首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Armored scale insects are among the most difficult to manage and economically important arthropod pests in the production and maintenance of urban landscape plants. This is because of morphological traits that protect them from contact insecticides. I compared initial and season-long control of euonymus scale, Unaspis euonymi Comstock (Hemiptera: Diaspidae), by reduced-risk insecticides (insect growth regulators [IGRs], neonicotinoids, spirotetramat) to determine if they controlled scale as well as more toxic insecticides such as the organophosphate, acephate, and pyrethroid, bifenthrin. I also evaluated how these insecticides affected natural enemy abundance on experimental plants and survival when exposed to insecticide residue. All insecticides tested reduced first generation euonymus scale abundance. In 2009, reinfestation by second generation euonymus scale was highest on plants treated with acetamiprid and granular dinotefuran. In 2010, systemic neonicotinoids and spirotetramat prevented cottony cushion scale infestation 133 d after treatment whereas scale readily infested plants treated with bifenthrin and horticultural oil. Encarsia spp. and Cybocephalus spp. abundance was related to scale abundance. These natural enemies were generally less abundant than predicted by scale abundance on granular dinotefuran treated plants and more abundant on granular thiamethoxam treated plants. Bifenthrin residue killed 90-100% of O. insidiosus and E. citrina within 24 h. My results indicate that reduced risk insecticides can provide season-long scale control with less impact on natural enemies than conventional insecticides. This could have economic and environmental benefits by reducing the number of applications necessary to protect nursery and landscape plants from scale.  相似文献   

2.
The natural enemies hypothesis predicts that the abundance and diversity of antagonists such as predators and parasitoids of herbivores increases with the diversity of plants, which can lead to more effective top-down control of insect herbivores. However, although the hypothesis has received large support in agricultural systems, fewer studies have been conducted in forest ecosystems and a comprehensive synthesis of previous research is still lacking.We conducted a meta-analysis of 65 publications comparing the diversity, abundance or activity of various groups of natural enemies (including birds, bats, spiders and insect parasitoids) in pure vs. mixed forest stands. We tested the effects of forest biome, natural enemy taxon and type of study (managed vs experimental forest).We found a significant positive effect of forest tree diversity on natural enemy abundance and diversity but not on their activity. The effect of tree diversity on natural enemies was stronger towards lower latitudes but was not contingent on the natural enemy taxon level.Overall, our study contributes toward a better understanding of the “natural enemies hypothesis” in forest systems and provides new insights about the mechanisms involved. Furthermore, we outline potential avenues for strengthening forest resistance to the growing threat of herbivorous insects.  相似文献   

3.
High biodiversity is an important component of sustainable agricultural systems, and previous studies have found that increases in the diversity of the natural enemies of pests are associated with decreases in pest populations. Weaver ants are well known for their highly territorial and aggressive behaviour and for their control efficiency of many insect pests in tropical crop trees. Because of this, the ants have been used as a key component in integrated pest management (IPM) programmes for tropical crop trees. In implementing the IPM programmes, we received a number of enquiries related to whether weaver ants have negative effects on arthropod diversity and other natural enemies in orchard systems due to their aggressive behaviour. To answer these questions, we regularly sampled canopy arthropods in cashew and mango orchards in the Northern Territory of Australia in 1996, 2002 and 2003. We sampled, using a vacuum sampler, orchards with and without weaver ants. Cashew and mango plots with abundant weaver ants had similar or higher canopy arthropod and natural enemy diversity and similar ratios of natural enemies to insect pests, compared with plot where the weaver ant was absent. The study also showed that the application of insecticides reduced arthropod diversity and the ratio of natural enemies to insect pests in a mango orchard. However, insecticide spray did not affect natural enemy diversity and abundance, which may be related to a high immigration rate of natural enemies in small plots surrounded by areas that were not sprayed.  相似文献   

