首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphologically normal and fertile transgenic plants of mungbean with two transgenes, bar and α-amylase inhibitor, have been developed for the first time. Cotyledonary node explants were transformed by cocultivation with Agrobacterium tumefaciens strain EHA105 harboring a binary vector pKSB that carried bialaphos resistance (bar) gene and Phaseolus vulgaris α-amylase inhibitor-1 (αAI-1) gene. Green transformed shoots were regenerated and rooted on medium containing phosphinothricin (PPT). Preculture and wounding of the explants, presence of acetosyringone and PPT-based selection of transformants played significant role in enhancing transformation frequency. Presence and expression of the bar gene in primary transformants was evidenced by PCR-Southern analysis and PPT leaf paint assay, respectively. Integration of the Phaseolus vulgaris α-amylase inhibitor gene was confirmed by Southern blot analysis. PCR analysis revealed inheritance of both the transgenes in most of the T1 lines. Tolerance to herbicide was evidenced from seed germination test and chlorophenol red assay in T1 plants. Transgenic plants could be recovered after 8–10 weeks of cocultivation with Agrobacterium. An overall transformation frequency of 1.51% was achieved.  相似文献   

2.
Agave salmiana was transformed using two different protocols: co-cultivation with Agrobacterium tumefaciens and particle bombardment. The uidA (β-glucuronidase) gene was used as a reporter gene for both methods whereas the nptII and bar genes were used as selectable markers for A. tumefaciens and biolistic transformation respectively. Previous reports for in vitro regeneration of A. salmiana have not been published; therefore the conditions for both shoot regeneration and rooting were optimized using leaves and embryogenic calli of Agave salmiana. The transgenes were detected by Polymerase Chain Reaction (PCR) in 11 month old plants. The transgenic nature of the plants was also confirmed using GUS histochemical assays. Transformation via co-cultivation of explants with Agrobacterium harbouring the pBI121 binary vector was the most effective method of transformation, producing 32 transgenic plants and giving a transformation efficiency of 2.7%. On the other hand, the biolistic method produced transgenic calli that tested positive with the GUS assay after 14 months on selective medium while still undergoing regeneration.  相似文献   

3.
Transgenic plants of triticale cv. Wanad were obtained after transformation using three combinations of strain/vectors. Two of them were hypervirulent Agrobacterium tumefaciens strains (AGL1 and EHA101) with vectors containing bar under maize ubiquitin 1 promoter (pDM805), and both hpt under p35S and nptII under pnos (pGAH). The third one was a regular LBA4404 strain containing super-binary plasmid pTOK233 with selection genes the same as in pGAH. The efficiency of transformation was from 0 to 16% and it was dependent on the selection factor, auxin pretreatment, and the strain/vector combination. The highest number of transgenic plants was obtained after transformation with LBA4404(pTOK233) and kanamycin selection. Pretreatment of explants with picloram led to the highest number of plants obtained after transformation with both Agrobacterium/vector systems LBA4404(pTOK233) and EHA101(pGAH) and selected with kanamycin. Transgenic character of selected plants was examined by PCR using specific primers for bar, gus, nptII, and hpt and confirmed by Southern blot hybridization analysis. There was no GUS expression in T0 transgenic plants transformed with gus under p35S. However the GUS expression was detectable in the progeny of some lines. Only 30% of 46 transgenic lines showed Mendelian segregation of GUS expressing to GUS not expressing plants. In the remaining 70% the segregation was non-Mendelian and the rate was much lower than 3:1. Factors that might effect expression of transgenes in allohexaploid monocot species are discussed.  相似文献   

4.
To establish a procedure for Agrobacterium tumefaciens-mediated transformation of golden pothos (Epipremnum aureum) plants, the effects of selection antibiotics and the preculture period of stem explants before A. tumefaciens infection were examined. Explants were co-cultivated with A. tumefaciens EHA105, harboring the plasmid pGWB2/cGUS, on a somatic embryo-inducing medium supplemented with acetosyringone. Resulting transgenic somatic embryos were screened on an antibiotic selection medium, and the transgenic pothos plants were regenerated on a germination medium. Hygromycin was the optimum selection antibiotic tested. The preculture period significantly affected the transformation efficiency, with explants precultured for one-day showing the best efficiency (5–30%). Both transformed hygromycin-resistant embryos and regenerated plants showed β-glucuronidase activity. Southern blot analysis confirmed transgene integration into the pothos genome. This reproducible transformation system for golden pothos may enable the molecular breeding of this very common indoor plant.  相似文献   

