首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA encoding a serine proteinase homologue of kuruma shrimp (Marsupenaeus japonicus) was cloned. The 1257 bp cDNA encodes a 339 amino acid putative peptide, with a signal sequence of 16 amino acid residues. The deduced amino acid sequence is 42-67% similar to the immune-related serine proteinases and serine proteinase homologues of arthropods. It contains catalytic triad residues in the putative catalytic domain except for one substitution of Ser by a Gly residue. The six cysteine residues that form three disulphide bridges in most serine proteinases were conserved. The M. japonicus serine proteinase homologue was mainly expressed in haemocytes, in which expression dramatically increased after 3 days feeding with peptidoglycan at 0.2 mg kg(-1) shrimp body weight per day.  相似文献   

2.
Serine proteinases and Kunitz type inhibitors are widely represented in venoms of snakes from different genera. During the study of the venoms from snakes inhabiting Russia we have cloned cDNAs encoding new proteins belonging to these protein families. Thus, a new serine proteinase called nikobin was identified in the venom gland of Vipera nikolskii viper. By amino acid sequence deduced from the cDNA sequence, nikobin differs from serine proteinases identified in other snake species. Nikobin amino acid sequence contains 15 unique substitutions. This is the first serine proteinase of viper from Vipera genus for which a complete amino acid sequence established. The cDNA encoding Kunitz type inhibitor was also cloned. The deduced amino acid sequence of inhibitor is homologous to those of other proteins from that snakes of Vipera genus. However there are several unusual amino acid substitutions that might result in the change of biological activity of inhibitor.  相似文献   

3.
A cDNA expression library from pig blood neutrophils was immunoscreened with a rabbit antiserum raised against a 32 kDa neutrophil membrane phosphoprotein. Previous work indicated this protein as a component of the superoxide-forming NADPH oxidase enzyme complex (1,2). Only one cDNA clone (B+) was highly positive. The B+ clone contained a 1109 bp insert, with an open reading frame encoding for 284 amino acids. The deduced B+ amino acid sequence contained a 72 amino acid domain with proline and glutamine repeats and two domains extremely enriched with serine residues. The isolated cDNA hybridizes with a 3.1 kb mRNA expressed in pig and human leukocytes.  相似文献   

4.
L型半胱氨酸蛋白酶基因 (Cathepsin L-like cysteine proteinase gene) 为与植物寄生线虫寄生能力相关的多功能基因。运用RT-PCR和RACE的方法从马铃薯腐烂茎线虫Ditylenchus destructor中克隆出1个L型半胱氨酸蛋白酶新基因Dd-cpl-1 (GenBank登录号为GQ180107)。该基因Dd-cpl-1 cDNA全长序列含有1个1 131 bp的开放性阅读框 (ORF),编码376个氨基酸残基,其5′末端及3′末端分别含有29 bp和159 bp的非编码区 (UTR)。Dd-cpl-1内含子外显子结构分析结果表明,其基因组序列包含7个内含子,且各内含子两端剪接位点序列遵守GT/AG规则。Dd-cpl-1基因推定的蛋白Dd-CPL-1与松材线虫L型半胱氨酸蛋白酶高度同源,一致性达到77%。以不同物种中L 型半胱氨酸蛋白酶氨基酸序列进行比对分析,推测推定的蛋白 Dd-CPL-1含有L型半胱氨酸蛋白酶基因家族高度保守的催化三联体 (Cys183,His322 和Asn343) 以及ERFNIN基系和GNFD基系。半胱氨酸蛋白酶系统发育分析表明,Dd-cpl-1 属于由L型半胱氨酸蛋白酶组成的进化分支。Dd-cpl-1的这些序列特征进一步表明其为L型半胱氨酸蛋白酶基因。这是首次在马铃薯腐烂茎线虫中克隆到的L型半胱氨酸蛋白酶,为今后在蛋白水平对其进行进一步的功能分析提供基础。  相似文献   

5.
6.
A Bauhinia variegata trypsin inhibitor (BvTI) cDNA fragment was cloned into the pCANTAB5E phagemid. The clone pAS 1.1.3 presented a cDNA fragment of 733 bp, including the coding region for a mature BvTI protein comprising 175 amino acid residues. The deduced amino acid sequence for BvTI confirmed it as a member of the Kunitz-type plant serine proteinase inhibitor family. The BvTI cDNA fragment encoding the mature form was cloned into the expression vector, pET-14b, and ex-pressed in E. coli BL21 (DE3) pLysS in an active form. In addition, a BvTI mutant form, r(mut)BvTI, with a Pro residue as the fifth amino acid in place of Leu, was produced. The recombinant proteins, rBvTI and r(mut)BvTI, were purified on a trypsin-Sepharose column, yielding 29 and 1.44 mg/l of active protein, respectively, and showed protein bands of approximately 21.5 kDa by SDS-PAGE. Trypsin inhibition activity was comparable for rBvTI (Ki=4 nM) and r(mut)BvTI (Ki=6 nM). Our data suggest that the Leu to Pro substitution at the fifth amino-terminal residue was not crucial for proteinase inhibition.  相似文献   

