannia) braziliensis/L. (V.) peruviana is endemic. A total of 2,997 female sand flies were captured by CDC light traps and Shannon traps, of which 2,931 and 66 flies were identified as Lutzomyia tejadai and Lu fischeri, respectively. Using crude DNA extracted from individual sand flies as a template, Leishmania DNA was detected from one Lu. tejadai. The parasite species was identified as a hybrid of L. (V.) braziliensis/L. (V.) peruviana on the basis of cytochrome b and mannose phosphate isomerase gene analyses. The result suggested that Lu. tejadai is responsible for the transmission of the hybrid Leishmania circulating in this area.  相似文献   

9.

Background:

Leishmaniasis, especially cutaneous leishmaniasis, is considered an important health problem in many parts of Iran including Kharve, Khorasan Razavi province. Cutaneous leishmaniasis is caused by various species of Leishmania, each having a different secondary host. Thus, identifying the parasites’ specie is of paramount importance for containment strategy planning. The morphological differentiation of Leishmania species is not possible, rendering the molecular methods as the sole means to this purpose. Therefore, to identify the causative agent of cutaneous leishmaniasis in Kharve, Random Amplified Polymorphic DNA-PCR (RAPD-PCR) was used.

Methods:

The disease was first confirmed by direct smears. Samples were gathered from 22 patients with established cutaneous leishmaniasis. The samples were immediately cultured in NNN medium, followed by sub-culture in RPMI-1640. Afterwards, DNA was extracted and amplified using RAPD-PCR. Electrophoresis patterns from each isolate were compared with reference strains of Leishmania major (L. major) and Leishmania tropica (L. tropica).

Results:

The results of this study indicated that the parasite causing cutaneous leishmaniasis in Kharve is L. tropica.

Conclusion:

It seems that L. tropica is the only causative agent of cutaneous leishmaniasis in Kharve, and RAPD-PCR is a suitable tool for Leishmania characterization in epidemiological studies.Key Words: Leishmania major, Leishmania tropica, RAPD-PCR, Khorasan, Kharve  相似文献   

10.
《Journal of Asia》2023,26(4):102129
Cutaneous Leishmaniasis is endemic in tribal district Khyber for last more than one decade. The causative agent Leishmania tropica is known but sand fly species responsible for the transmission of disease still needs to be investigated. A total of 2647 Phlebotomus females belonging to 11 species were divided into 435 batches and subjected to PCR for detection of Leishmania in sand flies. A total of 50 batches belonging to three species i.e. Phlebotomus sergenti, Phlebotomus papatasi and Phlebotomus alexandri were detected positive for Leishmania tropica. Overall minimum infection rate was 1.89% (50/2647). Highest minimum infection rate of 2.11% (39/1710) was observed for Phlebotomus sergenti followed by 1.21% (8/661) for Phlebotomus paptasi and 1.82% (3/165) for Phlebotomus alexandri. Both blood fed (38%) and unfed (62%) sand flies were detected positive for the parasite DNA. Positive specimens were collected throughout the active season, from all collection sites of the study area. Detection of Leishmania parasite in multiple species of Phlebotomus indicates the possible role of these species as vector of disease in the tribal district Khyber of Pakistan. It also indicates the probable complex transmission cycle of the disease involving multiple vector species in the study area. Devising a control strategy by focusing on these vector species, may reduce the disease burden in the cutaneous leishmaniasis endemic tribal district Khyber.  相似文献   

11.
In Tunisia, cases of zoonotic cutaneous leishmaniasis caused by Leishmania major are increasing and spreading from the south-west to new areas in the center. To improve the current knowledge on L. major evolution and population dynamics, we performed multi-locus microsatellite typing of human isolates from Tunisian governorates where the disease is endemic (Gafsa, Kairouan and Sidi Bouzid governorates) and collected during two periods: 1991–1992 and 2008–2012. Analysis (F-statistics and Bayesian model-based approach) of the genotyping results of isolates collected in Sidi Bouzid in 1991–1992 and 2008–2012 shows that, over two decades, in the same area, Leishmania parasites evolved by generating genetically differentiated populations. The genetic patterns of 2008–2012 isolates from the three governorates indicate that L. major populations did not spread gradually from the south to the center of Tunisia, according to a geographical gradient, suggesting that human activities might be the source of the disease expansion. The genotype analysis also suggests previous (Bayesian model-based approach) and current (F-statistics) flows of genotypes between governorates and districts. Human activities as well as reservoir dynamics and the effects of environmental changes could explain how the disease progresses. This study provides new insights into the evolution and spread of L. major in Tunisia that might improve our understanding of the parasite flow between geographically and temporally distinct populations.  相似文献   

12.

Background

Leishmania major and an uncharacterized species have been reported from human patients in a cutaneous leishmaniasis (CL) outbreak area in Ghana. Reports from the area indicate the presence of anthropophilic Sergentomyia species that were found with Leishmania DNA.

