首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The alpha(4) integrin antagonist natalizumab was shown to be effective in patients with immune-mediated disorders but was unexpectedly associated with JC polyomavirus associated progressive multifocal leukoencephalopathy (PML) in two multiple sclerosis (MS) and one Crohn's disease patients. Impaired immune surveillance due to natalizumab treatment may have contributed to the JCV reactivation. As HHV-6 has been suggested to play a role in MS, we asked whether this virus could also have been reactivated during natalizumab therapy. Matched sera and CSF from a limited set of MS patients treated with and without natalizumab were examined for evidence of HHV-6. In addition, we also superinfected a persistent JC virus infected glial cell with HHV-6A to determine if JC virus can be increased. Elevated serum HHV6 IgG and HHV-6A DNA was detected in the CSF of a subset of patients but not controls. We confirmed that superinfection with HHV-6 of a JC virus infected glial cells increased expression of JCV. These results support the hypothesis that treatment with natalizumab may be associated with reduced immune surveillance resulting in reactivation of viruses associated with MS pathogenesis.  相似文献   

2.
Progressive multifocal leukoencephalopathy (PML) induced by JC virus (JCV) is a risk for natalizumab-treated multiple sclerosis (MS) patients. Here we characterize the JCV-specific T cell responses in healthy donors and natalizumab-treated MS patients to reveal functional differences that may account for the development of natalizumab-associated PML. CD4 and CD8 T cell responses specific for all JCV proteins were readily identified in MS patients and healthy volunteers. The magnitude and quality of responses to JCV and cytomegalovirus (CMV) did not change from baseline through several months of natalizumab therapy. However, the frequency of T cells producing IL-10 upon mitogenic stimulation transiently increased after the first dose. In addition, MS patients with natalizumab-associated PML were distinguished from all other subjects in that they either had no detectable JCV-specific T cell response or had JCV-specific CD4 T cell responses uniquely dominated by IL-10 production. Additionally, IL-10 levels were higher in the CSF of individuals with recently diagnosed PML. Thus, natalizumab-treated MS patients with PML have absent or aberrant JCV-specific T cell responses compared with non-PML patients, and changes in T cell-mediated control of JCV replication may be a risk factor for developing PML. Our data suggest further approaches to improved monitoring, treatment and prevention of PML in natalizumab-treated patients.  相似文献   

3.
Progressive multifocal encephalopathy (PML) is a fatal demyelinating disease of the central nervous system (CNS), caused by the lytic infection of oligodendrocytes by a human polyomavirus, JC virus (JCV). PML is rare disease but mostly develops in patients with underlying immunosuppressive conditions, including Hodgkin's lymphoma, lymphoproliferative diseases, in those undergoing antineoplastic therapy and AIDS. However, consistent with the occurrence of PML under immunocompromised conditions, this disease seems to be also steadily increasing among autoimmune disease patients (multiple sclerosis and Crohn's disease), who are treated with antibody-based regimens (natalizumab, efalizumab and rituximab). This unexpected occurrence of the disease among such a patient population reconfirms the existence of a strong link between the underlying immunosuppressive conditions and development of PML. These recent observations have generated a new interest among investigators to further examine the unique biology of JCV.  相似文献   

4.
The human polyomavirus, JC virus (JCV), provides an excellent model system to investigate the reciprocal interaction of the immune and nervous systems. Infection with JCV occurs during childhood and the virus remains in the latent state with no apparent clinical symptoms. However, under immunosuppressed conditions, the virus enters the lytic cycle and upon cytolytic destruction of glial cells, causes the fatal demyelinating disease of the central nervous system (CNS), named progressive multifocal leukoencephalopathy (PML). In this short review, we discuss the molecular pathogenesis of PML by highlighting the role of the immune system in modulating JCV gene activation and replication, and the latency/reactivation of this virus upon immunosuppression. Further, due to the higher incidence of PML among AIDS patients, we further elaborate on the cross-talk between JCV and HIV-1 by direct and indirect pathways that lead to enhanced expression of the JCV genome.  相似文献   