7.
Serine proteinases and Kunitz-type inhibitors are widely represented in the venoms of snakes belonging to different genera. During the studies of the venoms of snakes inhabiting Russia, we have cloned cDNAs coding for novel proteins of these families. A novel serine proteinase that we named nikobin was identified in the venom gland of the Nikolsky viper. The amino acid sequence of nikobin deduced from the cDNA sequence slightly differs from those of the serine proteinases found in other snakes, displaying 15 unique amino acid substitutions. This is the first serine proteinase from a viper of the Vipera genus for which the complete amino acid sequence has been determined. A cDNA coding for a Kunitz-type inhibitor has also been cloned. The deduced amino acid sequence of the inhibitor displays overall homology to the already known sequences of analogous proteins from vipers of the Vipera genus. However, several unusual amino acid substitutions that can cause a change of the inhibitor activity have been detected.  相似文献   

8.
Olonen A  Kalkkinen N  Paulin L 《Biochimie》2003,85(7):677-681
Salarin is a 43 kDa glycoprotein which is found so far only in salmonid fish species. It is a strong inhibitor of cysteine proteinases. Here we characterised the salarin gene from Atlantic salmon and cDNA from Arctic charr. The salarin gene has 13 exons and 1026 bp long coding sequence. The translated amino acid sequence has four similar domains. The sequence resembles the proregion of cathepsins, known to inhibit cysteine proteinases. Salarin can be a new type of cysteine proteinase inhibitor.  相似文献   

9.
Serine protease inhibitors, critical regulators of endogenous proteases, are found in all multicellular organisms and play crucial roles in host physiological and immunological effector mechanisms. The first mollusk serine proteinase inhibitor (designated AISPI) cDNA was obtained from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA ends (RACE). The full-length cDNA of the scallop serine protease inhibitor was 1020 bp, consisting of a 5'-terminal untranslated region (UTR) of 39 bp, a 3'-terminal UTR of 147 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 834 bp. The AISPI cDNA encoded a polypeptide of 278 amino acids with a putative signal peptide of 22 amino acids and a mature protein of 256 amino acids. The deduced amino-acid sequence of AISPI contained six tandem and homologous domains similar to that of Kazal-type serine protease inhibitors, including the conserved sequence C-X(7)-C-X(6)-Y-X(3)-C-X(2,3)-C and six cysteine residues responsible for the formation of disulfide bridges, indicating that the AISPI protein from bay scallop should be a member of the Kazal-type serine protease inhibitor family. The temporal expression of AISPI was measured by semi-quantitative RT-PCR after injury or bacterial challenge. After the adductor muscle was wounded or injected with Vibrio anguillarum, the expression of AISPI mRNA in hemolymph was up-regulated and reached the maximum level at 8 and 16 h, respectively, and then progressively dropped back to the original level. The results indicated that AISPI could play an important role in injury healing and immune response in mollusks as it could be induced by injury and bacterial challenge.  相似文献   

10.
The protein (LV-PA) from bushmaster (Lachesis muta muta) venom is a serine proteinase which specifically activates the inactive proenzyme plasminogen. LV-PA is a single chain glycoprotein with an apparent molecular mass of 33 kDa that fell to 28 kDa after treatment with N-Glycosidase F (PNGase F). Approximately 93% of its protein sequence was determined by automated Edman degradation of various fragments derived from a digestion with trypsin. A cDNA library of L. m. muta was constructed to generate expressed sequence tags (ESTs) and the plasminogen activator precursor cDNA was sequenced. The complete amino acid sequence of the enzyme was deduced from the cDNA sequence. LV-PA is composed of 234 residues and contains a single asparagine-linked glycosylation site, Asn-X-Ser, bearing sugars that account for approximately 10% of the enzyme's total molecular mass of 33 kDa. The sequence of LV-PA is highly similar to the plasminogen activators (PAs) TSV-PA from Trimeresurus stejnegeri venom and Haly-PA from Agkistrodon halys. Furthermore, the mature protein sequence of LV-PA exhibits significant similarity with other viperidae venom serine proteinases which affect many steps of hemostasis, ranging from the blood coagulation cascade to platelet function. The Michaelis constant (Km) and the catalytic rate constant (kcat) of LV-PA on four chromogenic substrates were obtained from Lineweaver-Burk plots. In addition, we used an indirect enzyme-linked immunoabsorbent assay (ELISA) to explore the phylogenetic range of immunological cross-reactivity (using antibodies raised against LV-PA) with analogous serine proteinases from two viperidae venoms and mammals.  相似文献   