4.
Beneficial arthropods and wheat insects were monitored using sticky traps through large-scale field in Saxony, Germany before and after insecticide applications. The tested compounds (Karate, Biscaya and NeemAzal T/S) were sprayed twice at Elongation stage (GS 32) and at the heading stage (GS 55). Monitoring was conducted for four weeks after each treatment. Cereal aphids, thrips, leafhoppers, cereal leaf beetles, cereal bugs and also many natural enemies such as predators (lady beetles, lacewings, syrphids, dance flies and spiders) and parasitoids (parasitic wasps) were surveyed. The results proved that Karate caused the highest per cent mortality to wheat insect pests. Karate also reduced natural enemy diversities. Biscaya and NeemAzal T/S is correlated with an equivalent mortality per cents to wheat insect pests and resulted in a smaller effects on natural enemies compared with Karate. Leafhoppers were less affected than Thrips and cereal bugs. Parasitoid wasps and spider were more tolerant, while lacewings and dance flies were more susceptible to insecticide effects. Finally, natural insecticides and predators and parasitoids could be highly compatible with a hygienic environment.  相似文献   

5.
Insect herbivores feeding on low-quality plants often compensate by increasing their consumption of plant tissue. This usually results in a longer developmental time leading to a higher vulnerability to natural enemies. This has been termed the slow-growth, high-mortality hypothesis. To explore how compensation may shape the species composition of herbivore and natural enemy populations, we present a mathematical model of a tri-trophic system incorporating both the nutritional quality of plants and herbivores, and the compensatory ability of herbivores and their natural enemies. Using this model we predict the abundance of herbivores and natural enemies, and some characteristics of the composition of species of insect communities along a gradient of plant nutritional quality. Specifically, we make the following predictions: 1) In the absence of natural enemies, the abundance of the juvenile herbivores increases with plant quality, and only highly compensating herbivores persist at low plant nutritional quality. 2) If natural enemies are present, the abundance of the juvenile herbivores decreases with increasing plant quality due to more effective suppression by the natural enemies. Poorly compensating herbivores increase while their highly compensating counterparts decrease with lowered plant quality. 3) When the plants have low nutritional quality, natural enemies will only persist when either very highly compensating herbivores are present or if the natural enemy itself is highly compensating. 4) The abundance of adult herbivores in a community with natural enemies can either increase or decrease with increasing plant quality depending on the compensatory abilities of herbivores and natural enemies.  相似文献   

6.
To investigate insecticide resistance and dynamic changes of carboxylesterase polymorphism in mosquitoes with time in the Culex pipiens complex (Diptera: Culicidae), nine field mosquito populations were collected in China. The resistance levels of fourth-instar larvae to organophosphate (dichlorvos, parathion, and chlorpyrifos), carbamate (fenobucarb and propoxur), and pyrethroid (permethrin, deltamethrin and tetramethrin) insecticides were determined by bioassay. Larvae had more resistance to organophosphate insecticides than to carbamate insecticides. A low but significant resistance was observed for carbamate insecticides. The resistance to pyrethroid insecticides varied from sensitive to high. Starch gel electrophoresis revealed the presence of the overproduced esterases B1, A2B2, A8B8, A9B9, B10 and A11B11. The frequency of each overproduced esterases varied depending on its regional localities. Compared with published surveys, the C. pipiens complex, which exhibited a high polymorphism of applied esterase alleles in China, showed dynamic evolution over time under local specific insecticide selection. The results are discussed in the context of recent alterations to insecticide campaigns, and in the evolution of resistance genes in Chinese C. pipiens populations.  相似文献   

