首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Oxidative stress induced by serum starvation and H2O2 exposure, both triggers apoptosis in retinal neuronal cell line RGC‐5 (retinal ganglion cell‐5). We have examined whether, despite excess generation of ROS (reactive oxygen species) and apoptosis induction, there is any dissimilarity in nuclear morphology and apoptotic signalling pathway in RGC‐5 under these conditions. Sub‐confluent cells were treated either with H2O2 or maintained in SFM (serum‐free medium). ROS level was detected along with nuclear morphology and ultrastructural analysis. Generation of excess intracellular ROS, nuclear localization of Bax and caspase 3 activation along with decrease of cellular viability, confirmed apoptosis induction in RGC‐5 by 72 h serum starvation and 500 M H2O2 exposure for 1 h. Nuclear swelling as supported by nuclear cytoplasmic ratio and conspicuous black spots with nuclear remodelling were observed only upon SFM, but not with H2O2 treatment. Serum starvation did not alter JNK1 (c‐Jun N‐terminal kinase 1) expression, although nuclear translocation and higher level of pJNK (phospho‐JNK) was evident. Conversely, H2O2 exposure blocked the expression and activation of JNK1 to phospho‐JNK as a negligible level of pJNK was present in the cytoplasm. Despite similar ROS generation in both the conditions, difference in nuclear morphology and JNK1 expression leads to the hypothesis that RGC‐5 cells may follow different signalling pathways when challenged with serum starvation and H2O2.  相似文献   

2.
3.
Caffeine attenuated invasion of human leukemia U937 cells with characteristic of decreased protein expression and mRNA levels of matrix metalloproteinase‐2 (MMP‐2) and MMP‐9. Down‐regulation of MMP‐2 and MMP‐9 in U937 cells was abrogated by abolishment of caffeine‐elicited increase in intracellular Ca2+ concentration and ROS generation. Pretreatment with BAPTA‐AM (Ca2+ chelator) and N‐acetylcysteine (ROS scavenger) abolished caffeine‐induced ERK inactivation and p38 MPAK activation. Moreover, caffeine treatment led to MAPK phosphatase‐1 (MKP‐1) down‐regulation and protein phosphatase 2A catalytic subunit (PP2Ac) up‐regulation, which were involved in cross‐talk between p38 MAPK and ERK. Transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) restored MMP‐2 and MMP‐9 protein expression in caffeine‐treated cells. Caffeine treatment repressed ERK‐mediated c‐Fos phosphorylation but evoked p38 MAPK‐mediated c‐Jun phosphorylation. Knock‐down of c‐Fos and c‐Jun by siRNA reflected that c‐Fos counteracted the effect of c‐Jun on MMP‐2/MMP‐9 down‐regulation. Taken together, our data indicate that MMP‐2/MMP‐9 down‐regulation in caffeine‐treated U937 cells is elicited by Ca2+/ROS‐mediated suppression of ERK/c‐Fos pathway and activation of p38 MAPK/c‐Jun pathway. J. Cell. Physiol. 224: 775–785, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
This study examined the role of arachidonic acid (AA) in hypoxia‐induced production of interleukin (IL)‐6 and its related signaling pathways in mouse embryonic stem (ES) cells. Hypoxia with AA induced IL‐6 production, which was mediated by reactive oxygen species (ROS). In addition, hypoxia increased the levels of p38 mitogen‐activated protein kinases (MAPKs) and stress‐activated protein kinase/c‐jun NH2‐terminal kinase (SAPK/JNK) phosphorylation, which were blocked by antioxidant (vitamin C). Inhibition of p38 MAPK and SAPK/JNK blocked hypoxia‐ or hypoxia with AA‐induced nuclear factor‐kappa B (NF‐κB) activation. Furthermore, hypoxia‐induced increase in hypoxia‐inducible factor‐1α (HIF‐1α) expression was regulated by NF‐κB activation. Consequently, the increased HIF‐1α expression induced activation of matrix metalloproteinase (MMP)‐2 and MMP‐9. The expression of each signaling molecule stimulated an increase in IL‐6 production that was greater in hypoxic conditions with AA than with hypoxia alone. Finally, inhibition of IL‐6 production using IL‐6 antibody or soluble IL‐6 receptor attenuated the hypoxia‐induced increases in DNA synthesis of mouse ES cells. In conclusion, AA potentiates hypoxia‐induced IL‐6 production through the MAPKs, NF‐κB, and HIF‐1α pathways in mouse ES cells. J. Cell. Physiol. 