11.
Complementary DNA clones for the boar preproacrosin have been isolated from a randomly primed testis cDNA library in lambda gt10 and from an oligo(dT)-primed testis cDNA in lambda gt11. The nucleotide sequence of the 1418-bp cDNA insert includes a 46-bp 5'-untranslated region, an open reading frame of 1248 bp corresponding to 416 amino acids (45.59 kDa) and a 121-bp 3'-untranslated region. The deduced amino acid sequence includes the active-site residues histidine, asparagine and serine of the catalytic triad of the serine proteinase super-family and is colinear with that determined by amino acid sequencing of the boar acrosin light chain and of a small region of the NH2-terminal sequence of the heavy chain. The preproacrosin cDNA contains at the 3' end a 381-bp sequence which codes for an amino acid sequence not yet found in any other serine proteinase. This amino acid sequence is rich in proline (42 out of 127 amino acids) and is suggested to be involved in the recognition and binding of the spermatozoa to the zona pellucida of the ovum. The mRNA for preproacrosin is synthesized as an approximately 1.6-kb-long molecule only in the postmeiotic stages of boar and bull spermatogenesis.  相似文献   

12.
Aspartic proteinases were purified from sunflower seed extracts by affinity chromatography on a pepstatin A-EAH Sepharose column and by Mono Q column chromatography. The final preparation contained three purified fractions. SDS-PAGE showed that one of the fractions consisted of disulfide-bonded subunits (29 and 9 kDa), and the other two fractions contained noncovalently bound subunits (29 and 9 kDa). These purified enzymes showed optimum pH for hemoglobinolytic activity at pH 3.0 and were completely inhibited by pepstatin A like other typical aspartic proteinases. Sunflower enzymes showed more restricted specificity on oxidized insulin B chain and glucagon than other aspartic proteinases. The cDNA coding for an aspartic proteinase was cloned and sequenced. The deduced amino acid sequence showed that the mature enzyme consisted of 440 amino acid residues with a molecular mass of 47,559 Da. The difference between the molecular size of purified enzymes and of the mature enzyme was due to the fact that the purified enzymes were heterodimers formed by the proteolytic processing of the mature enzyme. The derived amino acid sequence of the enzyme showed 30-78% sequence identity with that of other aspartic proteinases.  相似文献   

13.
A cDNA encoding a precursor of equistatin, a potent cysteine and aspartic proteinase inhibitor, was isolated from the sea anemone Actinia equina. The deduced amino acid sequence of a 199-amino-acid residue mature protein with 20 cysteine residues, forming three structurally similar thyroglobulin type-1 domains, is preceded by a typical eukaryotic signal peptide. The mature protein region and those coding for each of the domains were expressed in the periplasmic space of Escherichia coli, isolated, and characterized. The whole recombinant equistatin and its first domain, but not the second and third domains, inhibited the cysteine proteinase papain (K(i) 0.60 nM) comparably to natural equistatin. Preliminary results on inhibition of cathepsin D, supported by structural comparison, show that the second domain is likely to be involved in activity against aspartic proteinases.  相似文献   

14.
15.
A cDNA clone for an inhibitor of Bombyx cysteine proteinase was isolated and sequenced. Active inhibitor proteins were expressed in Escherichia coli using the cDNA. The open reading frame of the cDNA encodes a 105 residues protein with 19 residues of a signal sequence. The inhibitor has amino acid sequences homologous to several cysteine proteinases, but only to their propeptide sequences. The results suggest that some cysteine proteinase proregions may have evolved as autonomous modules and become inhibitor proteins for cysteine proteinases.  相似文献   

16.
Delineating the phylogenetic relationships among members of a protein family can provide a high degree of insight into the evolution of domain structure and function relationships. To identify an early metazoan member of the high molecular weight serine proteinase inhibitor (serpin) superfamily, we initiated a cDNA library screen of the cnidarian, Cyanea capillata. We identified one serpin cDNA encoding for a full-length serpin, jellypin. Phylogenetic analysis using the deduced amino acid sequence showed that jellypin was most similar to the platyhelminthe Echinococcus multiocularis serpin and the clade P serpins, suggesting that this serpin evolved approximately 1000 million years ago (MYA). Modeling of jellypin showed that it contained all the functional elements of an inhibitory serpin. In vitro biochemical analysis confirmed that jellypin was an inhibitor of the S1 clan SA family of serine proteinases. Analysis of the interactions between the human serine proteinases, chymotrypsin, cathepsin G, and elastase, showed that jellypin inhibited these enzymes in the classical serpin manner, forming a SDS stable enzyme/inhibitor complex. These data suggest that the coevolution of serpin structure and inhibitory function date back to at least early metazoan evolution, approximately 1000 MYA.  相似文献   