5.
《MABS-AUSTIN》2013,5(6):583-589
Since their introduction, monoclonal antibodies have found an ever expanding role in the treatment of a wide number of disorders. However, the perturbation of the immune system that attends their use may also increase the risk for the development of disorders that arise in the setting of immunosuppressive conditions, such as, opportunistic infection and malignancy. In this paper, we address the association between some monoclonal antibodies and the development of a rare demyelinating disease of the brain, progressive multifocal leukoencephalopathy (PML). PML results from infection with a ubiquitous polyoma virus, JC virus, and typically occurs in the setting of impaired immunity, most commonly, AIDS. It was first recognized as a potential complication of monoclonal antibody therapy in patients with multiple sclerosis and Crohn disease being treated with natalizumab, an α4β1 and α4β7 integrin inhibitor. Subsequently, efalizumab, a monoclonal antibody used in the treatment of psoriasis, was also demonstrated to be associated with PML. An increased risk has been suggested for rituximab, although most of the patients developing PML with that monoclonal antibody have been treated for B cell disorders that predispose to the development of PML. Based on our current understanding of the biology of JC virus and the pathogenesis of PML, we propose an explanation for the increased risk for PML that is observed with natalizumab and certain other monoclonal antibodies.  相似文献   

6.
JC virus (JCV)-specific CD8+ cytotoxic T lymphocytes (CTL) are associated with a favorable outcome in patients with progressive multifocal leukoencephalopathy (PML) and cross-recognize the polyomavirus BK virus (BKV). We sought to determine the frequency and phenotype in fresh blood of CD8+ T cells specific for two A*0201-restricted JCV epitopes, VP1(p36) and VP1(p100), and assess their impact on JC and BK viremia and viruria in 15 healthy subjects, eight human immunodeficiency virus-positive (HIV+) individuals, and nine HIV+ patients with PML (HIV+ PML patients) classified as survivors. After magnetic pre-enrichment of CD8+ T cells, epitope-specific cells ranged from 0.001% to 0.022% [corrected] by tetramer staining, with no significant difference among the three study groups. By use of seven-color flow cytometry, there was no predominant differentiation phenotype subset among JCV-specific CD8+ T cells in healthy individuals, HIV+ subjects, or HIV+ PML patients. However, in one HIV+ PML patient studied in the acute phase, there was a majority of activated effector memory cells. BKV DNA was undetectable in all blood samples by quantitative PCR, while a low JC viral load was found in the blood of only one HIV+ and two HIV+ PML patients. JCV and BKV DNA were detected in 33.3% and 13.3% of all urine samples, respectively, independent of the presence of JCV-specific CTL. The detection of JCV DNA in the urine was associated with the presence of a JCV VP1(p100) CTL response. Immunotherapies aiming at increasing the cellular immune response against JCV may be valuable in the treatment of HIV+ individuals with PML.  相似文献   

7.
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by a reactivation of the polyomavirus JC (JCV) within a setting of immunosuppression. The nature of the immune response that contains replication of this virus is unknown. We have explored JCV-specific cellular immune responses in patients with PML and control subjects. JCV antigen-stimulated peripheral blood mononuclear cells (PBMC) of four human immunodeficiency virus (HIV)-infected patients who were survivors of PML and one HIV-uninfected patient recently diagnosed with PML lysed autologous B-lymphoblastoid cell lines expressing either the JCV T regulatory protein or the VP1 major capsid protein. This lysis was mediated by CD8(+) T lymphocytes and was major histocompatibility complex class I restricted. These cells were therefore cytotoxic T lymphocytes (CTL). JCV-specific CTL could not be detected in PBMC of three HIV-infected PML patients who had progressive neurologic disease and an eventual fatal outcome. These data suggest that the JCV-specific cellular immune response may play a crucial role in the containment of PML. This finding may also prove useful as a favorable prognostic marker in the clinical management of these patients.  相似文献   

8.
The human polyomavirus JC virus (JCV) infects myelin-producing cells in the central nervous system, resulting in the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). JCV-induced PML occurs most frequently in immunosuppressed individuals, with the highest incidence in human immunodeficiency type 1-infected patients, ranging between 4 and 6% of all AIDS cases. Although JCV targets a highly specialized cell in the central nervous system, infection is widespread, with more than 80% of the human population worldwide demonstrating serum antibodies. A number of clinical and laboratory studies have now linked the pathogenesis of PML with JCV infection in lymphoid cells. For example, JCV-infected lymphocytes have been suggested as possible carriers of virus to the brain following reactivation of a latent infection in lymphoid tissues. To further define the cellular tropism associated with JCV, we have attempted to infect immune system cells, including CD34+ hematopoietic progenitor cells derived from human fetal liver, primary human B lymphocytes, and human tonsillar stromal cells. Our results demonstrate that these cell types as well as a CD34+ human cell line, KG-1a, are susceptible to JCV infection. JCV cannot, however, infect KG-1, a CD34+ cell line which differentiates into a macrophage-like cell when treated with phorbol esters. In addition, peripheral blood B lymphocytes isolated by flow cytometry from a PML patient demonstrate JCV infection. These results provide direct evidence that JCV is not strictly neurotropic but can infect CD34+ hematopoietic progenitor cells and those cells which have differentiated into a lymphocytic, but not monocytic, lineage.  相似文献   