5.
Efficiency of plants' transformation depends on many factors. The genotype, applied techniques and conditions of plant's modification and modified plant regeneration are the most important among them. In our studies regeneration and transformation conditions for two strawberry cultivars were determined and compared. Plants were transformed by Agrobacterium tumefaciens LBA4404 strain containing plasmid pBIN19 with nptII and gus-reporter genes. Experiment was carried out on more than 1300 leaf explants from each cultivar. Generally, `Induka' plants characterized with higher regeneration potential than `Elista'. The highest number of regenerated shoots was obtained on MS medium with 0.4 mg l –1 IBA and 1.8 mg l–1 BA (3.5 and 1.8 shoots/explant for `Induka' and `Elista', respectively). After plant transformation number of regenerated, transgenic shoots was higher for `Elista' (on the average: 8.3 shoots/100 explants). The number of transgenic `Induka' shoots, obtained at the same conditions, was twice lower (4.2). Simultaneously `Induka' plants needed higher kanamycin concentration for transgenic explants selection than `Elista' (25 mg l–1). Preliminary incubation of A. tumefaciens in LB or MS medium with acetosyringone and IAA resulted in increasing transgenic shoots number (per 100 explants: `Induka' 4.5, `Elista' 8.0–9.5 shoots). After using untreated bacteria for plants' transformation, number of transgenic plants varied (dependently on cultivar) from 3.8 to 7.0/100 explants. Applying LB or MS as basic medium as well as adding tobacco plant extract to these media did not significantly influence transformation efficiency.  相似文献   

6.
Summary A rapid regeneration system was used for studies ofAgrobacterium-mediated transformation inPisum sativum L. Cotyledonary node explants were inoculated withAgrobacterium tumefaciens strains containing binary vectors carrying genes for nopaline synthase (NOS),β-glucuronidase (GUS), and neomycin phosphotransferase (NPTII) and placed on selection medium containing either 75 or 150 mg/liter kanamycin. A GUS encoding gene (uidA) containing an intron was used to monitor gene expression from 6 to 21 days postinoculation. GUS activity could be observed 6 days after inoculation in the area of the explant in which regeneration-occurred. Regenerating tissue containing transformed cells was observed in explants on selection medium 21 days postinoculation. Using this system, a single transgenic plant was obtained. Progeny of this plant, which contained two T-DNA inserts, demonstrated segregation for the inserts and for expression of the NOS gene in the selfed R1 progeny. NPTII activity was observed in the R2 generation, indicating inheritance and expression of the foreign DNA over at least two generations. Attempts to repeat this procedure were unsuccessful.  相似文献   

7.
Agrobacterium-mediated transformation in Citrullus lanatus   总被引:1,自引:1,他引:0  
Agrobacterium tumefaciens-mediated transformation was used to produce transgenic watermelon. Cotyledonary explants of Citrullus lanatus Thumb (cv. Daesan) were co-cultivated with Agrobacterium strains (LBA4404, GV3101, EHA101) containing pPTN289 carrying with bar gene and pPTN290 carrying with nptII gene, respectively. There was a significant difference in the transformation frequency between bacteria strains and selective markers. The EHA101/pPTN289 showed higher transformation frequency (1.16 %) than GV3101/pPTN289 (0.33 %) and LBA4404/pPTN289 or /pPTN290 (0 %). The shoots obtained (633 and 57 lines) showed some resistance to glufosinate and paromomycin, respectively. Of them, the β-glucuronidase positive response and PCR products amplified by bar and nptII specific primers showed at least 21 plants resistant to glufosinate and at least 6 plants to paromomycin. Southern blot analysis revealed that the bar gene integrated into genome of transgenic watermelon. Acclimated transgenic watermelons were successfully transplanted in the greenhouse and showed no phenotypic variation.  相似文献   

