首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.  相似文献   

2.
Receptor‐interacting serine/threonine kinase 4 (RIPK4) and transforming growth factor‐β 1 (TGF‐β1) play critical roles in the development and maintenance of the epidermis. A negative correlation between the expression patterns of RIPK4 and TGF‐β signaling during epidermal homeostasis‐related events and suppression of RIPK4 expression by TGF‐β1 in keratinocyte cell lines suggest the presence of a negative regulatory loop between the two factors. So far, RIPK4 has been shown to regulate nuclear factor‐κB (NF‐κB), protein kinase C (PKC), wingless‐type MMTV integration site family (Wnt), and (mitogen‐activated protein kinase) MAPK signaling pathways. In this study, we examined the effect of RIPK4 on the canonical Smad‐mediated TGF‐β1 signaling pathway by using the immortalized human keratinocyte HaCaT cell line. According to our results, RIPK4 inhibits intracellular Smad‐mediated TGF‐β1 signaling events through suppression of TGF‐β1‐induced Smad2/3 phosphorylation, which is reflected in the upcoming intracellular events including Smad2/3‐Smad4 interaction, nuclear localization, and TGF‐β1‐induced gene expression. Moreover, the kinase activity of RIPK4 is required for this process. The in vitro wound‐scratch assay demonstrated that RIPK4 suppressed TGF‐β1‐mediated wound healing through blocking TGF‐β1‐induced cell migration. In conclusion, our results showed the antagonistic effect of RIPK4 on TGF‐β1 signaling in keratinocytes for the first time and have the potential to contribute to the understanding and treatment of skin diseases associated with aberrant TGF‐β1 signaling.  相似文献   

3.
Transforming growth factor (TGF)‐β1 is a known factor in angiotensin II (Ang II)‐mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor‐1 (Hif‐1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif‐1α contributed to the Ang II‐mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif‐1α and TGF‐β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti‐hypertensive agent like valsartan) was used as control. The fibrosis‐related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up‐regulation of Ang II, TGF‐β/Smad and Hif‐1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up‐regulation of TGF‐β/Smad and Hif‐1α was through the Ang II‐mediated pathway. By administering TGF‐β or dimethyloxalylglycine, we determined that both TGF‐β/Smad and Hif‐1α contributed to Ang II‐mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF‐β/Smad, Hif‐1α and fibrosis‐related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II‐induced cardiac fibrosis as well as into the cardiac protection of valsartan.  相似文献   

4.
5.
Rho‐associated kinase (ROCK) plays a critical role in pressure overload‐induced left ventricular remodelling. However, the underlying mechanism remains unclear. Here, we reported that TGF‐β1‐induced ROCK elevation suppressed BMP‐2 level and strengthened fibrotic response. Exogenous BMP‐2 supply effectively attenuated TGF‐β1 signalling pathway through Smad6‐Smurf‐1 complex activation. In vitro cultured cardiomyocytes, mechanical stretch up‐regulated cardiac TGF‐β1, TGF‐β1‐dependent ROCK and down‐regulated BMP‐2, but BMP‐2 level could be reversed through blocking TGF‐β1 receptor by SB‐431542 or inhibition of ROCK by Y‐27632. TGF‐β1 could also activate ROCK and suppress endogenous BMP‐2 level in a dose‐dependent manner. Knock‐down BMP‐2 enhanced TGF‐β1‐mediated PKC‐δ and Smad3 signalling cascades. In contrast, treatment with Y‐27632 or SB‐431542, respectively suppressed ROCK‐dependent PKC‐δ and Smad3 activation, but BMP‐2 was only up‐regulated by Y‐27632. In addition, BMP‐2 silencing abolished the effect of Y‐27632, but not SB‐431542 on suppression of TGF‐β1 pathway. Further experiments showed that Smad6 Smurf1 interaction were required for BMP‐2‐evoked antagonizing effects. Smad6 overexpression attenuated TGF‐β1‐induced activation of PKC‐δ and Smad3, promoted TGF‐β RI degradation in BMP‐2 knock‐down cardiomyocytes, and could be abolished after knocking‐down Smurf‐1, in which Smad6/Smurf1 complex formation was critically involved. In vivo data showed that pressure overload‐induced collagen deposition was attenuated, cardiac function was improved and TGF‐β1‐dependent activation of PKC‐δ and Smad3 was reduced after 2 weeks treatment with rhBMP‐2(0.5 mg/kg) or Y‐27632 (10 mg/kg) in mice that underwent surgical transverse aortic constriction. In conclusion, we propose that BMP‐2, as a novel fibrosis antagonizing cytokine, may have potential beneficial effect in attenuating pressure overload‐induced cardiac fibrosis.  相似文献   