9.
Progressive multifocal leukoencephalopathy (PML) is a severe demyelinating disease of the brain caused by JC virus (JCV). To assess the role of CD4(+) and CD8(+) T-cells against JCV in the clinical outcome of PML and PML in the setting of immune reconstitution inflammatory syndrome (IRIS), we tested gamma interferon (IFN-γ) response by enzyme-linked immunosorbent spot (ELISpot) and intracellular cytokine staining (ICS) in 117 subjects, including 66 PML patients with different clinical outcomes. Both assays were concordant and demonstrated that the cellular immune response against JCV is associated with better clinical outcome. PML survivors had an early CD8(+) T-cell response more frequently than PML progressors (100% versus 27.3%; P = 0.001), while only a trend was observed for the early CD4(+) T-cell response between these two groups (80% versus 45.5%; P = 0.18). Although IRIS itself was more frequent in the PML survivor group, there was no difference in IFN-γ-producing CD4(+) and CD8(+) T-cells between IRIS and non-IRIS PML patients, suggesting that T-cells expressing other cytokines likely have a role in the immunopathogenesis of IRIS. ELISpot and ICS assays are useful prognostic markers of PML evolution and may help in the clinical management of these patients.  相似文献   

10.
The polyomavirus JC (JCV) infects 85% of healthy individuals, and its reactivation in a limited number of immunosuppressed people causes progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease of the central nervous system. We hypothesized that JCV-specific cytotoxic T lymphocytes (CTLs) might control JCV replication in healthy individuals, blocking the evolution of PML. Using 51Cr release and tetramer staining assays, we show that 8 of 11 HLA-A*0201+ healthy subjects (73%) harbor detectable JCV-specific CD8+ CTLs that recognize one or two epitopes of JCV VP1 protein, the HLA-A*0201-restricted VP1p36 and VPp1100 epitopes. We determined that the frequency of JCV VP1 epitope-specific CTLs varied from less than 1/100,000 to 1/2,494 peripheral blood mononuclear cells. More individuals had JCV VP1-specific than cytomegalovirus-specific CTLs (8 of 11 subjects [73%] versus 2 of 10 subjects [20%], respectively). These results show that a CD8+-T-cell response against JCV is commonly found in immunocompetent people and suggest that these cells might protect against the development of PML.  相似文献   

11.
JC polyomavirus (JCPyV) is the causative agent of the demyelinating disease of the central nervous system known as progressive multifocal leukoencephalopathy (PML), which occurs in immunocompromised patients. Moreover, patients treated with natalizumab for multiple sclerosis or Crohn disease can develop PML, which is then termed natalizumab‐related PML. Because few drugs are currently available for treating PML, many antiviral agents are being investigated. It has been demonstrated that the topoisomerase I inhibitors topotecan and β‐lapachone have inhibitory effects on JCPyV replication in IMR‐32 cells. However, both of these drugs have marginal inhibitory effects on virus propagation in JC1 cells according to RT‐PCR analysis. In the present study, the inhibitory effect of another topoisomerase I inhibitor, 7‐ethy‐10‐[4‐(1‐piperidino)‐1‐piperidino] carbonyloxy camptothecin (CPT11), was assessed by investigating viral replication, propagation, and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using real‐time PCR combined with Dpn I treatment in IMR‐32 cells transfected with JCPyV DNA. It was found that JCPyV replicates less in IMR‐32 cells treated with CPT11 than in untreated cells. Moreover, CPT11 treatment of JCI cells persistently infected with JCPyV led to a dose‐dependent reduction in JCPyV DNA and VP1 production. Additionally, the inhibitory effect of CPT11 was found to be stronger than those of topotecan and β‐lapachone. These findings suggest that CPT11 may be a potential anti‐JCPyV agent that could be used to treat PML.
  相似文献   