8.
We have used the bar gene in combination with the herbicide Basta to select transformed rice (Oryza sativa L. cv. Radon) protoplasts for the production of herbicide-resistant rice plants. Protoplasts, obtained from regenerable suspension cultures established from immature embryo callus, were transformed using PEG-mediated DNA uptake. Transformed calli could be selected 2–4 weeks after placing the protoplast-derived calli on medium containing the selective agent, phosphinothricin (PPT), the active component of Basta. Calli resistant to PPT were capable of regenerating plants. Phosphinothricin acetyltransferase (PAT) assays confirmed the expression of the bar gene in plants obtained from PPT-resistant calli. The only exceptions were two plants obtained from the same callus that had multiple copies of the bar gene integrated into their genomes. The transgenic status of the plants was varified by Southern blot analysis. In our system, where the transformation was done via the protoplast method, there were very few escapes. The efficiency of co-transformation with a reporter gene gusA, was 30%. The To plants of Radon were self-fertile. Both the bar and gusA genes were transmitted to progeny as confirmed by Southern analysis. Both genes were expressed in T1 and T2 progenies. Enzyme analyses on T1 progeny plants also showed a gene dose response reflecting their homozygous and heterozygous status. The leaves of To plants and that of the progeny having the bar gene were resistant to application of Basta. Thus, the bar gene has proven to be a useful selectable and screenable marker for the transformation of rice plants and for the production of herbicide-resistant plants.  相似文献   

9.
Public concern and metabolic drain were the main driving forces for the development of a selectable marker-free transformation system. We demonstrated here the production of transgenic tobacco plants using a non-selection approach by Agrobacterium tumefaciens-mediated transformation. A. tumefaciens-infected leaf explants were allowed to produce shoots on a shoot induction medium (SIM) containing no selective compounds. Up to 35.1% of the A. tumefaciens-infected leaf explants produced histochemically GUS+ shoots, 3.1% of regenerated shoots were GUS+, and 72% of the GUS+ shoots were stably transformed by producing GUS+ T1 seedlings. When polymerase chain reaction (PCR) was used to screen the regenerated shoots, 4% of the shoots were found to be PCR+ for the transgene and 65% of the PCR+ shoots were stable transformants. Also, generation of PCR+ escapes decreased linearly as the number of subculture increased from one to three on SIM containing the antibiotic that kills the Agrobacterium. Twenty-five to 75% of the transformants were able to transmit transgene activity to the T1 generation in a Mendelian 3:1 ratio, and a transformation efficiency of 2.2–2.8% was achieved for the most effective binary vector. These results indicated that majority of the GUS+ or PCR+ shoots recovered under no selection were stable transformants, and only one-third of them were chimeric or escapes. Transgenes in these transgenic plants were able to transmit the transgene into progeny in a similar fashion as those recovered under selection.  相似文献   

10.
Agrobacterium tumefaciens-mediated transformation system for perilla (Perilla frutescens Britt) was developed. Agrobacterium strain EHA105 harboring binary vector pBK I containing bar and γ-tmt cassettes or pIG121Hm containing nptII, hpt, and gusA cassettes were used for transformation. Three different types of explant, hypocotyl, cotyledon and leaf, were evaluated for transformation and hypocotyl explants resulted in the highest transformation efficiency with an average of 3.1 and 2.2%, with pBK I and pIG121Hm, respectively. The Perilla spp. displayed genotype-response for transformation. The effective concentrations of selective agents were 2 mg l−1 phosphinothricin (PPT) and 150 mg l−1 kanamycin, respectively, for shoot induction and 1 mg l−1 PPT and 125 mg l−1 kanamycin, respectively, for shoot elongation. The transformation events were confirmed by herbicide Basta spray or histochemical GUS staining of T0 and T1 plants. The T-DNA integration and transgene inheritance were confirmed by PCR and Southern blot analysis of random samples of T0 and T1 transgenic plants.  相似文献   