7.
Maize plants respond to feeding by arthropod herbivores by producing a number of secondary plant compounds, including volatile organic compounds (VOCs). These herbivore-induced VOCs are not only known to attract natural enemies of the herbivores, but they may also prime inducible defences in neighbouring plants, resulting in stronger and faster defence responses in these VOC-exposed plants. Among the compounds that cause this priming effect, green leaf volatiles (GLVs) have received particular attention, as they are ubiquitous and rapidly emitted upon damage. In this study, we investigated their effects under realistic conditions by applying specially devised dispensers to release four synthetic GLVs at physiologically relevant concentrations in a series of experiments in maize fields. We compared the VOC emission of GLV-exposed maize plants to non-exposed plants and monitored the attraction of herbivores and predators, as well as parasitism of the caterpillar Spodoptera frugiperda, the most common herbivore in the experimental maize fields. We found that maize plants that were exposed to GLVs emitted increased quantities of sesquiterpenes compared to non-exposed plants. In several replicates, herbivorous insects, such as adult Diabrotica beetles and S. frugiperda larvae, were observed more frequently in GLV-treated plots and caused more damage to GLV-exposed plants than to non-exposed plants. Parasitism of S. frugiperda was only weakly affected by GLVs and overall parasitism rates of S. frugiperda were similar in GLV-exposed and non-exposed plots. The effects on insect presence depended on the distance from the GLV-dispensers at which the plants were located. The results are discussed in the context of strategies to improve biological control by enhancing plant-mediated attraction of natural enemies.  相似文献   

8.
M. Mochizuki 《BioControl》2003,48(2):207-221
To prevent the resurgence of the Kanzawa spider mite, Tetranychus kanzawai Kishida, on tea plants caused by the application of synthetic pyrethroid insecticides (SP), an SP-resistant strain of the predatory mite Amblyseius womersleyi Schicha was released onto tea bushes under SP (permethrin) application. The released predators successfully survived and may be able to suppress T. kanzawai. In the plot where A. womersleyi was released, the damage to new leaves was less severe than in the control plot and the predators remained resistant to the permethrin in the bushes. The selective use of pesticides that are harmless against natural enemies is necessary to achieve a program of integrated tea pest management. Although mortality of adult females of the tested strain in response to SP was from 6.5 to 89.3%, and mortality was more than 95% in response to several carbamate and organophosphate insecticides, usefulness of A. womersleyi as an agent of biological control was successfully demonstrated in the present study.  相似文献   

9.
化学杀虫剂对菜田节肢动物多样性的影响   总被引:24,自引:4,他引:20  
分析了化学杀虫剂对菜田节肢动物结构组成、多样性变化等的影响,结果表明化学杀虫剂对菜田节肢动物的影响主要表现在物种组成、多样性指数及物种分布的均匀性等方面,尤其是对害虫类、捕食性天敌和蜘蛛类的影响尤为明显。停止化学杀虫剂使用后,菜田优势害虫种群趋势指数降低,天敌的控制作用明显增强,节肢动物多样性指数增大。因此,限制和停止化学杀虫剂的使用,恢复由于杀虫剂使用而破坏了的菜田环境,逐步增强天敌对优势害虫的控制能力,这在菜田害虫生态控制中具有重要作用。  相似文献   

10.
Whether resources (bottom-up forces), natural enemies (top-down forces), or both, determine the abundance of insect herbivore populations in plant–insect herbivore–natural enemy systems remains a major issue in population ecology. Unlike recent surveys of the tritrophic literature we do not seek to quantify whether top-down or bottom-up forces predominate in any given set of experimental systems. Acknowledging the dearth of empirical synthesis we employ two contrasting literature surveys to determine whether the plant–insect herbivore–natural enemy literature is currently adequate to form a conceptual synthesis of the relative roles of top-down and bottom-up forces. The emergence of a synthesis of the relative roles of top-down and bottom-up forces in plant–insect herbivore–natural enemy systems appears to have been largely prevented by (1) the absence of appropriate empirical data; (2) failure to appreciate the merits of existing data; (3) a continued desire to emphasise either top-down or bottom-up forces to the exclusion of the other; and (4) confusion regarding which processes regulate and which influence the abundance of insect herbivores.  相似文献   