17.
Based on the conserved amino acid sequence (DLKPEN) of serine-threonine protein kinase from several fungi, a degenerate primer was designed and synthesized. Total RNA was isolated from the thermophilic fungus Thermomyces lanuginosus. Using RACE-PCR, full-length cDNA of a putative serine-threonine protein kinase gene was cloned from T. lanuginosus. The full-length cDNA of T. lanuginosus protein kinase was 2551 bp and contained an 1806 bp open reading frame encoding a putative protein kinase precursor of 601 amino acid residues. Sequencing analysis showed that the cloned cDNA of T. lanuginosus had consensus protein kinase sequences. Conservative amino acid subdomains which most serine-threonine kinases contain can be found in the deduced amino acid sequence of T. lanuginosus putative protein kinase. Comparison results showed that the deduced amino acid sequence of T. lanuginosus putative protein kinase was highly homologous to that of Neurospora crassa dis1-suppressing protein kinase Dsk1. The putative protein kinase contained three arginine/serine-rich (SR) regions and two transmembrane domains. These showed that it might be a novel putative serine-threonine protein kinase.  相似文献   

18.
A cDNA encoding a chymotrypsinogen-like protein in midguts of the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) was cloned and sequenced. The 901 bp cDNA contains an 816-nucleotide open reading frame encoding 272-amino acids. The predicted molecular mass and pI of the mature enzyme are 23.7 kDa and 4.64, respectively. The encoded protein includes amino acid sequence motifs that are conserved with 5 homologous chymotrypsinogen proteins from other insects. Features of the putative chymotrypsin-like protein from R. dominica include the serine proteinase active site (His(90), Asp(133), Ser(226)), conserved cysteine residues for disulfide bridges, the residues (Gly(220), Gly(243), Asp(252)) that determine chymotrypsin specificity, and both zymogen activation and signal peptides. A TPCK-sensitive caseinolytic protein (P6) with an estimated molecular mass of 24 kDa is present in midgut extracts of R. dominica and can be resolved by electrophoresis on 4-16% polyacrylamide gels. The molecular mass of this caseinolytic enzyme is similar to that of the chymotrypsin deduced from cDNA. Midgut extracts of R. dominica readily hydrolyzed azocasein and N-succinyl-alanine-alanine-proline-phenylalanine-p- nitroanilide (SAAPFpNA), a chymotrypsin-specific substrate. Properties of the enzymes responsible for these activities were partially characterized with respect to distribution in the gut, optimum pH, and sensitivity toward selected proteinase inhibitors. Optimal activity against both azocasein and SAAPFpNA occurs in a broad pH range from about 7 to 10. Both azocasein and SAAPFpNA activities, located primarily in the anterior midgut region, are inhibited by aprotinin, phenylmethyl sulphonylfluoride (PMSF), and soybean trypsin inhibitor (STI). TPCK (N-alpha-tosyl-L-phenylalanine chloromethyl ketone) and chymostatin inhibited more than 60% of SAAPFpNA but only about 10-20% of azocasein activity. These results provide additional evidence for the presence of serine proteinases, including chymotrypsin, in midguts of R. dominica. Arch. Insect Biochem. Physiol. 43:173-184, 2000.Published 2000 Wiley-Liss, Inc.  相似文献   

19.
The gene encoding a subtilisin-like serine proteinase in the psychrotrophic Vibrio sp. PA44 has been successfully cloned, sequenced and expressed in Escherichia coli. The gene is 1593 basepairs and encodes a precursor protein of 530 amino acid residues with a calculated molecular mass of 55.7 kDa. The enzyme is isolated, however, as an active 40.6-kDa proteinase, without a 139 amino acid residue N-terminal prosequence. Under mild conditions the enzyme undergoes a further autocatalytic cleavage to give a 29.7-kDa proteinase that retains full enzymatic activity. The deduced amino acid sequence of the enzyme has high homology to proteinases of the proteinase K family of subtilisin-like proteinases. With respect to the enzyme characteristics compared in this study the properties of the wild-type and recombinant proteinases are the same. Sequence analysis revealed that especially with respect to the thermophilic homologues, aqualysin I from Thermus aquaticus and a proteinase from Thermus strain Rt41A, the cold-adapted Vibrio-proteinase has a higher content of polar/uncharged amino acids, as well as aspartate residues. The thermophilic enzymes had a higher content of arginines, and relatively higher number of hydrophobic amino acids and a higher aliphatic index. These factors may contribute to the adaptation of these proteinases to different temperature conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号