11.
Meadow fescue (Festuca pratensis Huds.) is an important cool-season forage grass in Europe and Asia. We developed a protocol for producing meadow fescue transgenic plants mediated by Agrobacterium tumefaciens transformation. Embryogenic calli derived from mature embryos were transformed with A. tumefaciens strain AGL1 carrying the binary vector pDM805, coding for the phosphinothricin acetyltransferase (bar) and β-glucuronidase (uidA) genes. Bialaphos was used as the selective agent throughout all phases of tissue culture. In total, 40 independent transgenic plants were recovered from 45 bialaphos-resistant callus lines and an average transformation efficiency of 2% was achieved. The time frame from infection of embryogenic calli with Agrobacterium to transferring the transgenic plants to the greenhouse was 18 weeks. In a study of 11 BASTA-resistant transgenic lines, the uidA gene was expressed in 82% of the transgenic lines. Southern blot analysis revealed that 82% of the tested lines integrated one or two copies of the uidA gene. C. Gao and J. Liu contributed equally to the work.  相似文献   

12.
For regulatory issues and research purposes it would be desirable to have the ability to segregate transgenes in co-transformed maize. We have developed a highly efficient system to segregate transgenes in maize that was co-transformed using an Agrobacterium tumefaciens 2 T-DNA binary system. Three vector treatments were compared in this study; (1) a 2 T-DNA vector, where the selectable marker gene bar (confers resistance to bialaphos) and the -glucuronidase (GUS) reporter gene are on two separate T-DNA's contained on a single binary vector; (2) a mixed strain treatment, where bar and GUS are contained on single T-DNA vectors in two separate Agrobacterium strains; (3) and a single T-DNA binary vector containing both bar and GUS as control treatment. Bialaphos resistant calli were generated from 52 to 59% of inoculated immature embryos depending on treatment. A total of 93.4% of the bialaphos selected calli from the 2 T-DNA vector treatment exhibited GUS activity compared to 11.7% for the mixed strain treatment and 98.2% for the cis control vector treatment. For the 2 T-DNA vector treatment, 86.7% of the bialaphos resistant/GUS active calli produced R0 plants exhibiting both transgenic phenotypes compared to 10% for the mixed strain treatment and 99% for the single T-DNA control vector treatment. A total of 87 Liberty herbicide (contains bialaphos as the active ingredient) resistant/GUS active R0 events from the 2 T-DNA binary vector treatment were evaluated for phenotypic segregation of these traits in the R1 generation. Of these R0 events, 71.4% exhibited segregation of Liberty resistance and GUS activity in the R1 generation. A total of 64.4% of the R0 2 T-DNA vector events produced Liberty sensitive/GUS active (indicating selectable-marker-free) R1 progeny. A high frequency of phenotypic segregation was also observed using the mixed strain approach, but a low frequency of calli producing R0 plants displaying both transgenic phenotypes makes this method less efficient. Molecular analyses were then used to confirm that the observed segregation of R1 phenotypes were highly correlated to genetic segregation of the bar and GUS genes. A high efficiency system to segregate transgenes in co-transformed maize plants has now been demonstrated.  相似文献   

13.
The US Department of Energy recently released a 6.8X draft of the genome sequence for Nisqually-1, a genotype of black cottonwood (Populus trichocarpa). To improve its utility for functional genomics research, having an efficient means for transformation and regeneration is necessary. To examine several parameters known to affect the transformation rate, we cocultivated leaf disc and stem explants with a strain ofAgrobacterium tumefaciens harboring a binary plasmid vector containing genes for both neomycin phosphotransferase (NPTII) and β-glucuronidase (GUS). Shoot regeneration from stem explants was observed in the presence of kanamycin when thidiazuron was incorporated in the selection medium. Transformation efficiency was influenced by the level of thidiazuron to which explants were exposed during the early stages of shoot induction. Histochemical assays revealed expression of theGUS gene in leaf, stem, and root tissues of transgenic plants. Polymerase chain reaction confirmed the presence of both selectable marker and reporter genes in all lines that stained positive for β-glucuronidase activity. By use of our modified protocol, transgenic plants were recovered within 6 mo at an efficiency of 6%, adequate to produce a large number of transgenic events with modest effort.  相似文献   