222: 574–585, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Events that control developmental changes occur during specific windows of gestation and if disrupted, can lead to dysmorphogenesis or embryolethality. One largely understudied aspect of developmental control is redox regulation, where the untimely disruption of intracellular redox potentials (Eh) may alter development, suggesting that tight control of developmental‐stage–specific redox states is necessary to support normal development. In this study, mouse gestational day 8.5 embryos in whole embryo culture were treated with 10 μM dithiole‐3‐thione (D3T), an inducer of nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2). After 14 hr, D3T‐treated and ‐untreated conceptuses were challenged with 200 μM hydrogen peroxide (H2O2) to induce oxidant‐induced change to intracellular Ehs. Redox potentials of glutathione (GSH), thioredoxin‐1 (Trx1), and mitochondrial thioredoxin‐2 (Trx2) were then measured over a 2‐hr rebounding period following H2O2 treatment. D3T treatment increased embryonic expression of known Nrf2‐regulated genes, including those responsible for redox regulation of major intracellular redox couples. Exposure to H2O2 without prior D3T treatment produced significant oxidation of GSH, Trx1, and Trx2, based on Eh values, where GSH and Trx2 Eh recovered, reaching to pre‐H2O2 Eh ranges, but Trx1 Eh remained oxidized. Following H2O2 addition in culture to embryos that received D3T pretreatments, GSH, Trx1, and Trx2 were insulated from significant oxidation. These data show that Nrf2 activation may serve as a means to protect the embryo from chemically induced oxidative stress through the preservation of intracellular redox states during development, allowing normal morphogenesis to ensue.  相似文献   

6.
7.
In Arabidopsis thaliana, LESION SIMULATING DISEASE 1 (LSD1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN DEFICIENT 4 (PAD4) proteins are regulators of cell death (CD) in response to abiotic and biotic stresses. Hormones, such as salicylic acid (SA), and reactive oxygen species, such as hydrogen peroxide (H2O2), are key signaling molecules involved in plant CD. The proposed mathematical models presented in this study suggest that LSD1, EDS1 and PAD4 together with SA and H2O2 are involved in the control of plant water use efficiency (WUE), vegetative growth and generative development. The analysis of Arabidopsis wild‐type and single mutants lsd1, eds1, and pad4, as well as double mutants eds1/lsd1 and pad4/lsd1, demonstrated the strong conditional correlation between SA/H2O2 and WUE that is dependent on LSD1, EDS1 and PAD4 proteins. Moreover, we found a strong correlation between the SA/H2O2 homeostasis of 4‐week‐old Arabidopsis leaves and a total seed yield of 9‐week‐old plants. Altogether, our results prove that SA and H2O2 are conditionally regulated by LSD1/EDS/PAD4 to govern WUE, biomass accumulation and seed yield. Conditional correlation and the proposed models presented in this study can be used as the starting points in the creation of a plant breeding algorithm that would allow to estimate the seed yield at the initial stage of plant growth, based on WUE, SA and H2O2 content.  相似文献   

8.
9.