Methodology/Principal Findings

In this study, we analyzed the Leishmania DNA positive sand fly pools by PCR-RFLP and ITS1 gene sequencing. The trypanosome was determined using the SSU rRNA gene sequence. We observed DNA of L. major, L. tropica and Trypanosoma species to be associated with the sand fly infections. This study provides the first detection of L. tropica DNA and Trypanosoma species as well as the confirmation of L. major DNA within Sergentomyia sand flies in Ghana and suggests that S. ingrami and S. hamoni are possible vectors of CL in the study area.

Conclusions/Significance

The detection of L. tropica DNA in this CL focus is a novel finding in Ghana as well as West Africa. In addition, the unexpected infection of Trypanosoma DNA within S. africana africana indicates that more attention is necessary when identifying parasitic organisms by PCR within sand fly vectors in Ghana and other areas where leishmaniasis is endemic.  相似文献   

13.
Leishmania tropica is one of the causative agents of leishmaniasis in humans. Routes of infection have been reported to be an important variable for some species of Leishmania parasites. The role of this variable is not clear for L. tropica infection. The aim of this study was to explore the effects of route of L. tropica infection on the disease outcome and immunologic parameters in BALB/c mice. Two routes were used; subcutaneous in the footpad and intradermal in the ear. Mice were challenged by Leishmani major, after establishment of the L. tropica infection, to evaluate the level of protective immunity. Immune responses were assayed at week 1 and week 4 after challenge. The subcutaneous route in the footpad in comparison to the intradermal route in the ear induced significantly more protective immunity against L. major challenge, including higher delayed-type hypersensitivity responses, more rapid lesion resolution, lower parasite loads, and lower levels of IL-10. Our data showed that the route of infection in BALB/c model of L. tropica infection is an important variable and should be considered in developing an appropriate experimental model for L. tropica infections.  相似文献   

14.
Background:Leishmania (L) major and L. tropica are the etiological agents of cutaneous leishmaniosis. Leishmania species cause a board spectrum of phenotypes. A small number of genes are differentially expressed between them that have likely an important role in the disease phenotype. Procyclic and metacyclic are two morphological promastigote forms of Leishmania that express different genes. The glutathione peroxidase is an important antioxidant enzyme that essential in parasite protection against oxidative stress and parasite survival. This study aimed to compare glutathione peroxidase (TDPX) gene expression in procyclic and metacyclic and also interspecies in Iranian isolates of L. major and L. tropica. Methods:The samples were cultured in Novy-Nicolle-Mc Neal medium to obtain the promastigotes and identified using PCR-RFLP technique. They were then grown in RPMI1640 media for mass cultivation. The expression level of TDPX gene was compared by Real-time PCR.Results:By comparison of expression level, up-regulation of TDPX gene was observed (5.37 and 2.29 folds) in L. major and L. tropica metacyclic compared to their procyclic, respectively. Moreover, there was no significant difference between procyclic forms of isolates, while 3.05 folds up-regulation in metacyclic was detected in L. major compared L. tropica.Conclusion:Our data provide a foundation for identifying infectivity and high survival related factors in the Leishmania spp. In addition, the results improve our understanding of the molecular basis of metacyclogenesis and development of new potential targets to control or treatment and also, to the identification of species-specific factors contributing to virulence and pathogenicity in the host cells.Key Words: Glutathione peroxidase, Leishmania, L. major, L. tropica, Quantitative Real-time PCR  相似文献   

15.

Background

Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models.

Methods

We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured.

Principal Findings

Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain.

Conclusion

Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes.  相似文献   

16.
Leishmania parasites can be exposed to effects of light in their vectors and hosts, at various periods. However, there is no information about the effects of light on Leishmania parasites. The aim of this study is to investigate the effects of light on various cell parameters of Leishmania tropica, in vitro. All experiments were conducted on L. tropica promastigotes and amastigote-macrophage cultures, using flow cytometric analysis, MTT and phenol–sulfuric acid assay, DAPI and Giemsa. The results showed that the morphology of parasites has changed; the cell cycle has been affected and this caused parasites to remain at G0/G1 phase. Furthermore the proliferation, infectivity, glucose consumption and mitochondrial dehydrogenase activities of parasites were decreased. Thus, for the first time, in this study, the effects of light on biological activities of Leishmania parasites were shown. These new information about parasites’ biology, would be very important to investigate the effects of light on the parasites in infected vectors and hosts.  相似文献   