6.
Liver fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM), and the activation of hepatic stellate cells (HSC) plays a pivotal role in the development of liver fibrosis. Periostin has been shown to regulate cell adhesion, proliferation, migration and apoptosis; however, the involvement of periostin and its role in transforming growth factor (TGF)‐β1‐induced HSC activation remains unclear. We used RT‐PCR and Western blot to evaluate the expression level of periostin in hepatic fibrosis tissues and HSCs, respectively. Cell proliferation was determined using the Cell Proliferation ELISA BrdU kit, cell cycle was analysed by flow cytometry. The expression of α‐smooth muscle actin (α‐SMA), collagen I, TGF‐β1, p‐Smad2 and p‐Smad3 were determined by western blot. Our study found that periostin was up‐regulated in liver fibrotic tissues and activated HSCs. In addition, siRNA‐periostin suppressed TGF‐β1‐induced HSC proliferation. The HSC transfected with siRNA‐periostin significantly inhibited TGF‐β1‐induced expression levels of α‐SMA and collagen I. Furthermore, TGF‐β1 stimulated the expression of periostin, and siRNA‐periostin attenuated TGF‐β1‐induced Smad2/3 activation in HSCs. These results suggest that periostin may function as a novel regulator to modulate HSC activation, potentially by promoting the TGF‐β1/Smad signalling pathway, and propose a strategy to target periostin for the treatment of liver fibrosis.  相似文献   

7.
8.
To investigate the roles of tripartite motif containing 52 (TRIM52) in human hepatic fibrosis in vitro, human hepatic stellate cell line LX‐2 cells were transfected with hepatitis B virus (HBV) replicon to establish HBV‐induced fibrosis in LX‐2 cells, and then treated with small interfering RNA‐mediated knockdown of TRIM52 (siTRIM52). LX‐2 cells without HBV replicon transfection were treated with lentiviruses‐mediated overexpression of TRIM52 and phosphatase magnesium dependent 1A (PPM1A). Fibrosis response of LX‐2 cells were assessed by the production of hydroxyproline (Hyp) and collagen I/III, as well as protein levels of α‐smooth muscle actin (α‐SMA). PPM1A and phosphorylated (p)‐Smad2/3 were measured to assess the mechanism. The correlation between TRIM52 and PPM1A was determined using co‐immunoprecipitation, and whether and how TRIM52 regulated the degradation of PPM1A were determined by ubiquitination assay. Our data confirmed HBV‐induced fibrogenesis of LX‐2 cells, as evidenced by significant increase in Hyp and collagen I/III and α‐SMA, which was associated with reduction of PPM1A and elevation of transforming growth factor‐β (TGF‐β), p‐Smad2/3, and p‐Smad3L. However, those changes induced by HBV were significantly attenuated with additional siTRIM52 treatment. Similar to HBV, overexpression of TRIM52 exerted promoted effect in the fibrosis of LX‐2 cells. Interestingly, TRIM52 induced the fibrogenesis of LX‐2 cells and the activation of TGF‐β/Smad pathway were significantly reversed by PPM1A overexpression. Furthermore, our data confirmed TRIM52 as a deubiquitinase that influenced the accumulation of PPM1A protein, and subsequently regulated the fibrogenesis of LX‐2 cells. TRIM52 was a fibrosis promoter in hepatic fibrosis in vitro, likely through PPM1A‐mediated TGF‐β/Smad pathway.  相似文献   

9.
Obstructive nephropathy is the end result of a variety of diseases that block drainage from the kidney(s). Transforming growth factor‐β1 (TGF‐β1)/Smad3‐driven renal fibrosis is the common pathogenesis of obstructive nephropathy. In this study, we identified petchiether A (petA), a novel small‐molecule meroterpenoid from Ganoderma, as a potential inhibitor of TGF‐β1‐induced Smad3 phosphorylation. The obstructive nephropathy was induced by unilateral ureteral obstruction (UUO) in mice. Mice received an intraperitoneal injection of petA/vehicle before and after UUO or sham operation. An in vivo study revealed that petA protected against renal inflammation and fibrosis by reducing the infiltration of macrophages, inhibiting the expression of proinflammatory cytokines (interleukin‐1β and tumour necrosis factor‐α) and reducing extracellular matrix deposition (α‐smooth muscle actin, collagen I and fibronectin) in the obstructed kidney of UUO mice; these changes were associated with suppression of Smad3 and NF‐κB p65 phosphorylation. Petchiether A inhibited Smad3 phosphorylation in vitro and down‐regulated the expression of the fibrotic marker collagen I in TGF‐β1‐treated renal epithelial cells. Further, we found that petA dose‐dependently suppressed Smad3‐responsive promoter activity, indicating that petA inhibits gene expression downstream of the TGF‐β/Smad3 signalling pathway. In conclusion, our findings suggest that petA protects against renal inflammation and fibrosis by selectively inhibiting TGF‐β/Smad3 signalling.  相似文献   