During the progression of osteoarthritis, dysregulation of extracellular matrix (ECM) anabolism, abnormal generation of reactive oxygen species, and proteolytic enzymes have been shown to accelerate the degradation process of cartilage. The purpose of the current study was to investigate the functional role of bromodomain‐containing protein 4 (BRD4) in hydrogen peroxide (H2O2)–stimulated chondrocyte injury and delineate the underlying molecular mechanisms. We observed that the expression BRD4 was markedly elevated in rat chondrocytes after H2O2 stimulation. Additionally, inhibition of BRD4 using small interfering RNA or JQ1 (a selective potent chemical inhibitor) led to repression of H2O2‐induced oxidative stress, as revealed by a decrease in the reactive oxygen species production accompanied by a decreased malondialdehyde content, along with increased activities of antioxidant markers superoxide dismutase, catalase, and glutathione peroxidase on exposure of chondrocytes to H2O2. Meanwhile, depletion of BRD4 led to repress the oxidative stress–induced apoptosis of chondrocytes triggered by H2O2 accompanied by an increase in the expression of anti‐apoptotic Bcl‐2 and a decrease in the expression of pro‐apoptotic Bax and caspase 3 as well as attenuated caspase 3 activity. Moreover, knockdown of BRD4 or treatment with JQ1 markedly attenuated ECM deposition, reflected in a marked upregulation of proteoglycans collagen type II and aggrecan as well as downregulation of ECM–degrading enzymes matrix metalloproteinase 13 and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS‐5). More importantly, inhibition of BRD4‐activated NF‐E2–related factor 2 (Nrf2)–heme oxygenase‐1 signaling. Mechanistically, the protective effect of BRD4 inhibition on H2O2‐stimulated apoptosis and cartilage matrix degeneration was markedly abrogated by Nrf2 depletion. Altogether, we concluded that the protective effect of BRD4 inhibition against oxidative stress–mediated apoptosis and cartilage matrix degeneration occurred through Nrf2–heme oxygenase‐1 signaling, implying that BRD4 inhibition may be a more effective therapeutic strategy against osteoarthritis.  相似文献   

10.
Although previous studies have demonstrated that hydrogen sulfide (H2S) stimulated or inhibited osteoclastic differentiation, little is known about the effects of H2S on the differentiation of osteoblasts and osteoclasts. To determine the possible bioactivities of H2S on bone metabolism, we investigated the in vitro effects of H2S on cytotoxicity, osteoblastic, and osteoclastic differentiation as well as the underlying mechanism in lipopolysaccharide (LPS) and nicotine‐stimulated human periodontal ligament cells (hPDLCs). The H2S donor, NaHS, protected hPDLCs from nicotine and LPS‐induced cytotoxicity and recovered nicotine‐ and LPS‐downregulated osteoblastic differentiation, such as alkaline phosphatase (ALP) activity, mRNA expression of osteoblasts, including ALP, osteopontin (OPN), and osteocalcin (OCN), and mineralized nodule formation. Concomitantly, NaHS inhibited the differentiation of tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclasts in mouse bone marrow cells and blocked nicotine‐ and LPS‐induced osteoclastogenesis regulatory molecules, such as RANKL, OPG, M‐CSF, MMP‐9, TRAP, and cathepsin K mRNA. NaHS blocked nicotine and LPS‐induced activation of p38, ERK, MKP‐1, PI3K, PKC, and PKC isoenzymes, and NF‐κB. The effects of H2S on nicotine‐ and LPS‐induced osteoblastic and osteoclastic differentiation were remarkably reversed by MKP‐1 enzyme inhibitor (vanadate) and expression inhibitor (triptolide). Taken together, we report for the first time that H2S inhibited cytotoxicity and osteoclastic differentiation and recovered osteoblastic differentiation in a nicotine‐ and periodontopathogen‐stimulated hPDLCs model, which has potential therapeutic value for treatment of periodontal and inflammatory bone diseases. J. Cell. Biochem. 114: 1183–1193, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
12.