11.
Introduction. The susceptibility of Anopheles albimanus to organophosphates, carbamates and pyrethroid insecticides was unknown in the Panama communities of Aguas Claras, Pintupo and Puente Bayano, located in the Amerindian Reservation of Madungandi. This region is considered a malaria transmission area, where An. albimanus is the main vector. Objective. The resistance to organophosphate insecticides, carbamates and pyrethroids was evaluated in field populations of the Anopheles albimanus in Panama. Materials and methods. Progeny of An. albimanus collected in three localities in the indigenous Madugandi region were exposed to bioassays of susceptibility to organophosphate insecticides (fenitrothion, malathion and chlorpyrifos), the carbamate (propoxur) and pyrethroids (deltamethrin, lambdacyhalothrin, cyfluthrin and cypermethrin). The protocols were in accordance with those established for adult mosquitoes by World Health Organization. Results. The three strains of the An. albimanus were resistant to the pyrethroid insecticides deltamethrin, lambdacyhalothrin, cyfluthrin and cypermethrin. Susceptibility remained for the organophosphate insecticides fenitrothion, malathion, chlorpyrifos, and the carbamate insecticide propoxur. Conclusion. The results provided important information to the vector control program, contributing to the application of new strategies on the use of insecticides, and thereby lengthening the life of the insecticide in use.  相似文献   

12.
1. Urbanisation and agricultural intensification cause the replacement of natural ecosystems but might also create novel habitats in urban and rural ecosystems promoting some insect communities by providing food and nesting resources. 2. This study investigated how host–natural enemy communities change in urban and rural landscapes and their transitional zone, the urban–rural interface, by using trap nests for cavity‐nesting Hymenoptera in gardens and rapeseed fields that were either isolated or paired in the urban–rural interface. 3. Host dynamics were important for natural enemy occurrence, species richness and parasitism rates, and landscape effects were evident for natural enemy variables except for the richness of bee natural enemies. The number of parasitised brood cells was at its highest in the urban–rural interface, but the highest parasitism rates of bees were observed in isolated gardens. Parasitism rates of bees were negatively affected by host abundance, while parasitism rates of wasps were positively affected. 4. Higher specialisation and lower connectivity of host–natural enemy interactions were found in paired habitats than in isolated habitats. This indicates that paired habitats comprise more specific natural enemies and vulnerable interactions, while isolated habitats comprise more generalist natural enemies, and thus interactions appear more stable. 5. These results confirm that host dynamics play an essential role in the abundance and richness of natural enemies and drive parasitism. However, high habitat heterogeneity found in the urban–rural interface can also have an effect on host–natural enemy communities. This highlights that the provisioning of resources in the urban–rural interface can benefit insect communities in these areas.  相似文献   

13.
Cytochrome P450 monooxygenases are involved in insecticide resistance in insects. We previously observed an increase in CYP6P7 and CYP6AA3 mRNA expression in Anopheles minimus mosquitoes during the selection for deltamethrin resistance in the laboratory. CYP6AA3 has been shown to metabolize deltamethrin, while no information is known for CYP6P7. In this study, CYP6P7 was heterologously expressed in the Spodoptera frugiperda (Sf9) insect cells via baculovirus‐mediated expression system. The expressed CYP6P7 protein was used for exploitation of its enzymatic activity against insecticides after reconstitution with the An. minimus NADPH‐cytochrome P450 reductase enzyme in vitro. The ability of CYP6P7 to metabolize pyrethroids and insecticides in the organophosphate and carbamate groups was compared with CYP6AA3. The results revealed that both CYP6P7 and CYP6AA3 proteins could metabolize permethrin, cypermethrin, and deltamethrin pyrethroid insecticides, but showed the absence of activity against bioallethrin (pyrethroid), chlorpyrifos (organophosphate), and propoxur (carbamate). CYP6P7 had limited capacity in metabolizing λ‐cyhalothrin (pyrethroid), while CYP6AA3 displayed activity toward λ‐cyhalothrin. Kinetic properties suggested that CYP6AA3 had higher efficiency in metabolizing type I than type II pyrethroids, while catalytic efficiency of CYP6P7 toward both types was not significantly different. Their kinetic parameters in insecticide metabolism and preliminary inhibition studies by test compounds in the flavonoid, furanocoumarin, and methylenedioxyphenyl groups elucidated that CYP6P7 had different enzyme properties compared with CYP6AA3. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
The target enzymes, acetylcholinesterase (for phosphamidon and carbaryl) and Mg2+ ATPase (for DDT and fenvalerate) have been assayed during exposure and reclamation of these insecticides in M. monoceros. Toxicity of these insecticides are in the order: fenvalerate greater than DDT greater than carbaryl greater than phosphamidon. Reclamation studies show that fenvalerate is rapidly degradable while DDT is slowly degradable. It is suggested that pyrethroid, organophosphate and carbamate insecticides may be preferred over organochlorine compounds in farm operations.  相似文献   