14.
This paper reports on the successful Agrobacterium-mediated transformation of oat, and on some factors influencing this process. In the first step of the experiments, three cultivars, two types of explant, and three combinations of strain/vectors, which were successfully used for transformation of other cereals were tested. Transgenic plants were obtained from the immature embryos of cvs. Bajka, Slawko and Akt and from leaf base explants of cv. Bajka after transformation with A. thumefaciens strain LBA4404(pTOK233). The highest transformation rate (12.3%) was obtained for immature embryos of cv. Bajka. About 79% of the selected plants proved to be transgenic; however, only 14.3% of the T0 plants and 27.5% of the T1 showed GUS expression. Cell competence of both types of explant differed in terms of their transformation ability and transgene expression. The next step of the study was to test the suitability for oat transformation of the pGreen binary vector combined with different selection cassettes: nptII or bar under the nos or 35S promoter. Transgenic plants were selected in combinations transformed with nos::nptII, 35S::nptII and nos::bar. The highest transformation efficiency (5.3%) was obtained for cv. Akt transformed with nos::nptII. A detailed analysis of the T0 plants selected from a given callus line and their progeny revealed that they were the mixture of transgenic, chimeric-transgenic and non-transgenic individuals. Southern blot analysis of T0 and T1 showed simple integration pattern with the low copy number of the introduced transgenes.  相似文献   

15.
Dioscorea zingiberensis Wright has been cultivated as a pharmaceutical crop for production of diosgenin, a precursor for synthesis of various important steroid drugs. Because breeding of D. zingiberensis through sexual hybridization is difficult due to its unstable sexuality and differences in timing of flowering in male and female plants, gene transfer approaches may play a vital role in its genetic improvement. In this study, the Agrobacterium tumefaciens-mediated transformation of D. zingiberensis was investigated with leaves and calli as explants. The results showed that both leaf segments and callus pieces were sensitive to 30 mg/l hygromycin and 50–60 mg/l kanamycin, and using calli as explants and addition of acetosyringone (AS) in cocultivation medium were crucial for successful transformation. We first immersed callus explants in A. tumefaciens cells for 30 min and then transferred the explants onto a co-cultivation medium supplemented with 200 μM AS for 3 days. Three days after, we cultured the infected explants on a selective medium containing 50 mg/l kanamycin and 100 mg/l timentin for formation of kanamycin-resistant calli. After the kanamycin-resistant calli were produced, we transferred them onto fresh selective medium for shoot induction. Finally, the kanamycin resistant shoots were rooted and the stable incorporation of the transgene into the genome of D. zingiberensis plants was confirmed by GUS histochemical assay, PCR and Southern blot analyses. The method reported here can be used to produce transgenic D. zingiberensis plants in 5 months and the transformation frequency is 24.8% based on the numbers of independent transgenic plants regenerated from initial infected callus explants.  相似文献   

16.
Genetic transformation of creeping bentgrass mediated by Agrobacterium tumefaciens has been achieved. Embryogenic callus initiated from seeds (cv. Penn-A-4) was infected with an A. tumefaciens strain (LBA4404) harboring a super-binary vector that contained an herbicide-resistant bar gene driven either by the CaMV 35S promoter or a rice ubiquitin promoter. Plants were regenerated from 219 independent transformation events. The overall stable transformation efficiency ranged from 18% to 45%. Southern blot and genetic analysis confirmed transgene integration in the creeping bentgrass genome and normal transmission and stable expression of the transgene in the T1 generation. All independent transformation events carried one to three copies of the transgene, and a majority (60–65%) contained only a single copy of the foreign gene with no apparent rearrangements. We report here the successful use of Agrobacterium for the large-scale production of transgenic creeping bentgrass plants with a high frequency of a single-copy transgene insertion that exhibit stable inheritance patterns.Abbreviations 2,4-D: 2,4-Dichlorophenoxyacetic acid - bar: Bialaphos resistance gene - GUS: -Glucuronidase - PPT: Phosphinothricin - ubi: Ubiquitin Communicated by J.M. Widholm  相似文献   