Macrophages under certain stimuli induce matrix metalloproteinase 9 (MMP‐9) expression and protein secretion through the activation of MAPK‐ERK and NF‐κB signaling pathways. Previously, we demonstrated that activated α2‐macroglulin (α2M*) through the interaction with its receptor low‐density lipoprotein receptor‐related protein 1 (LRP1) induces macrophage proliferation mediated by the activation of MAPK‐ERK1/2. In the present work, we examined whether α2M*/LRP1interaction could induce the MMP‐9 production in J774 and Raw264.7 macrophage‐derived cell lines. It was shown that α2M* promoted MMP‐9 expression and protein secretion by LRP1 in both macrophage‐derived cell lines, which was mediated by the activation of MAPK‐ERK1/2 and NF‐κB. Both intracellular signaling pathways activated by α2M* were effectively blocked by calphostin‐C, suggesting involvement of PKC. In addition, we demonstrate that α2M* produced extracellular calcium influx via LRP1. However, when the intracellular calcium mobilization was inhibited by BAPTA‐AM, the α2M*‐induced MAPK‐ER1/2 activation was fully blocked in both macrophage cell lines. Finally, using specific pharmacological inhibitors for PKC, Mek1, and NF‐κB, it was shown that the α2M*‐induced MMP‐9 protein secretion was inhibited, indicating that the MMP production promoted by the α2M*/LRP1 interaction required the activation of both signaling pathways. These findings may prove useful in the understanding of the macrophage LRP1 role in the vascular wall during atherogenic plaque progression. J. Cell. Biochem. 111: 607–617, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Balneotherapy employing sulphurous thermal water is still applied to patients suffering from diseases of musculoskeletal system like osteoarthritis (OA) but evidence for its clinical effectiveness is scarce. Since the gasotransmitter hydrogen sulphide (H2S) seems to affect cells involved in degenerative joint diseases, it was the objective of this study to investigate the effects of exogenous H2S on fibroblast‐like synoviocytes (FLS), which are key players in OA pathogenesis being capable of producing pro‐inflammatory cytokines and matrix degrading enzymes. To address this issue primary FLS derived from OA patients were stimulated with IL‐1β and treated with the H2S donor NaHS. Cellular responses were analysed by ELISA, quantitative real‐time PCR, phospho‐MAPkinase array and Western blotting. Treatment‐induced effects on cellular structure and synovial architecture were investigated in three‐dimensional extracellular matrix micromasses. NaHS treatment reduced both spontaneous and IL‐1β‐induced secretion of IL‐6, IL‐8 and RANTES in different experimental settings. In addition, NaHS treatment reduced the expression of matrix metallo‐proteinases MMP‐2 and MMP‐14. IL‐1β induced the phosphorylation of several MAPkinases. NaHS treatment partially reduced IL‐1β‐induced activation of several MAPK whereas it increased phosphorylation of pro‐survival factor Akt1/2. When cultured in spherical micromasses, FLS intentionally established a synovial lining layer‐like structure; stimulation with IL‐1β altered the architecture of micromasses leading to hyperplasia of the lining layer which was completely inhibited by concomitant exposure to NaHS. These data suggest that H2S partially antagonizes IL‐1β stimulation via selective manipulation of the MAPkinase and the PI3K/Akt pathways which may encourage development of novel drugs for treatment of OA.  相似文献   

14.
In the present study, we investigated the relationship between early life protein malnutrition‐induced redox imbalance, and reduced glucose‐stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal‐protein‐diet (17%‐protein, NP) or to a low‐protein‐diet (6%‐protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H2O2), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn‐superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre‐incubated with H2O2 and/or N‐acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H2O2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre‐incubated with H2O2 (100 μM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N‐acetylcysteine.  相似文献   

15.