17.
BackgroundLeishmaniasis is an emerging infectious disease reported in the north and south of Thailand of which patients with HIV/AIDS are a high risk group for acquiring the infection. A lack of information regarding prevalence, and the risk association of Leishmania infection among asymptomatic immunocompetent hosts needs further investigation. Information on potential vectors and animal reservoirs in the affected areas is also important to control disease transmission.MethodsAn outbreak investigation and a cross-sectional study were conducted following one index case of cutaneous leishmaniasis (CL) caused by L. martiniquensis in an immunocompetent male patient reported in August 2015, Chiang Rai Province, Thailand. From September to November 2015, a total of 392 participants at two study areas who were related to the index case, 130 students at a semi-boarding vocational school and 262 hill tribe villagers in the patient’s hometown, were recruited in this study. The nested internal transcribed spacer 1-PCR (ITS1-PCR) was performed to detect Leishmania DNA in buffy coat, and nucleotide sequencing was used to identify species. Antibody screening in plasma was performed using the Direct Agglutination Test (DAT), and associated risk factors were analyzed using a standardized questionnaire. Captured sandflies within the study areas were identified and detected for Leishmania DNA using nested ITS1-PCR. Moreover, the animal reservoirs in the study areas were also explored for Leishmania infection.ResultsOf 392 participants, 28 (7.1%) were positive for Leishmania infection of which 1 (4.8%) was L. martiniquensis, 12 (57.1%) were L. orientalis and 8 (38.1%) were Leishmania spp. Of 28, 15 (53.6%) were DAT positive. None showed any symptoms of CL or visceral leishmaniasis. Risk factors were associated with being female (adjusted odds ratio, AOR 2.52, 95%CI 1.01–6.26), increasing age (AOR 1.05, 95%CI 1.02–1.08), having an animal enclosure in a housing area (AOR 3.04, 95%CI 1.13–8.22), being exposed to termite mounds (AOR 3.74, 95%CI 1.11–12.58) and having domestic animals in a housing area (AOR 7.11, 95%CI 2.08–24.37). At the semi-boarding vocational school, six Sergentomyia gemmea samples were PCR positive for DNA of L. orientalis and one S. gemmea was PCR positive for DNA of L. donovani/L. infantum. Additionally, one Phlebotomus stantoni was PCR positive for DNA of L. martiniquensis, and one black rat (Rattus rattus) was PCR positive for DNA of L. martiniquensis.ConclusionThis information could be useful for monitoring Leishmania infection among immunocompetent hosts in affected areas and also setting up strategies for prevention and control. A follow-up study of asymptomatic individuals with seropositive results as well as those with positive PCR results is recommended.  相似文献   

18.
19.
Leishmaniasis is a neglected tropical disease with diverse outcomes ranging from self-healing lesions, to progressive non-healing lesions, to metastatic spread and destruction of mucous membranes. Although resolution of cutaneous leishmaniasis is a classic example of type-1 immunity leading to self-healing lesions, an excess of type-1 related inflammation can contribute to immunopathology and metastatic spread. Leishmania genetic diversity can contribute to variation in polarization and robustness of the immune response through differences in both pathogen sensing by the host and immune evasion by the parasite. In this study, we observed a difference in parasite chemokine suppression between the Leishmania (L.) subgenus and the Viannia (V.) subgenus, which is associated with severe immune-mediated pathology such as mucocutaneous leishmaniasis. While Leishmania (L.) subgenus parasites utilize the virulence factor and metalloprotease glycoprotein-63 (gp63) to suppress the type-1 associated host chemokine CXCL10, L. (V.) panamensis did not suppress CXCL10. To understand the molecular basis for the inter-species variation in chemokine suppression, we used in silico modeling to identify a putative CXCL10-binding site on GP63. The putative CXCL10 binding site is in a region of gp63 under significant positive selection, and it varies from the L. major wild-type sequence in all gp63 alleles identified in the L. (V.) panamensis reference genome. Mutating wild-type L. (L.) major gp63 to the L. (V.) panamensis sequence at the putative binding site impaired cleavage of CXCL10 but not a non-specific protease substrate. Notably, Viannia clinical isolates confirmed that L. (V.) panamensis primarily encodes non-CXCL10-cleaving gp63 alleles. In contrast, L. (V.) braziliensis has an intermediate level of activity, consistent with this species having more equal proportions of both alleles. Our results demonstrate how parasite genetic diversity can contribute to variation in immune responses to Leishmania spp. infection that may play critical roles in the outcome of infection.  相似文献   

20.
Background Phlebotomus (Paraphlebotomus) sergenti is at least one of the confirmed vectors for the transmission of cutaneous leishmaniasis caused by Leishmania tropica and distributed widely in Morocco. This form of leishmaniasis is considered largely as anthroponotic, although dogs were found infected with Leishmania tropica, suggestive of zoonosis in some rural areas.ConclusionOur findings supported the notion that Phlebotomus sergenti is the primary vector of Leishmania tropica in this focus, and that the latter is genetically very heterogeneous. Furthermore, our results might be suggestive of a certain level of heterozygosity in Leishmania tropica population. This finding, as well as the feeding of the vectors on different animals are of interest for further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号