10.
11.
Endothelial‐mesenchymal transition (EndMT) plays a pivotal role in organ fibrosis. This study examined the effect of SIRT1 on transforming growth factor beta (TGF‐β)‐induced EndMT in human endothelial cells (ECs) and its probable molecular mechanism. We assessed EndMT by immunofluorescence staining, quantitative real‐time polymerase chain reaction, Western blotting, and migration and invasion assays. Adenovirus was used to overexpress or knockdown SIRT1 in ECs. The regulatory relationship between SIRT1 and Smad4 was analyzed by coimmunoprecipitation assay. We found that SIRT1 was decreased in TGF‐β‐induced EndMT, and SIRT1 inhibited TGF‐β‐induced EndMT through deacetylating Smad4. Our findings suggest that SIRT1 has an important role in inhibiting EndMT by regulating the TGF‐β/Smad4 pathway in human ECs and, thus, protecting against fibrosis.  相似文献   

12.
Ali NA  Molloy MP 《Proteomics》2011,11(16):3390-3401
The transforming growth factor‐β (TGF‐β) signaling pathway progresses through a series of protein phosphorylation regulated steps. Smad4 is a key mediator of the classical TGF‐β signaling pathway; however, reports suggest that TGF‐β can activate other cellular pathways independent of Smad4. By investigating the TGF‐β‐regulated phosphoproteome, we aimed to uncover new functions controlled by TGF‐β. We applied titanium dioxide to enrich phosphopeptides from stable isotope labeling with amino acids in cell culture (SILAC)‐labeled SW480 cells stably expressing Smad4 and profiled them by mass spectrometry. TGF‐β stimulation for 30 min resulted in the induction of 17 phosphopeptides and the repression of 8 from a total of 149 unique phosphopeptides. Proteins previously not known to be phosphorylated by TGF‐β including programmed cell death protein 4, nuclear ubiquitous casein and cyclin‐dependent kinases substrate, hepatoma‐derived growth factor and cell division kinases amongst others were induced following TGF‐β stimulation, while the phosphorylation of TRAF2 and NCK‐interacting protein kinase are examples of proteins whose phosphorylation status was repressed. This phosphoproteomic screen has identified new TGF‐β‐modulated phosphorylation responses in colon carcinoma cells.  相似文献   

13.
14.
Kidney fibrosis is usually the final manifestation of a wide variety of renal diseases. Recent years, research reported that long non‐coding RNAs (lncRNAs) played important roles in a variety of human diseases. However, the role and underlying mechanisms of lncRNAs in kidney fibrosis were complicated and largely unclear. In our study, we constructed the cell model of renal fibrosis in HK2 cells using transforming growth factor β1 (TGF‐β1) and found that lncRNA maternally expressed gene 3 (MEG3) was downregulated in TGF‐β1‐induced renal fibrosis. We then found that overexpressed MEG3 inhibited the TGF‐β1‐induced promotion of epithelial–mesenchymal transition, cell viability, and proliferation. Furthermore, we demonstrated that DNA methyltransferases 1 (DNMT1) regulated the MEG3 expression by altering the CpGs methylation level of MEG3 promoter in TGF‐β1‐induced renal fibrosis. In addition, we further revealed that miR‐185 could regulate the DNMT1 expression and thus, modulate the MEG3 in TGF‐β1‐induced renal fibrosis. Ultimately, our study illustrated that the modulation of the miR‐185/ DNMT1/ MEG3 pathway exerted important roles in TGF‐β1‐induced renal fibrosis. In summary, our finding displayed a novel regulatory mechanism for TGF‐β1‐induced renal fibrosis, which provided a new potential therapeutic target for renal fibrosis.  相似文献   

15.
Chronic allograft dysfunction (CAD) induced by kidney interstitial fibrosis is the main cause of allograft failure in kidney transplantation. Endothelial‐to‐mesenchymal transition (EndMT) may play an important role in kidney fibrosis. We, therefore, undertook this study to characterize the functions and potential mechanism of EndMT in transplant kidney interstitial fibrosis. Proteins and mRNAs associated with EndMT were examined in human umbilical vein endothelial cells (HUVECs) treated with transforming growth factor‐beta1 (TGF‐β1) at different doses or at different intervals with western blotting, qRT‐PCR and ELISA assays. Cell motility and migration were evaluated with motility and migration assays. The mechanism of EndMT induced by TGF‐β1 was determined by western blotting analysis of factors involved in various canonical and non‐canonical pathways. In addition, human kidney tissues from control and CAD group were also examined for these proteins by HE, Masson's trichrome, immunohistochemical, indirect immunofluorescence double staining and western blotting assays. TGF‐β1 significantly promoted the development of EndMT in a time‐dependent and dose‐dependent manner and promoted the motility and migration ability of HUVECs. The TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways were found to be associated with the pathogenesis of EndMT induced by TGF‐β1, which was also proven in vivo by the analysis of specimens from the control and CAD groups. EndMT may promote transplant kidney interstitial fibrosis by targetting the TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways, and hence, result in the development of CAD in kidney transplant recipients.  相似文献   