Recent evidence suggests that breast cancer is one of the most common forms of malignancy in females, and metastasis from the primary cancer site is the main cause of death. Aromatic (ar)‐turmerone is present in Curcuma longa and is a common remedy and food. In the present study, we investigated the inhibitory effects of ar‐turmerone on expression and enzymatic activity levels of 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA)‐induced matrix metalloproteinase (MMP)‐9 and cyclooxygenaase‐2 (COX‐2) in breast cancer cells. Our data indicated that ar‐turmerone treatment significantly inhibited enzymatic activity and expression of MMP‐9 and COX‐2 at non‐cytotoxic concentrations. However, the expression of tissue inhibitor of metalloproteinase (TIMP)‐1, TIMP‐2, MMP‐2, and COX‐1 did not change upon ar‐turmerone treatment. We found that ar‐turmerone inhibited the activation of NF‐κB, whereas it did not affect AP‐1 activation. Moreover, The ChIP assay revealed that in vivo binding activities of NF‐κB to the MMP‐9 and COX‐2 promoter were significantly inhibited by ar‐turmerone. Our data showed that ar‐turmerone reduced the phosphorylation of PI3K/Akt and ERK1/2 signaling, whereas it did not affect phosphorylation of JNK or p38 MAPK. Thus, transfection of breast cancer cells with PI3K/Akt and ERK1/2 siRNAs significantly decreased TPA‐induced MMP‐9 and COX‐2 expression. These results suggest that ar‐turmerone suppressed the TPA‐induced up‐regulation of MMP‐9 and COX‐2 expression by blocking NF‐κB, PI3K/Akt, and ERK1/2 signaling in human breast cancer cells. Furthermore, ar‐turmerone significantly inhibited TPA‐induced invasion, migration, and colony formation in human breast cancer cells. J. Cell. Biochem. 113: 3653–3662, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast‐derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo‐oxidative stress and display EDS1‐dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1‐regulated SA and ROS by examining gene expression profiles, photo‐oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA‐biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast‐derived O2?? that lead to SA‐assisted H2O2 accumulation as part of a mechanism limiting cell death. A combination of EDS1‐regulated SA‐antagonized and SA‐promoted processes is necessary for resistance to host‐adapted pathogens and for a balanced response to photo‐oxidative stress. In contrast to SA, the apoplastic ROS‐producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo‐oxidative stress. Thus, chloroplastic O2?? signals are processed by EDS1 to produce counter‐balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O2?? or O2??‐generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.  相似文献   

19.
20.
Oxidative stress, caused by reactive oxygen species (ROS), is a major contributor to inflammatory bowel disease (IBD)‐associated neoplasia. We mimicked ROS exposure of the epithelium in IBD using non‐tumour human colonic epithelial cells (HCEC) and hydrogen peroxide (H2O2). A population of HCEC survived H2O2‐induced oxidative stress via JNK‐dependent cell cycle arrests. Caspases, p21WAF1 and γ‐H2AX were identified as JNK‐regulated proteins. Up‐regulation of caspases was linked to cell survival and not, as expected, to apoptosis. Inhibition using the pan‐caspase inhibitor Z‐VAD‐FMK caused up‐regulation of γ‐H2AX, a DNA‐damage sensor, indicating its negative regulation via caspases. Cell cycle analysis revealed an accumulation of HCEC in the G1‐phase as first response to oxidative stress and increased S‐phase population and then apoptosis as second response following caspase inhibition. Thus, caspases execute a non‐apoptotic function by promoting cells through G1‐ and S‐phase by overriding the G1/S‐ and intra‐S checkpoints despite DNA‐damage. This led to the accumulation of cells in the G2/M‐phase and decreased apoptosis. Caspases mediate survival of oxidatively damaged HCEC via γ‐H2AX suppression, although its direct proteolytic inactivation was excluded. Conversely, we found that oxidative stress led to caspase‐dependent proteolytic degradation of the DNA‐damage checkpoint protein ATM that is upstream of γ‐H2AX. As a consequence, undetected DNA‐damage and increased proliferation were found in repeatedly H2O2‐exposed HCEC. Such features have been associated with neoplastic transformation and appear here to be mediated by a non‐apoptotic function of caspases. Overexpression of upstream p‐JNK in active ulcerative colitis also suggests a potential importance of this pathway in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号