首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

2.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

3.
Lactococcus lactis subsp. lactis strains show glutamate decarboxylase activity, whereas L. lactis subsp. cremoris strains do not. The gadB gene encoding glutamate decarboxylase was detected in the L. lactis subsp. cremoris genome but was poorly expressed. Sequence analysis showed that the gene is inactivated by the frameshift mutation and encoded in a nonfunctional protein.  相似文献   

4.
A functional pyc gene was isolated from Lactococcus lactis subsp. lactis C2 and was found to complement a Pyc defect in L. lactis KB4. The deduced lactococcal Pyc protein was highly homologous to Pyc sequences of other bacteria. The pyc gene was also detected in Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis bv. diacetylactis strains.  相似文献   

5.
The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)(5)-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.  相似文献   

6.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

7.
W M de Vos  P Vos  H de Haard  I Boerrigter 《Gene》1989,85(1):169-176
The Lactococcus lactis subsp. cremoris SK11 plasmid-located prtP gene, encoding a cell-envelope-located proteinase (PrtP) that degrades alpha s1-, beta- and kappa-casein, was identified in a lambda EMBL3 gene library in Escherichia coli using immunological methods. The complete prtP gene could not be cloned in E. coli and L. lactis on high-copy-number plasmid vectors. However, using a low-copy-number vector, the complete prtP gene could be cloned in strains MG1363 and SK1128, proteinase-deficient derivatives of L. lactis subsp. lactis 712 and L. lactis subsp. cremoris SK11, respectively. The proteinase deficiency of these hosts was complemented to wild-type (wt) levels by the cloned SK11 prtP gene. The caseinolytic specificity of the proteinase specified by the cloned prtP gene was identical to that encoded by the wt proteinase plasmid, pSK111. The expression of recombinant plasmids containing 3' and 5' deletions of prtP was analyzed with specific attention directed towards the location of the gene products. In this way the expression signals of prtP were localized and overproduction was obtained in L. lactis subsp. lactis. Furthermore, a region at the C terminus of PrtP was identified which is involved in cell-envelope attachment in lactococci. A deletion derivative of prtP was constructed which specifies a C-terminally truncated proteinase that is well expressed and fully secreted into the medium, and still shows the same capacity to degrade alpha s1-, beta- and kappa-casein.  相似文献   

8.
Abstract The lacticin 481-producer (Lct+), L. lactis subsp. lactis (L. lactis ) CNRZ 481 harbours 5 plasmids of 6.5, 7.5, 20, 37 and 69 kb. Novobiocin treatment of L. lactis 481 led to the appearance of lacticin 481 deficient variants which had all lost the 69 kb plasmid. Conjugal transfer of the lacticin 481 structural gene ( lct ) into the plasmid free strain L. lactis IL1441 yielded Lct+ transconjugants at a 10−4 frequency, which carried a plasmid with an apparent size of 120–130 kb. Southern hybridization analyses showed that the lct gene was located on the 69 kb plasmid in L. lactis 481 and on the 120–130 kb plasmid in the transconjugants. The lct gene was in higher copy number in transconjugants than in the parental strain resulting in two-fold higher lacticin 481 production in the former strain.  相似文献   

9.
【目的】比较16S rRNA和recA、groEL基因部分序列用于乳酸乳球菌乳酸亚种和乳脂亚种分类鉴定的效果。【方法】对已鉴定的8株分离自传统发酵乳的乳酸乳球菌, 选取recA和groEL基因片段, 通过PCR扩增、测序, 将测序得到的序列比对后构建系统发育树, 并与16S rRNA基因序列分析技术进行比较。【结果】比较分析不同菌株16S rRNA和recA、groEL基因的亲缘关系, recA、groEL基因可以准确地完成乳酸乳球菌乳酸亚种和乳脂亚种的区分和鉴定。【结论】recA和groEL基因序列分析可以实现乳酸乳球菌乳酸亚种和乳脂亚种的区分, 因其具有快速、准确、稳定的特点, 可适合于乳酸乳球菌乳酸亚种和乳脂亚种间的快速分类鉴定。  相似文献   