16.
The epithelial‐mesenchymal transition (EMT) is involved in many different types of cellular behavior, including liver fibrosis. In this report, we studied a novel function of RAR‐related orphan receptor gamma (ROR‐γ) in hepatocyte EMT during liver fibrosis. To induce EMT in vitro, primary hepatocytes and FL83B cells were treated with TGF‐β1. Expression of ROR‐γ was analyzed by Western blot in the fibrotic mouse livers and human livers with cirrhosis. To verify the role of ROR‐γ in hepatocyte EMT, we silenced ROR‐γ in FL83B cells using a lentiviral short hairpin RNA (shRNA) vector. The therapeutic effect of ROR‐γ silencing was investigated in a mouse model of TAA‐induced fibrosis by hydrodynamic injection of plasmids. ROR‐γ expression was elevated in hepatocyte cells treated with TGF‐β1, and ROR‐γ protein levels were elevated in the fibrotic mouse livers and human livers with cirrhosis. Knockdown of ROR‐γ resulted in the attenuation of TGF‐β1‐induced EMT in hepatocytes. Strikingly, ROR‐γ bound to ROR‐specific DNA response elements (ROREs) in the promoter region of TGF‐β type I receptor (Tgfbr1) and Smad2, resulting in the downregulation of Tgfbr1 and Smad2 after silencing of ROR‐γ. Therapeutic delivery of shRNA against ROR‐γ attenuated hepatocyte EMT and ameliorated liver fibrosis in a mouse model of TAA‐induced liver fibrosis. Overall, our results suggest that ROR‐γ regulates TGF‐β‐induced EMT in hepatocytes during liver fibrosis. We suggest that ROR‐γ may become a potential therapeutic target in treating liver fibrosis. J. Cell. Biochem. 118: 2026–2036, 2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

17.
AII (angiotensin II) is a vasoactive peptide that plays an important role in the development of liver fibrosis mainly by regulating profibrotic cytokine expression such as TGF‐β (transforming growth factor‐β). Activated HSCs (hepatic stellate cells) are the major cell type responsible for ECM (extracellular matrix) deposition during liver fibrosis and are also a target for AII and TGF‐β actions. Here, we studied the effect of AII on the mRNA levels of TGF‐β isoforms in primary cultures of rat HSCs. Both quiescent and activated HSCs were stimulated with AII for different time periods, and mRNA levels of TGF‐β1, TGF‐β2 and TGF‐β3 isoforms were evaluated using RNaseI protection assay. The mRNA levels of all TGF‐β isoforms, particularly TGF‐β2 and TGF‐β3, were increased after AII treatment in activated HSCs. In addition, activated HSCs were able to produce active TGF‐β protein after AII treatment. The mRNA expression of TGF‐β isoforms induced by AII required both ERK1/2 and Nox (NADPH oxidase) activation but not PKC (protein kinase C) participation. ERK1/2 activation induced by AII occurs via AT1 receptors, but independently of either PKC and Nox activation or EGFR (epidermal growth factor receptor) transactivation. Interestingly, AII has a similar effect on TGF‐β expression in quiescent HSCs, although it has a smaller but significant effect on ERK1/2 activation in these cells.  相似文献   

18.
19.
Renal interstitial fibrosis is a common pathological feature in progressive kidney diseases currently lacking effective treatment. Nicotinamide (NAM), a member of water‐soluble vitamin B family, was recently suggested to have a therapeutic potential for acute kidney injury (AKI) in mice and humans. The effect of NAM on chronic kidney pathologies, including renal fibrosis, is unknown. Here we have tested the effects of NAM on renal interstitial fibrosis using in vivo and in vitro models. In vivo, unilateral urethral obstruction (UUO) induced renal interstitial fibrosis as indicated Masson trichrome staining and expression of pro‐fibrotic proteins, which was inhibited by NAM. In UUO, NAM suppressed tubular atrophy and apoptosis. In addition, NAM suppressed UUO‐associated T cell and macrophage infiltration and induction of pro‐inflammatory cytokines, such as TNF‐α and IL‐1β. In cultured mouse proximal tubule cells, NAM blocked TGF–β‐induced expression of fibrotic proteins, while it marginally suppressed the morphological changes induced by TGF‐β. NAM also suppressed the expression of pro‐inflammatory cytokines (eg MCP‐1 and IL‐1β) during TGF‐β treatment of these cells. Collectively, the results demonstrate an anti‐fibrotic effect of NAM in kidneys, which may involve the suppression of tubular injury and inflammation.  相似文献   

20.
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号