15.
Organophosphate insecticides are very widely used in commercial apple production to control fruit-attacking pests but their broad-spectrum activity constrains biological control of other pests. Compounds with narrow-spectrum activity are therefore desirable. The insect growth regulator (IGR) tebufenozide was compared with another IGR, fenoxycarb, and the organophosphate, azinphos-methyl, in a replicated field trial in the 1994/1995 apple-production season. Vacuum sampling of the tree foliage on five occasions during the growing season showed significantly lower populations of various natural enemies (spiders, lacewings and the specialist mite predator Stethorus spp. adults and larvae) in the azinphos-methyl treatment than in either of the two IGR treatments. The two-spotted mite ( Tetranychus urticae Koch) was most numerous in the azinphos-methyl treatment. In 1995/1996, the entire trial area was placed under a tebufenozide treatment program to determine the extent to which natural enemy populations would recover when broad-spectrum insecticide (azinphos-methyl) use was halted. Populations of polyphagous natural enemies assumed levels broadly equivalent to those observed under IGR treatments the previous year. Numbers of Stethorus spp. were lower than in the 1994/1995 season, possibly because T. urticae (prey) populations were much reduced from the previous season's densities. All three insecticide treatments were equally effective in controlling the lepidopteran pests, codling moth ( Cydia pomonella (L.)), lightbrown apple moth ( Epiphyas postvittana (Walker)) and early season caterpillars (predominantly Helicoverpa punctigera (Wallengren)). Results indicate that tebufenozide provides good control of lepidopteran pests, while allowing the rapid build-up of natural enemies which contribute to control of other pests.  相似文献   

16.
Abstract 1 Accurate assessment of the impact of natural enemies on pest populations is fundamental to the design of robust integrated pest management programmes. In most situations, diseases, predators and parasitoids act contemporaneously on insect pest populations and the impact of individual natural enemies, or specific groups of natural enemies, is difficult to interpret. These problems are exacerbated in agro‐ecosystems that are frequently disrupted by the application of insecticides. 2 A combination of life‐table and natural enemy exclusion techniques was utilized to develop a method for the assessment of the impact of endemic natural enemies on Plutella xylostella populations on commercial Brassica farms. 3 At two of the experimental sites, natural enemies had no impact on P. xylostella survival, at two other sites, natural enemy impact was low but, at a fifth site, natural enemies drastically reduced the P. xylostella population. 4 The calculation of marginal death rates and associated k‐values allowed the comparison of mortality factors between experimental sites, and indicated that larval disappearance was consistently the most important mortality factor, followed by egg disappearance, larval parasitism and pupal parasitism. The appropriateness of the methods and assumptions made to calculate the marginal death rates are discussed. 5 The technique represents a robust and easily repeatable method for the analysis of the activity of natural enemies of P. xylostella, which could be adapted for the study of other phytophagous pests.  相似文献   

17.
Selective chemical insecticides have become the dominant approach for management of recalcitrant and resistant insect pests, and the prospects for use of these chemicals in combination with biocontrol agents are on the rise. These chemical compounds, when used in combination with an effective natural enemy, may provide more comprehensive prophylactic and remedial treatments in the context of an integrated pest management program (IPM) than either approach alone. Many of these compounds have promise for a diversity of applications, including sustainable agriculture, control of urban pests, and invasive species eradication. Unfortunately, there are only a limited number of studies in which the effect of these insecticides on natural enemies has been examined. In this article, we examine the risk of several classes of insecticidal compounds to non-target animals, particularly natural enemies and pollinators, and review the most promising compounds for combined deployment with biological agents.  相似文献   