12.
13.
Psoriasis vulgaris (PsV) and psoriatic arthritis (PSA) are inter‐related heritable inflammatory skin diseases. Psoriatic lesions develop as a result of abnormal immune responses, hyperproliferation and altered differentiation of keratinocytes, and a notable subset of psoriatic patients develops PsA, characterized by joints inflammation. Recently, biological drugs were introduced to treat these diseases. However, this therapy has already been associated with the development of serious life‐threatening infections, such as the reactivation of human polyomavirus JC (JCV), responsible for the progressive multifocal leukoencephalopathy (PML), a lethal demyelinating disease caused by oligodendrocytes lytic infection. Therefore, the aims of our study were the investigation of the possible JCV reactivation in PsV and PsA patients treated with adalimumab, etanercept, and methotrexate, performing quantitative real‐time PCR in sera and skin biopsies at the time of recruitment (T0) and after 3 (T3) and 6 (T6) months of treatment, and the sequencing analysis of the JCV non‐coding control region (NCCR). We found JCV DNA in 5/15 PsV patients and in 2/15 PsA patients and JCV NCCR sequence analysis always showed a structure similar to non‐pathogenic CY archetype, with random occurrence of a few irrelevant point mutations. Nevertheless the poor number of patients analyzed, our preliminary data can pave the way for taking into account that the follow‐up of JCV DNA detection and the JCV NCCR sequence analysis in psoriatic patients may be important to evaluate the risk of PML onset, considering that patients affected by autoimmune diseases and treated with biologics continue to rise. J. Cell. Physiol. 227: 3796–3802, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
JC virus (JCV), a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML). In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs) isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases and the opportunities for the use of this model in development of therapeutic strategies.  相似文献   

15.
JC virus (JCV) is latent in the kidneys and lymphoid organs of healthy individuals, and its reactivation in the context of immunosuppression may lead to progressive multifocal leukoencephalopathy (PML). Whether JCV is present in the brains or other organs of healthy people and in immunosuppressed patients without PML has been a matter of debate. We detected JCV large T DNA by quantitative PCR of archival brain samples of 9/24 (38%) HIV-positive PML patients, 5/18 (28%) HIV-positive individuals, and 5/19 (26%) HIV-negative individuals. In the same samples, we detected JCV regulatory region DNA by nested PCR in 6/19 (32%) HIV-positive PML patients, 2/11 (18%) HIV-positive individuals, and 3/17 (18%) HIV-negative individuals. In addition, JCV DNA was detected in some spleen, lymph node, bone, and kidney samples from the same groups. In situ hybridization data confirmed the presence of JCV DNA in the brains of patients without PML. However, JCV proteins (VP1 or T antigen) were detected mainly in the brains of 23/24 HIV-positive PML patients, in only a few kidney samples of HIV-positive patients, with or without PML, and rarely in the bones of HIV-positive patients with PML. JCV proteins were not detected in the spleen or lymph nodes in any study group. Furthermore, analysis of the JCV regulatory region sequences showed both rearranged and archetype forms in brain and extraneural organs in all three study groups. Regulatory regions contained increased variations of rearrangements correlating with immunosuppression. These results provide evidence of JCV latency in the brain prior to severe immunosuppression and suggest new paradigms in JCV latency, compartmentalization, and reactivation.JC virus (JCV) is the etiologic agent of the often fatal brain-demyelinating disease progressive multifocal leukoencephalopathy (PML) (23a). JCV remains latent in the kidneys, lymph nodes, and bone marrow of healthy and immunosuppressed individuals without PML (2, 21, 24) and, upon reactivation, can cause a lytic infection of oligodendrocytes in the brain, leading to PML (14). Although JCV is often found in the urine of healthy individuals (12, 18), it is not usually detected in the blood of patients without PML (15). The pathway leading to viral reactivation and replication in the brains of immunosuppressed individuals is not well defined. Molecular analysis of JCV has prompted hypotheses on how the virus emerges from latency and becomes pathogenic. JCV has a double-stranded, circular DNA of 5,130 bp. While the coding region is well conserved, the noncoding regulatory region (RR) of JCV is hypervariable. The kidneys and urine usually contain JCV with a well-conserved, nonpathogenic RR which is called the “archetype” (30). The JCV RR detected in the brains and the cerebrospinal fluid (CSF) of PML patients usually has duplications, tandem repeats, and deletions and has been called “rearranged” compared to the archetype. Although it is not clear which form of JCV RR is propagated at the time of primary infection, it has been hypothesized that JCV with the archetype RR remains confined in the kidneys of most healthy individuals and that rearrangements which confer neurotropism need to occur prior to viral migration to the brain to destroy the myelin-producing glial cells. Whether JCV can reach the brain and establish latency in the central nervous systems (CNS) of otherwise-healthy individuals are matters of debate. While some investigators detected JCV DNA in 28 to 68% of frozen (8, 27) and 18 to 71% of formalin-fixed, paraffin-embedded (FFPE) (4, 7, 20) brain samples of patients without PML, others reported negative results (3, 6, 10, 23). Clearly, characterizing JCV sites of latency is imperative in the prevention of viral reactivation and PML. Recently, a group of PML patients has emerged among those treated with monoclonal antibodies, including natalizumab (13, 17, 26), efalizumab (16, 19a), and rituximab (5), for multiple sclerosis, psoriasis, hematological malignancies, and rheumatologic diseases. Mechanisms of JCV reactivation in these patients has yet to be defined. To better understand JCV organ tropism and characterize the types of JCV RRs in different compartments, we used archival pathology samples to detect JCV DNA and proteins and to analyze JCV RRs in various organ systems in HIV-positive individuals with and without PML and in HIV-negative subjects.  相似文献   