10.
11.
Lactococcus lactis subsp. lactis NCDO 763 (also designated ML3) possesses an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). X-PDAP mutants were selected by an enzymatic plate assay on the basis of their inability to hydrolyze an L-phenylalanyl-L-proline-beta-naphthylamide substrate. A DNA bank from L. lactis subsp. lactis NCDO 763 was constructed in one of these X-PDAP mutants, and one clone in which the original X-PDAP phenotype was restored was detected by the enzymatic plate assay. The X-PDAP gene, designated pepXP, was further subcloned and sequenced. It codes for a protein containing 763 residues. Comparison of the amino-terminal sequence of the X-PDAP enzyme with the amino acid sequence deduced from the pepXP gene indicated that the enzyme is not subjected to posttranslational modification or exported via processing of a signal peptide. The pepXP gene from L. lactis subsp. lactis NCDO 763 in more than 99% homologous to the pepXP gene from L. lactis subsp. cremoris P8-2-47 described elsewhere (B. Mayo, J. Kok, K. Venema, W. Bockelmann, M. Teuber, H. Reinke, and G. Venema, Appl. Environ. Microbiol. 57:38-44, 1991) and is also conserved in other lactococcal strains.  相似文献   

12.
Lactococcus lactis subsp. lactis NCDO 763 (also designated ML3) possesses an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). X-PDAP mutants were selected by an enzymatic plate assay on the basis of their inability to hydrolyze an L-phenylalanyl-L-proline-beta-naphthylamide substrate. A DNA bank from L. lactis subsp. lactis NCDO 763 was constructed in one of these X-PDAP mutants, and one clone in which the original X-PDAP phenotype was restored was detected by the enzymatic plate assay. The X-PDAP gene, designated pepXP, was further subcloned and sequenced. It codes for a protein containing 763 residues. Comparison of the amino-terminal sequence of the X-PDAP enzyme with the amino acid sequence deduced from the pepXP gene indicated that the enzyme is not subjected to posttranslational modification or exported via processing of a signal peptide. The pepXP gene from L. lactis subsp. lactis NCDO 763 in more than 99% homologous to the pepXP gene from L. lactis subsp. cremoris P8-2-47 described elsewhere (B. Mayo, J. Kok, K. Venema, W. Bockelmann, M. Teuber, H. Reinke, and G. Venema, Appl. Environ. Microbiol. 57:38-44, 1991) and is also conserved in other lactococcal strains.  相似文献   

13.
The gene encoding a tripeptidase (pepT) of Lactococcus lactis subsp. cremoris (formerly subsp. lactis) MG1363 was cloned from a genomic library in pUC19 and subsequently sequenced. The tripeptidase of L. lactis was shown to be homologous to PepT of Salmonella typhimurium with 47.4% identity in the deduced amino acid sequences. L. lactis PepT was enzymatically active in Escherichia coli and allowed growth of a peptidase-negative leucine-auxotrophic E. coli strain by liberation of Leu from a tripeptide. Using a two-step integration-excision system, a pepT-negative mutant of L. lactis was constructed. No differences between the growth of the mutant and that of the wild-type strain in milk or in chemically defined medium with casein as the sole source of essential amino acids were observed.  相似文献   

14.
Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis are both used in the dairy industry as homofermentative lactic acid bacteria in the production of fermented milk products. After selective pressure for the fast fermentation of milk in the manufacture of yogurts, L. delbrueckii subsp. bulgaricus loses its ability to regulate lac operon expression. A series of mutations led to the constitutive expression of the lac genes. A complex of insertion sequence (IS) elements (ISL4 inside ISL5), inserted at the border of the lac promoter, induced the loss of the palindromic structure of one of the operators likely involved in the binding of regulatory factors. A lac repressor gene was discovered downstream of the beta-galactosidase gene of L. delbrueckii subsp. lactis and was shown to be inactivated by several mutations in L. delbrueckii subsp. bulgaricus. Regulatory mechanisms of the lac gene expression of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis were compared by heterologous expression in Lactococcus lactis of the two lac promoters in front of a reporter gene (beta-glucuronidase) in the presence or absence of the lac repressor gene. Insertion of the complex of IS elements in the lac promoter of L. delbrueckii subsp. bulgaricus increased the promoter's activity but did not prevent repressor binding; rather, it increased the affinity of the repressor for the promoter. Inactivation of the lac repressor by mutations was then necessary to induce the constitutive expression of the lac genes in L. delbrueckii subsp. bulgaricus.  相似文献   