18.
A field study was conducted over 2 yr to determine the effects of transgenic sweet corn containing a gene from the bacterium Bacillus thuringiensis (Bt) on the diversity and abundance of nontarget arthropods. The Bt hybrid (expressing Cry1Ab endotoxin for lepidopteran control) was compared with near-isogenic non-Bt and Bt hybrids treated with a foliar insecticide and with a near-isogenic non-Bt hybrid without insecticides. Plant inspections, sticky cards, and pitfall traps were used to sample a total of 573,672 arthropods, representing 128 taxonomic groups in 95 families and 18 orders. Overall biodiversity and community-level responses were not significantly affected by the transgenic hybrid. The Bt hybrid also had no significant adverse effects on population densities of specific nontarget herbivores, decomposers, and natural enemies enumerated at the family level during the crop cycle. As expected, the insecticide lambda-cyhalothrin had broad negative impacts on the abundance of many nontarget arthropods. One insecticide application in the Bt plots reduced the overall abundance of the natural enemy community by 21-48%. Five applications in the non-Bt plots reduced natural enemy communities by 33-70%. Nontarget communities affected in the insecticide-treated Bt plots exhibited some recovery, but communities exposed to five applications showed no trends toward recovery during the crop cycle. This study clearly showed that the nontarget effects of Bt transgenic sweet corn on natural enemies and other arthropods were minimal and far less than the community-level disruptions caused by lambda-cyhalothrin.  相似文献   

19.
Toxic and behavior-modifying actions of several formulated insecticides were determined forMicroplitis croceipes (Cresson), a braconid parasitoid ofHeliothis spp. Exposure of adult parasitoids to cotton plants sprayed at recommended field rates with a pyrethroid/formamidine mixture (fenvalerate/chlordimeform) resulted in significantly higher mortality rates (10.4 to 22.6 percent) than in controls. Exposure to the carbamate thiodicarb resulted in similar rates of mortality. Only methomyl, a type of carbamate different from thiodicarb, caused mortality significantly higher than all other treatments, ranging to about 70%. Flight activity was measured by attraction to cotton in a laboratory wind tunnel bioassay. Females sprayed directly with a fenvalerate/chlordimeform mixture had significantly decreased flight activity up to 20 h post-treatment. Alternatively, attraction to cotton sprayed with either the fenvalerate/chlordimeform mixture or with methomyl to unsprayed females was significantly decreased, compared to plants sprayed with water only. These results suggest that the actions of insecticides, other than those of direct toxicity, may be important on beneficial parasitoids. Behaviors, such as flight activity and foraging, may be altered by even relatively non-toxic insecticides, thus potentially modifying the effectiveness of natural enemies. This article reports the results of research only. Mention of a proprietary product does not constitute endorsement or a recommendation for its use by the U.S. Department of Agriculture.  相似文献   

20.
Over a period of 19 yr, the harvestman (Opiliones) community associated with the lowbush blueberry agro-ecosystem in Maine was studied. Eight species representing five genera, four subfamilies, and two families of harvestmen belonging to the suborder Eupnoi were collected. The harvestman community was dominated by two introduced, synanthropic species: Phalangium opilio in all but 1 yr (that year dominated by Rilaena triangularis). Rilaena was recorded for the first time from eastern North America. Relative abundance of harvestman adults increases throughout the season and the temporal pattern of trap capture does not refute speculated life cycles of the harvestmen being univoltine with overwintering eggs. Some blueberry management practices were found to affect trap capture. We did find that on average (with opposite results 1 yr) trap captures are greater in pruned fields than in fruit-bearing fields. Organic fields were found to have higher relative abundance of harvestmen than conventionally managed fields. Conventionally managed fields with reduced-risk insecticides showed no difference in harvestmen relative abundance compared with those conventionally managed fields using the older more persistent organophosphate insecticides. Insecticide trials with common insecticides used in blueberry insect pest management showed that the organophosphate insecticide, phosmet, and the pyrethroid insecticide, esfenvalerate, were detrimental to P. opilio adults when exposed to leaf residues, whereas the reduced-risk insecticide, spinosad, showed no negative effects compared with nonsprayed foliage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号