16.
JC virus (JCV) and BK virus (BKV) are human polyomaviruses that infect approximately 85% of the population worldwide [1,2]. JCV is the underlying cause of the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML), a condition resulting from JCV induced lytic destruction of myelin producing oligodendrocytes in the brain [3]. BKV infection of kidneys in renal transplant recipients results in a gradual loss of graft function known as polyomavirus associated nephropathy (PVN) [4]. Following the identification of these viruses as the etiological agents of disease, there has been greater interest in understanding the basic biology of these human pathogens [5,6]. Recent advances in the field have shown that viral entry of both JCV and BKV is dependent on the ability to interact with sialic acid. This review focuses on what is known about the human polyomaviruses and the role that sialic acid plays in determining viral tropism.  相似文献   

17.
18.
JC virus (JCV), the causative agent of progressive multifocal leukoencephalopathy (PML), has a hypervariable regulatory region (JCV RR). A conserved archetype form is found in the urines of healthy and immunocompromised individuals, whereas forms with tandem repeats and deletions are found in the brains of PML patients. Type I JCV RR, seen in MAD-1, the first sequenced strain of JCV, contains two 98-bp tandem repeats each containing a TATA box. Type II JCV RR has additional 23-bp and 66-bp inserts or fragments thereof and only one TATA box. We cloned and sequenced JCV RR from different anatomic compartments of PML patients and controls and correlated our findings with the patients' clinical outcome. Twenty-three different sequences were defined in 198 clones obtained from 16 patients. All 104 clones with tandem repeats were type II JCV RR. Patients with poor clinical outcome had high proportions of JCV RR clones with both tandem repeats in plasma (54%) and brain or cerebrospinal fluid (85%). In those who became survivors of PML, archetype sequences predominated in these anatomic compartments (75 and 100%, respectively). In patients with advanced human immunodeficiency virus infection without PML, only 8% of JCV RR clones obtained in the plasma contained tandem repeats. These data suggest that the presence of tandem repeats in plasma and CNS JCV RR clones is associated with poor clinical outcome in patients with PML.  相似文献   

19.
20.
JC virus is a member of the Polyomavirus family of DNA tumor viruses and the causative agent of progressive multifocal leukoencephalopathy (PML). PML is a disease that occurs primarily in people who are immunocompromised and is usually fatal. As with other Polyomavirus family members, the replication of JC virus (JCV) DNA is dependent upon the virally encoded protein T-antigen. To further our understanding of JCV replication, we have determined the crystal structure of the origin-binding domain (OBD) of JCV T-antigen. This structure provides the first molecular understanding of JCV T-ag replication functions; for example, it suggests how the JCV T-ag OBD site-specifically binds to the major groove of GAGGC sequences in the origin. Furthermore, these studies suggest how the JCV OBDs interact during subsequent oligomerization events. We also report that the OBD contains a novel “pocket”; which sequesters the A1 & B2 loops of neighboring molecules. Mutagenesis of a residue in the pocket associated with the JCV T-ag OBD interfered with viral replication. Finally, we report that relative to the SV40 OBD, the surface of the JCV OBD contains one hemisphere that is highly conserved and one that is highly variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号