15.
From May to August 2001 in Taiwan, 27 farms for the giant freshwater prawn Macrobrachium rosenbergii experienced white tail disease outbreaks in animals approximately 3 to 5 mo old, with total lengths from 6 to 8 cm. Examination of the infected prawns revealed not only previously reported Lactococcus garvieae (16 farms) but also the novel L. lactis subsp. lactis (10 farms). One farm had shrimp infected with both bacteria. In the farms with L. lactis infections, the cumulative mortality was approximately 25 to 60%. Gross signs of disease were opaque and whitish muscles, while histopathology included marked edema and necrotic lesions, with inflammation in the muscles and hepatopancreas. Bacteria isolated using brain/heart infusion medium or tryptic soy agar were Gram-positive and ovoid. Eleven isolates from different farms were identified as L. lactis subsp. lactis using API 20 Strep and Rapid ID32 Strep tests and using PCR assays specific for the L. lactis subsp. lactis 16S rDNA gene (650 bp amplicon) and for the 16S to 23S rDNA interspacer region (380 bp amplicon). In addition, sequencing of the full 16S rDNA genes of 2 of the isolates (MR17 and MR26; GenBank Accession Numbers AF493058 and AF493057, respectively) revealed 99.9% identity between the isolates and 98.7% identity to several complete 16S rRNA sequences of L. lactis subsp. lactis at GenBank. Experimental infections with our isolates gave gross signs and histopathological changes similar to those seen in naturally infected prawns. The mean lethal dose of 4 isolates and the reference strain L. lactis subsp. lactis BCRC 10791 ranged from 4.2 x 10(6) to 2.5 x 10(7) colony-forming units prawn(-1), indicating virulence similar to that previously reported for L. garvieae. This is the first report confirming L. lactis subsp. lactis as a pathogen in juvenile and adult prawns from aquaculture.  相似文献   

16.
Aims:  Strain Lactococcus lactis subsp. lactis bv. diacetylactis S50 harbours five theta-replicating plasmids (pS6, pS7a, pS7b, pS80 and pS140). The aim of this study was to characterize domains involved in the replication and conjugative mobilization of the small plasmids pS7a and pS7b, which are structurally very similar.
Methods and Results:  Complete nucleotide sequences of pS7a and pS7b were determined by cloning DNA fragments of different sizes into Escherichia coli vectors. Linearized plasmids and four Eco RI fragments of the pS7a and pS7b were cloned into an origin probe vector. Constructed plasmids (pSEV10, pSK10, pISE1a and pISE1b) were able to replicate in the strain L. lactis subsp. cremoris MG1363. In addition, experiments showed that plasmids pS7a and pS7b contained oriT sequences and their conjugative transfer directly depended on the presence of pS80 in donor cells.
Conclusions:  Plasmids pS7a and pS7b contained typical lactococcal theta replication origin and repB gene that enable them to replicate in the strain L. lactis subsp. cremoris MG1363. Plasmid pS80 plays a key role in the conjugative transfer of small plasmids.
Significance and Impact of the Study:  Plasmids pS7a and pS7b-based derivatives could be valuable tools for genetic manipulation, studying processes of plasmid maintenance and horizontal gene transfer in lactococci.  相似文献   

17.
Lactococcus lactis is of great importance for the nutrition of hundreds of millions of people worldwide. This paper describes the genome sequence of Lactococcus lactis subsp. cremoris MG1363, the lactococcal strain most intensively studied throughout the world. The 2,529,478-bp genome contains 81 pseudogenes and encodes 2,436 proteins. Of the 530 unique proteins, 47 belong to the COG (clusters of orthologous groups) functional category "carbohydrate metabolism and transport," by far the largest category of novel proteins in comparison with L. lactis subsp. lactis IL1403. Nearly one-fifth of the 71 insertion elements are concentrated in a specific 56-kb region. This integration hot-spot region carries genes that are typically associated with lactococcal plasmids and a repeat sequence specifically found on plasmids and in the "lateral gene transfer hot spot" in the genome of Streptococcus thermophilus. Although the parent of L. lactis MG1363 was used to demonstrate lysogeny in Lactococcus, L. lactis MG1363 carries four remnant/satellite phages and two apparently complete prophages. The availability of the L. lactis MG1363 genome sequence will reinforce its status as the prototype among lactic acid bacteria through facilitation of further applied and fundamental research.  相似文献   

18.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

19.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

20.
Bacteriocin-producing strain Lactococcus lactis K-205 with antibacterial activity up to 2,700 IU/ml (calculated on nisine-producing activity) was isolated from Buryat beverage kurunga. Using genotypic analysis of oligonucleotide sequence of 16S rRNA gene, the strain was identified as L. lactis subsp. lactis. 16S rRNA gene nucleotide sequence of K-205 strain was deposed in GenBankdatabase under the number EF 114305. New K-205 strain as compared with museum nisine-producing strain L. lactis subsp. lactis had wider spectrum of bactericidal as well as fungicidal activity which is a rare characteristic for the natural isolates of this microorganism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号