17.
Transgenic herbicide-resistant sweet potato plants [Ipomoea batatas (L.) Lam.] were produced through Agrobacterium-mediated transformation system. Embryogenic calli derived from shoot apical meristems were infected with Agrobacterium tumefaciens strain EHA105 harboring the pCAMBIA3301 vector containing the bar gene encoding phosphinothricin N-acetyltransferase (PAT) and the gusA gene encoding β-glucuronidase (GUS). The PPT-resistant calli and plants were selected with 5 and 2.5 mg l−1 PPT, respectively. Soil-grown plants were obtained 28–36 weeks after Agrobacterium-mediated transformation. Genetic transformation of the regenerated plants growing under selection was demonstrated by PCR, and Southern blot analysis revealed that one to three copies of the transgene were integrated into the plant genome of each transgenic plant. Expression of the bar gene in transgenic plants was confirmed by RT-PCR and application of herbicide. Transgenic plants sprayed with Basta containing 900 mg l−1 of glufosinate ammonium remained green and healthy. The transformation frequency was 2.8% determined by herbicide application which was high when compared to our previous biolistic method. In addition, possible problems with multiple copies of transgene were also discussed. We therefore report here a successful and reliable Agrobacterium-mediated transformation of the bar gene conferring herbicide-resistance and this method may be useful for routine transformation and has the potential to develop new varieties of sweet potato with several important genes for value-added traits such as enhanced tolerance to the herbicide Basta.  相似文献   

18.
Insect- and herbicide-resistant transgenic eucalypts*   总被引:5,自引:0,他引:5  
Transgenic Eucalyptus camaldulensis containing both the insecticidal cry3A gene and the bar gene (conferring tolerance to the herbicide glufosinate ammonium) have been produced by Agrobacterium tumefaciens-mediated transformation of seedling explants. Transgenic plants from two lines tested were resistant to first instars of chrysomelid beetles that are important pests of commercial Australian eucalypt plantations. Both lines also exhibit tolerance to the broad-spectrum herbicide Liberty® at 6 l/ha (1.2 kg active ingredient per hectare), twice the field application rate. Transgenic insect- and herbicide-resistant eucalypts like these are likely to provide better insect and weed control options in plantations, particularly during the vulnerable establishment phase, provided that any adverse ecological impacts of releasing transgenic trees into the environment can be assessed and minimized.  相似文献   

19.
Transgenic herbicide tolerant Acacia sinuata plants were produced by transformation with the bar gene conferring phosphinothricin resistance. Precultured hypocotyl explants were infected with Agrobacterium tumefaciens strain EHA105 in the presence of 100 μM acetosyringone and shoots regenerated on MS (Murashige and Skoog, 1962, Physiol Plant 15:473–497) medium with 13.3 μM benzylaminopurine, 2.6 μM indole-3-acetic acid, 1 g l−1 activated charcoal, 1.5 mg l−1 phosphinothricin, and 300 mg l−1 cefotaxime. Phosphinothricin at 1.5 mg l−1 was used for the selection. Shoots surviving selection on medium with phosphinothricin expressed GUS. Following Southern hybridization, eight independent shoots regenerated of 500 cocultivated explants were demonstrated to be transgenic, which represented transformation frequency of 1.6%. The transgenics carried one to four copies of the transgene. Transgenic shoots were propagated as microcuttings in MS medium with 6.6 μM 6-benzylaminopurine and 1.5 mg l−1 phosphinothricin. Shoots elongated and rooted in MS medium with gibberellic acid and indole-3-butyric acid, respectively both supplemented with 1.5 mg l−1 phosphinothricin. Micropropagation of transgenic plants by microcuttings proved to be a simple means to bulk up the material. Several transgenic plants were found to be resistant to leaf painting with the herbicide Basta.  相似文献   

20.
Phyllanthus amarus Schum & Thonn. is a source of various pharmacologically active compounds such as phyllanthin, hypophyllanthin, gallic acid, catechin, and nirurin, a flavone glycoside. A genetic transformation method using Agrobacterium tumefaciens was developed for this plant species for the first time. Shoot tips of full grown plants were used as explants for Agrobacterium-mediated transformation. Transgenic plants were obtained by co-cultivation of shoot tips explants and A. tumefaciens strain LBA4404 containing the pCAMBIA 2301 plasmid harboring neomycin phosphotransferase II (NPT II) and β-glucuronidase encoding (GUS) genes in the T-DNA region in the presence of 200 μM acetosyringone. Integration of the NPT II gene into the genome of transgenic plants was verified by PCR and Southern blot analyses. Expression of the NPT II gene was confirmed by RT-PCR analysis. An average of 25 explants was used, out of which an average of 19 explants produced kanamycin-resistant shoots, which rooted to produce 13 complete transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号